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1 Continuation of the Exercises of Report 1

1.1 Exercise 7

Let U : ' H — H be an unitary operator. Prove o(U) C S, where S = {2z € C| |z|] = 1}.

To solve this exercise, we’ll prepare the following lemma.

Lemma 1.1.
Suppose X € B(H,H) and || X]|| < 1. Then, (1 — X)~! exists and is bounded on . In
particular, Ker(1 — X) = {0}.

[Proof]
For each k € NU {0}, we have || X*|| = | XX --- X| £ | X X]--- | X]| = | X]|* since
X is bounded. Thus we get

DX = YO IXE < oo
k=0 k=0

due to || X|| < 1. Therefore >  X* is absolutely convergent. Moreover, B(H,H) is com-

k=0
00

plete since H is complete. These facts indicate that Z X* is convergent, because absolute

k=0
00

convergence implies convergence in complete spaces. As a side note, Z X% is called the
k=0
Neumann series.

Now, simple calculation yields

@Xk) (1-X)=(1-X) (é‘xk) oy xnn

and as N — oo, we have XV — 0 since || XV < | X]|¥* — 0, and hence
(Zxk> 1-X)=(1-X) (ZX’“) = 1.
k=0 k=0

Thus (1 - X)™! = Z X*. To see this is bounded, let f € H and observe that
k=0

and letting N — oo, we get [|(1 — X)7Lf|| <
Ker(1 — X) = {0} follows by
1-X)f=0 = f=1-X)'1-X)f=01-X)"'0=0.

[

N
> X!
k=0

N N
(Z X’f) fH < 1< S I D7) =
k=0 k=0

1
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So, let us make a start on the exercise 7.

[Solution of Exercise 7]

It suffices to show that C\ S C p(U). Let A€ C\ S.

First, assume |A| < 1. In order to see A € p(U), we have to check Ker(U—A\-1) = {0} and
(U —X-1)"1is bounded. We have Ker(1—AU"') = {0} by [[AU Y| = [N|U Y] =[N <1
and by the lemma [Tl Moreover, Ker(U) = {0} since U is unitary. Now, noting that

U-X-1=U1-XU"),

we can see Ker(U —\-1) = {0} and (U —A-1)"' = (1 = AU')"'U!, which is bounded
by the lemma [T and by the unitarity of U~!. Thus A € p(U).
Next, assume |A| > 1. We have

1
—A1=-A(1--U).
v (1-37)

1 1 1 1. \!
Since XU = ‘)\’ U]l < 1, we see that Ker (1 — )\U> = {0} and (1 — /\U) exists
and is bounded by the lemma [L1 Hence Ker(U — X - 1) = {0} and (U — X -1)7! =
1 1 \1
Y (1 — )\U) is bounded. Therefore, A € p(U). O

2 The Cayley Transform

This section 2 will introduce a special operator, the Cayley transform. Let H be a

Hilbert space on C.

Lemma 2.1.
Suppose H # {0}, and let A : D(A) — H be a bounded linear operator. If D(A) = H
and (Af, f) =0 for all f € D(A), then A =0.

[Proof]

We have to show that Af = 0 for all f € D(A). Let f € D(A), and put g := Af.
Now, fix ¢ € C arbitrarily. Since c¢f + g € H = D(A), by the supposition, we have
(A(cf +g),cf + g) = 0. Moreover, the supposition gives (Af, ) = (Ag,g) = 0. Thus

0= (A(cf +g),cf +9)
= |c|*(Af, f) + c(Af, g) + ©(Ag, f) + (Ag, g)
= c(Af, g) +c(Ag, ).

Since c is arbitrary, we can consider the cases ¢ = 1 and ¢ = 7. Then, we get
(Af.9) +(Ag, [) =0

and

(Af,g) —{(Ag, [) = 0.
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Adding these two equalities gives us (Af, g) = 0. Recalling that g = Af, we get || Af||* = 0,
ie., Af =0. O

Lemma 2.2.
Let A: D(A) — H be a self-adjoint operator. Then, A+i-1: D(A) — H is injective.
In particular, (A +1i-1)~! exists with the domain Ran(A +i-1) and the codomain D(A).

[Proof]
For each f € D(A), simple calculation and the self-adjointness of A yield

I(A+i-D)fIP=((A+i-1)f,(A+i-1)f)
= (Af, Af) +(Afif) + Gf, Af) + Gf,if)
= [JAfIP = i(Af, f) +ilf, Af) + | F1P
= [ ASIIP = (AL, ) + AL )+ 1FIP
= A2+ 1117
> || fII.

This shows that for each f € D(A), (A+¢-1)f = 0 implies f = 0. Thus A+i-1is
injective and hence (A +-1)~! exists with the domain Ran(A + - 1) and the codomain
D(A). O

Definition 2.3 (Cayley transform).
Suppose ‘H # {0}, and let A : D(A) — H be a self-adjoint operator. The operator
C:Ran(A+i-1) — Ran(A —i- 1) defined by

C=A—i-D(A+i-1)"

is called the Cayley transform of A. This is well-defined because (A + i - 1)~ exists
with the domain Ran(A + ¢ - 1) and the codomain D(A) by the lemma

Proposition 2.4.
Suppose H # {0} and let A : D(A) — H be a self-adjoint operator. Then, C' is unitary.

[Proof]

Actually, Ran(A+i¢-1) = Ran(A —i-1) = H holds by the self-adjointness of A, so we
get D(C') = H and Ran(C) = H. I omit the proof of this because the argument is rather
long. If you want to check it, see e.g. [9, Theorem 7.23].

First, we’ll see that |[|C f|| = || f|| for all f € D(C) = H. Let f € H. For the viewability,
put g:= (A+i-1)7'f.

ICFIP = [I(A—i-1)(A+i- 1)~ f]?
= [|(A —i-1)g|?
= || Ag — ig|]?
= (Ag —ig, Ag — ig)
= (Ag, Ag) + (Ag, —ig) + (—ig, Ag) + (ig,ig).



Now, we can see (Ag, —ig) = (g, A(—1g)) = (g, —iAg) = (ig, Ag). Similarly, (—ig, Ag) =
(Ag,ig). Thus,

ICfII? = (Ag, Ag) + (ig, Ag) + (Ag,ig) + (ig,ig)
= (Ag +1ig, Ag + ig)
= [|Ag +ig|?
= [[(A+i-1)g|
= [(A+ai-)(A+i- D)7
= |I£1*.

This shows ||Cf]| = || f]].
Next, we will check that C' is unitary. Since ||C'f|| = || f]|| for all f € H, C is bounded
and so is C*C' — 1. Now, for all h € H, we have

(C*C — 1)k, h) = (C*Ch — h, )
= (C*Ch,h) — (h, })
= (Ch,CR) — (h, })
— |lCh|)* = |1

=0
and hence C*C' — 1 = 0 by the lemma 2.l Therefore C*C' = 1. Moreover, C' is injective
because ||Cf|| = ||f|| for all f € H. The injectivity of C' and D(C) = H = Ran(C)

indicate that C' ! exists with the domain A and the codomain H. Hence C* = C*CC~! =
1-C~! = C~ Therefore C is unitary. O

3 Parseval’s Identity for a ‘H-valued Function and an
Operator in B(H,H)

In this section, let H be a separable Hilbert space on C, and we aim for Parseval’s

identity for a H-valued function and an operator in B(H,H) :
S [BE@)| = o [ 1B @) d
s 2m Jo

Lemma 3.1. ,
Let B € B(H,H) and g : [0,27] — H be Bochner integrable, i.e., / lg(8)]| db < o
0
or g € LY([0,27],H). Then, B o g is Bochner integrable and

2

Bog(@)d@zB(/O%g(H)cw).

2m 2m
This formula can be rewritten to / B(g(0))do = B (/ g(0) d@), so this lemma says
0 0



we can interchange an operator and an integral sign.

[Proof]
Bochner integrability of B o g is seen by

[T og@do= [ 1@ do < [T 1B lo@)ldo =181 [ lg(6)]d6 < oo

Bochner integral can be regarded as the limit of Riemann sum. Setting 0 = ¢y < ¢1 <

.-+ < ¢, = 27 as a partition of [0, 27| and taking v € [cx_1, cx] for each k, we get

2

Bog(@)d) = Jim 3 B o glru)(en — o)
= Jim 3~ Blon)(ex ~ o)
= Jim 3 Blon)(es — 6uo1)
=B (gggo gg(%)(ck - ck—1)>

:B(/O%g(ﬁ)aw),

where we put Y and lim under B by the linearity and the continuity of B. O

Lemma 3.2 (Parseval’s identity for #-valued functions).
For h € L2([0, 2], H),

S |hn))? = ;ﬂ/o% 1h(2)||? dz

neZ
holds, where h(n) is the n-th Fourier coefficient of h.

[Proof]
Since H is separable, we can choose {e;}32, as a countable orthonormal basis of H.
For each k € N, define the function Ay : [0, 27] — C by

hi(z) = (h(x), ex).
Each hy is in £2([0, 27], C) because
2 9 9 2 9
|7 @) de < el [ b)) dr < o0

holds by the Cauchy-Schwarz inequality. Applying Parseval’s identity for square integrable
complex functions to each hy, we get

S ()2 = ;ﬂ /02“ i ()2 dz. (3.1)

neEL



For each n € Z and each k£ € N, noting that we can put the integral symbol into inner

product, we can see

Fa(n) = ;ﬂ / =m0, (0) do
_ ;ﬂ / e (1(0), ) d6
_ ;ﬂ i e R(6), ) dO
_ <217r /0 =m0 () d9,6k>
= (h(n), ex)

SO (Bj]) is rewritten to
E n) e X dzx.
nez o 2 0 ¢

Moreover, since {e;}?2; is an orthonormal basis of H, we have

R = ff (), ex)

and

> 1(hte), el = Il

Using the formulas above, we get

I
]2
=)
=
\‘(‘D
T
—

B
Il
—
3
m
N

I I
T

“\H |-

c\[;ﬂ»—t
3
i™Ms = %
=
—~
-
Q
g

Z| ), ex)|? d

L
= o [ @)

o

00 00 o0 27 2T
Z Z = Z Z and Z / = / Z are justified by Tonelli’s theorem. O
nez k=1 €z k=1"0 O k=1

Theorem 3.3 (Parseval’s identity for a 7{-valued function and an operator in

B(H,H)).



If f e £2([0,2n],H) and B € B(H,H), then Bo f € L*([0,27],H) and

> [BEm| = o [ IBG@)F iz,

ne”L

o~

where f(n) is the n-th Fourier coefficient of f.

[Proof]
We can see Bo f € L*(]0,2n],H) by

[T s@Ide = [TIBG@)E < 1B [T @) d < oo

Applying the lemma B2/ to B o f, we get

oy - o [ 1B f)P de. (3.2
Now, we have
(Bof) )= o [ e B(r0) o
:é;A%B@”wﬂ@MM
:é;B(A%eiwﬂmd@

2

Y
¥ =

We‘”wj(e)d9>

0

Il
T W

—~
—
S
~—
~—

The interchange of B and / is justified by f € L£2([0,2x],H) C £'([0,27],H) and the
lemma [3Il Therefore (B:2) implies

S|l = 5 [ IBG @I de

1
neE”L T

4 Vitali’s Convergence Theorem

We’ll see about Vitali’s convergence theorem we used in the middle of the lecture.

In this section, assume that (X,>", i) is a (positive) measure space.

Definition 4.1 (uniform integrability).
Let {f, : X — C}22, be a sequence of measurable functions. We say {f,}32, is
uniformly integrable if for all € > 0, there exists § > 0 s.t.

Eey and pu(F) < 9§

imply



/ |fo(2)|du(z) < € for each n € N,
E

Lemma 4.2.

For a sequence of measurable functions {f, : X — C}32, and a measurable function
f:X — C,if {f,}>2, is uniformly integrable and { f,,}>2, converges to f pointwise, then
{fn — f}, is also uniformly integrable.

[Proof]
Let € > 0. By the uniform integrability of {f,}5°,, there is 6 > 0 s.t. E € Y and

w(E) < § imply
/ | fr(2)|dp(z) < g for each n € N. (4.1)
E

Assume F € Y and u(E) < §. Then (A1) holds so we get

/E!f(:v)!du ) = hm/!fn )du(z) <

DO

by Fatou’s lemma. Thereupon, for each n € N, we have
L 1fa@) = f@)ldu(a) £ [ 1f@)ldp@) + [ |f@ldu(e) < 5+ 5 =

Thus {f, — f}°°, is uniformly integrable. O

Lemma 4.3.

Suppose u(X) < oo. For a sequence of measurable functions {f, : X — C}2, and a
measurable function f : X — C, if {f,}°
and {f,}°2, converges to f pointwise, then f € £!(X).

is uniformly integrable, {f,}>2, C £L(X),

n=1

[Proof]

By the lemma 2, {f, — f}>2, is uniformly integrable. Thus there is 6 > 0 s.t.
E €Y and p(E) < 6 imply / |fu(z) — f(x)|du(x) < 1 for each n € N. Egorov’s theorem
guarantees that there exists A € Y- s.t. u(X\A) < dand {f,}22, converges to f uniformly
on A. Hereupon there is N € N s.t. |[fn(z) — f(x)] < 1 for all z € A. Hence we can see
that

[ 17@)ldta)
/lf ~ Iy@Idp(@) + [ |7v(@)ldp()
= [ V@) = x@laute) + [ 17 = fv@ldue) + [ 1)lduta)
< u(A) + 1+ [ 1y (@)dua)
< 00,
where the last line follows by (X)) < oo and fy € £'. Therefore f € L1, 0

Theorem 4.4 (Vitali’s convergence theorem).
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Suppose u(X) < 0o, a sequence of measurable functions {f, : X — C}>>, C L1(X) is
uniformly integrable, and {f,,}>°, converges to a measurable function f : X — C. Then,
f e LYX) and lim / |fu(z) — f(z)|dp(z) = 0, and eventually, lim / fo(z)du(z) =

[ £ du(z).
X
The argument of the proof is similar to that of the proof of the lemma [£3]

[Proof]

[ € L' follows by the lemma 3] so let us show lim /X |fru(z) — f(x)|dp(z) = 0.

Let € > 0. Since {f, — f}52, is uniformly integrable by the lemma E.2] there is § > 0
st. B €Y and pu(F) < § imply /E |fo(z) = f(x)|dp(x) < % for each n € N. Egorov’s
theorem justifies the existence of A € 3 s.t. u(X \ A) < d and {f,}>2, converges to f
uniformly on A. Thus there is N € N s.t.

n>N = |fn(x)—f(x)|<MforallxeA.

If n =2 N, then we have

J Vo) = F@lduta) = [ 1fale) = F@)lda) + [ 1) = FC@)ldu)

€ €
<A S ) T2
€ €
=1X) sy T2
< €.
Therefore lim / | f(x) — f(2)|dpu(z) = 0.

Finally, lim / fo(z)du(x) :/ f(z)du(z) follows by
n—oo Jx X

’AﬂMMM@—/

The next proposition states that under the condition u(X) < oo, the supposition of Vi-

/’fn — f(z)|dp(z) — 0 as n — oc.
]

tali’s convergence theorem is weaker than that of the dominated convergence theorem and

hence Vitali’s convergence theorem is stronger than the dominated convergence theorem.

Proposition 4.5.

Assume p(X) < oco. If a sequence of measurable functions {f, : X — C}°°, converges
to f : X — C pointwise and there exists g € L1(X) s.t. |f,| S g for each n € N, then
{fu}e, € LY(X) and {f,,}22, is uniformly integrable.

[Proof]
{fa}ee, € LY(X) follows immediately by | f,| < g. To show the uniform integrability of
{fn}>24, let € > 0. By the dominated convergence theorem, we get ]Vlfim / g(z)du(z) =
—00 Jg=M



0. Thus there is M > 0 s.t. / g(x)dp(x) < < Setting § := - and supposing F € Y

and p(E) < 0, we can see that for each n € N|

/E | ()| () < g(x) dp(r) + g(x) du(x)

-~ JEN{gzM} En{g<M}
§/> 9(x) du(fc’)Jr/ M du(x)
g=zM E

<g+MM(E)
€

< -4+ Mo
2-1—

= €.

Therefore { f,,}52, is uniformly integrable. ]

n—

5 Appendix

5.1 Two Definitions of Uniform Integrability

In this subsection, suppose (X, Y, u) is a (positive) measure space and {f,, : X — C}>°

is a sequence of measurable functions.

[e.9]

In the section 4, we decided to say { f,}22; was uniformly integrable if { f,,}°°; satisfied

the following condition :
Ve>0,36>0st. E€) and u(E)<d = VneN, / |fo(2)|dp(z) <e.  (5.1)
E

On the other hand, some mathematicians define uniform integrability by

lim sup /fnzM | fn(x)|dp(z) = 0. (5.2)

Actually, Royden [2] defines the uniform integrability by (B.I), whilst Billingsley [4],
Chung [3], and #itK [10] define that by (5.2).
Under the constraint that pu(X) < oo, the condition (5.2)) is stronger than (51I) due to

the following proposition.

Proposition 5.1.
Suppose (X)) < 0o and consider the condition

sup | | ()| dpa() < 00. (5-3)

Then, we can see that

EI) and (B3) — [E2).

[Proof]
(=)
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Put A :=sup [ |f.(x)|dp(x)(< 00). Let € > 0. By the supposition (51I), there is § > 0
neN v/ X
s.t.

EeY and w(E) <6 = VYneN, /E | fo(2)|dp(z) < e. (5.4)

A
Set My = 5 and assume M = M,. We have

1
w(|fnl 2 M) /Vn'szu i lfnleMdu /n|>M\fn( v)|du(z) = S =0

and hence by (5.4)),
Vn €N, |[fn(@)dp(z) <€

[ful2zM

holds and this shows sup | fu(2)|dp(x) < €. Thus (B2) holds.
neN J|fnl2M

(=)

By (B2), there exists M > 0 s.t. sup | fr(z)|dp(z) = 1. Thus
neN J|fnl2M

sup X|fn(x)ldu(x) §i‘éIN3 ‘fn@M|fn(x)|du(x)+§;£ |nt<M|fn(56)ldu(flr)

<1+ Sup/ Mdy
| fn|<M

neN

S 1+sup [ Mdu
neN J X

=1+ Mp(X)

< OQ.

Thus (B.3) has been confirmed.
Next, in order to check (B.1), fix € > 0 arbitrarily. By (5.2)), there exists L > 0 s.t.
sup | |fu(2)|dp(z) < % Now, set § := i Then F € Y and u(E) < ¢ imply that
L

ne | nl:

for each n € N,

L @ldu@ = [ AR @ldn [ @)ldu()

< [, Vo) ldute) + | Ly
<sup [ 1a(@)ldn(z) + Li(E)

nEN

< -+ L)
2+

= €.

This completes the proof of (B.1). O
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