Report 2

322301343, So Moriki
July 8, 2023

Contents

1 Continuation of the Exercises of Report 1 1
1.1 Exercise 7 1
2 The Cayley Transform 2
3 Parseval's Identity for a \mathcal{H}-valued Function and an Operator in $\mathcal{B}(\mathcal{H}, \mathcal{H})$ 4
4 Vitali's Convergence Theorem 7
5 Appendix 10
5.1 Two Definitions of Uniform Integrability 10

1 Continuation of the Exercises of Report 1

1.1 Exercise 7

Let $U: \mathcal{H} \rightarrow \mathcal{H}$ be an unitary operator. Prove $\sigma(U) \subset S$, where $S=\{z \in \mathbb{C}| | z \mid=1\}$.

To solve this exercise, we'll prepare the following lemma.

Lemma 1.1.

Suppose $X \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ and $\|X\|<1$. Then, $(1-X)^{-1}$ exists and is bounded on \mathcal{H}. In particular, $\operatorname{Ker}(1-X)=\{0\}$.

【Proof】

For each $k \in \mathbb{N} \cup\{0\}$, we have $\left\|X^{k}\right\|=\|X X \cdots X\| \leqq\|X\|\|X\| \cdots\|X\|=\|X\|^{k}$ since X is bounded. Thus we get

$$
\sum_{k=0}^{\infty}\left\|X^{k}\right\| \leqq \sum_{k=0}^{\infty}\|X\|^{k}<\infty
$$

due to $\|X\|<1$. Therefore $\sum_{k=0}^{\infty} X^{k}$ is absolutely convergent. Moreover, $\mathcal{B}(\mathcal{H}, \mathcal{H})$ is complete since \mathcal{H} is complete. These facts indicate that $\sum_{k=0}^{\infty} X^{k}$ is convergent, because absolute convergence implies convergence in complete spaces. As a side note, $\sum_{k=0}^{\infty} X^{k}$ is called the Neumann series.

Now, simple calculation yields

$$
\left(\sum_{k=0}^{N} X^{k}\right)(1-X)=(1-X)\left(\sum_{k=0}^{N} X^{k}\right)=1-X^{N+1},
$$

and as $N \rightarrow \infty$, we have $X^{N+1} \rightarrow 0$ since $\left\|X^{N+1}\right\| \leqq\|X\|^{N+1} \rightarrow 0$, and hence

$$
\left(\sum_{k=0}^{\infty} X^{k}\right)(1-X)=(1-X)\left(\sum_{k=0}^{\infty} X^{k}\right)=1
$$

Thus $(1-X)^{-1}=\sum_{k=0}^{\infty} X^{k}$. To see this is bounded, let $f \in \mathcal{H}$ and observe that

$$
\left\|\left(\sum_{k=0}^{N} X^{k}\right) f\right\| \leqq\left\|\sum_{k=0}^{N} X^{k}\right\|\|f\| \leqq \sum_{k=0}^{N}\|X\|^{k}\|f\|=\frac{1-\|X\|^{N+1}}{1-\|X\|}\|f\|
$$

and letting $N \rightarrow \infty$, we get $\left\|(1-X)^{-1} f\right\| \leqq \frac{1}{1-\|X\|}\|f\|$.
$\operatorname{Ker}(1-X)=\{0\}$ follows by

$$
(1-X) f=0 \Longrightarrow f=(1-X)^{-1}(1-X) f=(1-X)^{-1} 0=0 .
$$

So，let us make a start on the exercise 7 ．

【Solution of Exercise 7】

It suffices to show that $\mathbb{C} \backslash S \subset \rho(U)$ ．Let $\lambda \in \mathbb{C} \backslash S$ ．
First，assume $|\lambda|<1$ ．In order to see $\lambda \in \rho(U)$ ，we have to check $\operatorname{Ker}(U-\lambda \cdot 1)=\{0\}$ and $(U-\lambda \cdot 1)^{-1}$ is bounded．We have $\operatorname{Ker}\left(1-\lambda U^{-1}\right)=\{0\}$ by $\left\|\lambda U^{-1}\right\|=|\lambda|\left\|U^{-1}\right\|=|\lambda|<1$ and by the lemma 1．1．Moreover， $\operatorname{Ker}(U)=\{0\}$ since U is unitary．Now，noting that

$$
U-\lambda \cdot 1=U\left(1-\lambda U^{-1}\right)
$$

we can see $\operatorname{Ker}(U-\lambda \cdot 1)=\{0\}$ and $(U-\lambda \cdot 1)^{-1}=\left(1-\lambda U^{-1}\right)^{-1} U^{-1}$ ，which is bounded by the lemma 1.1 and by the unitarity of U^{-1} ．Thus $\lambda \in \rho(U)$ ．

Next，assume $|\lambda|>1$ ．We have

$$
U-\lambda \cdot 1=-\lambda\left(1-\frac{1}{\lambda} U\right) .
$$

Since $\left\|\frac{1}{\lambda} U\right\|=\left|\frac{1}{\lambda}\right|\|U\|<1$ ，we see that $\operatorname{Ker}\left(1-\frac{1}{\lambda} U\right)=\{0\}$ and $\left(1-\frac{1}{\lambda} U\right)^{-1}$ exists and is bounded by the lemma 1．1．Hence $\operatorname{Ker}(U-\lambda \cdot 1)=\{0\}$ and $(U-\lambda \cdot 1)^{-1}=$ $-\frac{1}{\lambda}\left(1-\frac{1}{\lambda} U\right)^{-1}$ is bounded．Therefore，$\lambda \in \rho(U)$ ．

2 The Cayley Transform

This section 2 will introduce a special operator，the Cayley transform．Let \mathcal{H} be a Hilbert space on \mathbb{C} ．

Lemma 2．1．

Suppose $\mathcal{H} \neq\{0\}$ ，and let $A: D(A) \rightarrow \mathcal{H}$ be a bounded linear operator．If $D(A)=\mathcal{H}$ and $\langle A f, f\rangle=0$ for all $f \in D(A)$ ，then $A=0$ ．

【Proof】

We have to show that $A f=0$ for all $f \in D(A)$ ．Let $f \in D(A)$ ，and put $g:=A f$ ． Now，fix $c \in \mathbb{C}$ arbitrarily．Since $c f+g \in \mathcal{H}=D(A)$ ，by the supposition，we have $\langle A(c f+g), c f+g\rangle=0$ ．Moreover，the supposition gives $\langle A f, f\rangle=\langle A g, g\rangle=0$ ．Thus

$$
\begin{aligned}
0 & =\langle A(c f+g), c f+g\rangle \\
& =|c|^{2}\langle A f, f\rangle+c\langle A f, g\rangle+\bar{c}\langle A g, f\rangle+\langle A g, g\rangle \\
& =c\langle A f, g\rangle+\bar{c}\langle A g, f\rangle .
\end{aligned}
$$

Since c is arbitrary，we can consider the cases $c=1$ and $c=i$ ．Then，we get

$$
\langle A f, g\rangle+\langle A g, f\rangle=0
$$

and

$$
\langle A f, g\rangle-\langle A g, f\rangle=0 .
$$

Adding these two equalities gives us $\langle A f, g\rangle=0$ ．Recalling that $g=A f$ ，we get $\|A f\|^{2}=0$ ， i．e．，$A f=0$ ．

Lemma 2．2．

Let $A: D(A) \rightarrow \mathcal{H}$ be a self－adjoint operator．Then，$A+i \cdot 1: D(A) \rightarrow \mathcal{H}$ is injective． In particular，$(A+i \cdot 1)^{-1}$ exists with the domain $\operatorname{Ran}(A+i \cdot 1)$ and the codomain $D(A)$ ．

【Proof】

For each $f \in D(A)$ ，simple calculation and the self－adjointness of A yield

$$
\begin{aligned}
\|(A+i \cdot 1) f\|^{2} & =\langle(A+i \cdot 1) f,(A+i \cdot 1) f\rangle \\
& =\langle A f, A f\rangle+\langle A f, i f\rangle+\langle i f, A f\rangle+\langle i f, i f\rangle \\
& =\|A f\|^{2}-i\langle A f, f\rangle+i\langle f, A f\rangle+\|f\|^{2} \\
& =\|A f\|^{2}-i\langle A f, f\rangle+i\langle A f, f\rangle+\|f\|^{2} \\
& =\|A f\|^{2}+\|f\|^{2} \\
& \geqq\|f\|^{2} .
\end{aligned}
$$

This shows that for each $f \in D(A),(A+i \cdot 1) f=0$ implies $f=0$ ．Thus $A+i \cdot 1$ is injective and hence $(A+i \cdot 1)^{-1}$ exists with the domain $\operatorname{Ran}(A+i \cdot 1)$ and the codomain $D(A)$ ．

Definition 2.3 （Cayley transform）．

Suppose $\mathcal{H} \neq\{0\}$ ，and let $A: D(A) \rightarrow \mathcal{H}$ be a self－adjoint operator．The operator $C: \operatorname{Ran}(A+i \cdot 1) \rightarrow \operatorname{Ran}(A-i \cdot 1)$ defined by

$$
C:=(A-i \cdot 1)(A+i \cdot 1)^{-1}
$$

is called the Cayley transform of A ．This is well－defined because $(A+i \cdot 1)^{-1}$ exists with the domain $\operatorname{Ran}(A+i \cdot 1)$ and the codomain $D(A)$ by the lemma 2．2，

Proposition 2．4．

Suppose $\mathcal{H} \neq\{0\}$ and let $A: D(A) \rightarrow \mathcal{H}$ be a self－adjoint operator．Then，C is unitary．

【Proof】

Actually， $\operatorname{Ran}(A+i \cdot 1)=\operatorname{Ran}(A-i \cdot 1)=\mathcal{H}$ holds by the self－adjointness of A ，so we get $D(C)=\mathcal{H}$ and $\operatorname{Ran}(C)=\mathcal{H}$ ．I omit the proof of this because the argument is rather long．If you want to check it，see e．g．［9，Theorem 7．23］．
First，we＇ll see that $\|C f\|=\|f\|$ for all $f \in D(C)=\mathcal{H}$ ．Let $f \in \mathcal{H}$ ．For the viewability， put $g:=(A+i \cdot 1)^{-1} f$ ．

$$
\begin{aligned}
\|C f\|^{2} & =\left\|(A-i \cdot 1)(A+i \cdot 1)^{-1} f\right\|^{2} \\
& =\|(A-i \cdot 1) g\|^{2} \\
& =\|A g-i g\|^{2} \\
& =\langle A g-i g, A g-i g\rangle \\
& =\langle A g, A g\rangle+\langle A g,-i g\rangle+\langle-i g, A g\rangle+\langle i g, i g\rangle .
\end{aligned}
$$

Now, we can see $\langle A g,-i g\rangle=\langle g, A(-i g)\rangle=\langle g,-i A g\rangle=\langle i g, A g\rangle$. Similarly, $\langle-i g, A g\rangle=$ $\langle A g, i g\rangle$. Thus,

$$
\begin{aligned}
\|C f\|^{2} & =\langle A g, A g\rangle+\langle i g, A g\rangle+\langle A g, i g\rangle+\langle i g, i g\rangle \\
& =\langle A g+i g, A g+i g\rangle \\
& =\|A g+i g\|^{2} \\
& =\|(A+i \cdot 1) g\|^{2} \\
& =\left\|(A+i \cdot 1)(A+i \cdot 1)^{-1} f\right\|^{2} \\
& =\|f\|^{2} .
\end{aligned}
$$

This shows $\|C f\|=\|f\|$.
Next, we will check that C is unitary. Since $\|C f\|=\|f\|$ for all $f \in \mathcal{H}, C$ is bounded and so is $C^{*} C-1$. Now, for all $h \in \mathcal{H}$, we have

$$
\begin{aligned}
\left\langle\left(C^{*} C-1\right) h, h\right\rangle & =\left\langle C^{*} C h-h, h\right\rangle \\
& =\left\langle C^{*} C h, h\right\rangle-\langle h, h\rangle \\
& =\langle C h, C h\rangle-\langle h, h\rangle \\
& =\|C h\|^{2}-\|h\|^{2} \\
& =0
\end{aligned}
$$

and hence $C^{*} C-1=0$ by the lemma [2.1. Therefore $C^{*} C=1$. Moreover, C is injective because $\|C f\|=\|f\|$ for all $f \in \mathcal{H}$. The injectivity of C and $D(C)=\mathcal{H}=\operatorname{Ran}(C)$ indicate that C^{-1} exists with the domain \mathcal{H} and the codomain \mathcal{H}. Hence $C^{*}=C^{*} C C^{-1}=$ $1 \cdot C^{-1}=C^{-1}$. Therefore C is unitary.

3 Parseval's Identity for a \mathcal{H}-valued Function and an Operator in $\mathcal{B}(\mathcal{H}, \mathcal{H})$

In this section, let \mathcal{H} be a separable Hilbert space on \mathbb{C}, and we aim for Parseval's identity for a \mathcal{H}-valued function and an operator in $\mathcal{B}(\mathcal{H}, \mathcal{H})$:

$$
\sum_{n \in \mathbb{Z}}\|B(\widehat{f}(n))\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\|B(f(x))\|^{2} d x .
$$

Lemma 3.1.

Let $B \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ and $g:[0,2 \pi] \rightarrow \mathcal{H}$ be Bochner integrable, i.e., $\int_{0}^{2 \pi}\|g(\theta)\| d \theta<\infty$ or $g \in \mathcal{L}^{1}([0,2 \pi], \mathcal{H})$. Then, $B \circ g$ is Bochner integrable and

$$
\int_{0}^{2 \pi} B \circ g(\theta) d \theta=B\left(\int_{0}^{2 \pi} g(\theta) d \theta\right)
$$

This formula can be rewritten to $\int_{0}^{2 \pi} B(g(\theta)) d \theta=B\left(\int_{0}^{2 \pi} g(\theta) d \theta\right)$, so this lemma says
we can interchange an operator and an integral sign．

【Proof】

Bochner integrability of $B \circ g$ is seen by

$$
\int_{0}^{2 \pi}\|B \circ g(\theta)\| d \theta=\int_{0}^{2 \pi}\|B(g(\theta))\| d \theta \leqq \int_{0}^{2 \pi}\|B\|\|g(\theta)\| d \theta=\|B\| \int_{0}^{2 \pi}\|g(\theta)\| d \theta<\infty
$$

Bochner integral can be regarded as the limit of Riemann sum．Setting $0=c_{0}<c_{1}<$ $\cdots<c_{n}=2 \pi$ as a partition of $[0,2 \pi]$ and taking $\gamma_{k} \in\left[c_{k-1}, c_{k}\right]$ for each k ，we get

$$
\begin{aligned}
\int_{0}^{2 \pi} B \circ g(\theta) d \theta & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} B \circ g\left(\gamma_{k}\right)\left(c_{k}-c_{k-1}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} B\left(g\left(\gamma_{k}\right)\right)\left(c_{k}-c_{k-1}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} B\left(g\left(\gamma_{k}\right)\left(c_{k}-c_{k-1}\right)\right) \\
& =B\left(\lim _{n \rightarrow \infty} \sum_{k=1}^{n} g\left(\gamma_{k}\right)\left(c_{k}-c_{k-1}\right)\right) \\
& =B\left(\int_{0}^{2 \pi} g(\theta) d \theta\right),
\end{aligned}
$$

where we put \sum and lim under B by the linearity and the continuity of B ．

Lemma 3.2 （Parseval＇s identity for \mathcal{H}－valued functions）．

For $h \in \mathcal{L}^{2}([0,2 \pi], \mathcal{H})$ ，

$$
\sum_{n \in \mathbb{Z}}\|\widehat{h}(n)\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\|h(x)\|^{2} d x
$$

holds，where $\widehat{h}(n)$ is the n－th Fourier coefficient of h ．

【Proof】

Since \mathcal{H} is separable，we can choose $\left\{e_{k}\right\}_{k=1}^{\infty}$ as a countable orthonormal basis of \mathcal{H} ． For each $k \in \mathbb{N}$ ，define the function $h_{k}:[0,2 \pi] \rightarrow \mathbb{C}$ by

$$
h_{k}(x)=\left\langle h(x), e_{k}\right\rangle .
$$

Each h_{k} is in $\mathcal{L}^{2}([0,2 \pi], \mathbb{C})$ because

$$
\int_{0}^{2 \pi}\left|h_{k}(x)\right|^{2} d x \leqq\left\|e_{k}\right\|^{2} \int_{0}^{2 \pi}\|h(x)\|^{2} d x<\infty
$$

holds by the Cauchy－Schwarz inequality．Applying Parseval＇s identity for square integrable complex functions to each h_{k} ，we get

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}}\left|\widehat{h}_{k}(n)\right|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h_{k}(x)\right|^{2} d x \tag{3.1}
\end{equation*}
$$

For each $n \in \mathbb{Z}$ and each $k \in \mathbb{N}$, noting that we can put the integral symbol into inner product, we can see

$$
\begin{aligned}
\widehat{h}_{k}(n) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \theta} h_{k}(\theta) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \theta}\left\langle h(\theta), e_{k}\right\rangle d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle e^{-i n \theta} h(\theta), e_{k}\right\rangle d \theta \\
& =\left\langle\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \theta} h(\theta) d \theta, e_{k}\right\rangle \\
& =\left\langle\widehat{h}(n), e_{k}\right\rangle
\end{aligned}
$$

so (3.1) is rewritten to

$$
\sum_{n \in \mathbb{Z}}\left|\left\langle\widehat{h}(n), e_{k}\right\rangle\right|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h_{k}(x)\right|^{2} d x
$$

Moreover, since $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis of \mathcal{H}, we have

$$
\|\widehat{h}(n)\|^{2}=\sum_{k=1}^{\infty}\left|\left\langle\widehat{h}(n), e_{k}\right\rangle\right|^{2}
$$

and

$$
\sum_{k=1}^{\infty}\left|\left\langle h(x), e_{k}\right\rangle\right|^{2}=\|h(x)\|^{2} .
$$

Using the formulas above, we get

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}}\|\widehat{h}(n)\|^{2} & =\sum_{n \in \mathbb{Z}} \sum_{k=1}^{\infty}\left|\left\langle\widehat{h}(n), e_{k}\right\rangle\right|^{2} \\
& =\sum_{k=1}^{\infty} \sum_{n \in \mathbb{Z}}\left|\left\langle\widehat{h}(n), e_{k}\right\rangle\right|^{2} \\
& =\sum_{k=1}^{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h_{k}(x)\right|^{2} d x \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=1}^{\infty}\left|h_{k}(x)\right|^{2} d x \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=1}^{\infty}\left|\left\langle h(x), e_{k}\right\rangle\right|^{2} d x \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\|h(x)\|^{2} d x
\end{aligned}
$$

$\sum_{n \in \mathbb{Z}} \sum_{k=1}^{\infty}=\sum_{k=1}^{\infty} \sum_{n \in \mathbb{Z}}$ and $\sum_{k=1}^{\infty} \int_{0}^{2 \pi}=\int_{0}^{2 \pi} \sum_{k=1}^{\infty}$ are justified by Tonelli's theorem.
Theorem 3.3 (Parseval's identity for a \mathcal{H}-valued function and an operator in $\mathcal{B}(\mathcal{H}, \mathcal{H}))$.

If $f \in \mathcal{L}^{2}([0,2 \pi], \mathcal{H})$ and $B \in \mathcal{B}(\mathcal{H}, \mathcal{H})$, then $B \circ f \in \mathcal{L}^{2}([0,2 \pi], \mathcal{H})$ and

$$
\sum_{n \in \mathbb{Z}}\|B(\widehat{f}(n))\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\|B(f(x))\|^{2} d x
$$

where $\widehat{f}(n)$ is the n-th Fourier coefficient of f.

【Proof】

We can see $B \circ f \in \mathcal{L}^{2}([0,2 \pi], \mathcal{H})$ by

$$
\int_{0}^{2 \pi}\|B \circ f(x)\|^{2} d x=\int_{0}^{2 \pi}\|B(f(x))\|^{2} d x \leqq\|B\|^{2} \int_{0}^{2 \pi}\|f(x)\|^{2} d x<\infty
$$

Applying the lemma 3.2 to $B \circ f$, we get

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \|\left(B \circ f \hat{)}(n)\left\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\right\| B \circ f(x) \|^{2} d x\right. \tag{3.2}
\end{equation*}
$$

Now, we have

$$
\begin{aligned}
(B \circ f)(n) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \theta} B(f(\theta)) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} B\left(e^{-i n \theta} f(\theta)\right) d \theta \\
& =\frac{1}{2 \pi} B\left(\int_{0}^{2 \pi} e^{-i n \theta} f(\theta) d \theta\right) \\
& =B\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \theta} f(\theta) d \theta\right) \\
& =B(\widehat{f}(n)) .
\end{aligned}
$$

The interchange of B and \int is justified by $f \in \mathcal{L}^{2}([0,2 \pi], \mathcal{H}) \subset \mathcal{L}^{1}([0,2 \pi], \mathcal{H})$ and the lemma 3.1. Therefore (3.2) implies

$$
\sum_{n \in \mathbb{Z}}\|B(\widehat{f}(n))\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\|B(f(x))\|^{2} d x .
$$

4 Vitali's Convergence Theorem

We'll see about Vitali's convergence theorem we used in the middle of the lecture.
In this section, assume that $\left(X, \sum, \mu\right)$ is a (positive) measure space.

Definition 4.1 (uniform integrability).

Let $\left\{f_{n}: X \rightarrow \mathbb{C}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions. We say $\left\{f_{n}\right\}_{n=1}^{\infty}$ is uniformly integrable if for all $\epsilon>0$, there exists $\delta>0$ s.t.

$$
E \in \sum \text { and } \mu(E)<\delta
$$

imply

$$
\int_{E}\left|f_{n}(x)\right| d \mu(x)<\epsilon \text { for each } n \in \mathbb{N}
$$

Lemma 4.2.

For a sequence of measurable functions $\left\{f_{n}: X \rightarrow \mathbb{C}\right\}_{n=1}^{\infty}$ and a measurable function $f: X \rightarrow \mathbb{C}$ ，if $\left\{f_{n}\right\}_{n=1}^{\infty}$ is uniformly integrable and $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to f pointwise，then $\left\{f_{n}-f\right\}_{n=1}^{\infty}$ is also uniformly integrable．

【Proof】

Let $\epsilon>0$ ．By the uniform integrability of $\left\{f_{n}\right\}_{n=1}^{\infty}$ ，there is $\delta>0$ s．t．$E \in \sum$ and $\mu(E)<\delta$ imply

$$
\begin{equation*}
\int_{E}\left|f_{n}(x)\right| d \mu(x)<\frac{\epsilon}{2} \text { for each } n \in \mathbb{N} \text {. } \tag{4.1}
\end{equation*}
$$

Assume $E \in \sum$ and $\mu(E)<\delta$ ．Then（4．1）holds so we get

$$
\int_{E}|f(x)| d \mu(x) \leqq \lim _{n \rightarrow \infty} \int_{E}\left|f_{n}(x)\right| d \mu(x) \leqq \frac{\epsilon}{2}
$$

by Fatou＇s lemma．Thereupon，for each $n \in \mathbb{N}$ ，we have

$$
\int_{E}\left|f_{n}(x)-f(x)\right| d \mu(x) \leqq \int_{E}\left|f_{n}(x)\right| d \mu(x)+\int_{E}|f(x)| d \mu(x)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Thus $\left\{f_{n}-f\right\}_{n=1}^{\infty}$ is uniformly integrable．

Lemma 4．3．

Suppose $\mu(X)<\infty$ ．For a sequence of measurable functions $\left\{f_{n}: X \rightarrow \mathbb{C}\right\}_{n=1}^{\infty}$ and a measurable function $f: X \rightarrow \mathbb{C}$ ，if $\left\{f_{n}\right\}_{n=1}^{\infty}$ is uniformly integrable，$\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{1}(X)$ ， and $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to f pointwise，then $f \in \mathcal{L}^{1}(X)$ ．

【Proof】

By the lemma 4．2，$\left\{f_{n}-f\right\}_{n=1}^{\infty}$ is uniformly integrable．Thus there is $\delta>0$ s．t． $E \in \sum$ and $\mu(E)<\delta$ imply $\int_{E}\left|f_{n}(x)-f(x)\right| d \mu(x)<1$ for each $n \in \mathbb{N}$ ．Egorov＇s theorem guarantees that there exists $A \in \sum$ s．t．$\mu(X \backslash A)<\delta$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to f uniformly on A ．Hereupon there is $N \in \mathbb{N}$ s．t．$\left|f_{N}(x)-f(x)\right|<1$ for all $x \in A$ ．Hence we can see that

$$
\begin{aligned}
& \int_{X}|f(x)| d \mu(x) \\
\leqq & \int_{X}\left|f(x)-f_{N}(x)\right| d \mu(x)+\int_{X}\left|f_{N}(x)\right| d \mu(x) \\
= & \int_{A}\left|f(x)-f_{N}(x)\right| d \mu(x)+\int_{X \backslash A}\left|f(x)-f_{N}(x)\right| d \mu(x)+\int_{X}\left|f_{N}(x)\right| d \mu(x) \\
\leqq & \mu(A)+1+\int_{X}\left|f_{N}(x)\right| d \mu(x) \\
< & \infty
\end{aligned}
$$

where the last line follows by $\mu(X)<\infty$ and $f_{N} \in \mathcal{L}^{1}$ ．Therefore $f \in \mathcal{L}^{1}$ ．
Theorem 4.4 （Vitali＇s convergence theorem）．

Suppose $\mu(X)<\infty$ ，a sequence of measurable functions $\left\{f_{n}: X \rightarrow \mathbb{C}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{1}(X)$ is uniformly integrable，and $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to a measurable function $f: X \rightarrow \mathbb{C}$ ．Then， $f \in \mathcal{L}^{1}(X)$ and $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}(x)-f(x)\right| d \mu(x)=0$ ，and eventually， $\lim _{n \rightarrow \infty} \int_{X} f_{n}(x) d \mu(x)=$ $\int_{X} f(x) d \mu(x)$ ．

The argument of the proof is similar to that of the proof of the lemma 4．3，

【Proof】

$f \in \mathcal{L}^{1}$ follows by the lemma 4．3，so let us show $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}(x)-f(x)\right| d \mu(x)=0$ ．
Let $\epsilon>0$ ．Since $\left\{f_{n}-f\right\}_{n=1}^{\infty}$ is uniformly integrable by the lemma 4．2，there is $\delta>0$ s．t．$E \in \sum$ and $\mu(E)<\delta$ imply $\int_{E}\left|f_{n}(x)-f(x)\right| d \mu(x)<\frac{\epsilon}{2}$ for each $n \in \mathbb{N}$ ．Egorov＇s theorem justifies the existence of $A \in \sum$ s．t．$\mu(X \backslash A)<\delta$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to f uniformly on A ．Thus there is $N \in \mathbb{N}$ s．t．

$$
n \geqq N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{2(1+\mu(X))} \text { for all } x \in A
$$

If $n \geqq N$ ，then we have

$$
\begin{aligned}
\int_{X}\left|f_{n}(x)-f(x)\right| d \mu(x) & =\int_{A}\left|f_{n}(x)-f(x)\right| d \mu(x)+\int_{X \backslash A}\left|f_{n}(x)-f(x)\right| d \mu(x) \\
& <\mu(A) \cdot \frac{\epsilon}{2(1+\mu(X))}+\frac{\epsilon}{2} \\
& \leqq \mu(X) \cdot \frac{\epsilon}{2(1+\mu(X))}+\frac{\epsilon}{2} \\
& <\epsilon .
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}(x)-f(x)\right| d \mu(x)=0$ ．
Finally， $\lim _{n \rightarrow \infty} \int_{X} f_{n}(x) d \mu(x)=\int_{X} f(x) d \mu(x)$ follows by

$$
\left|\int_{X} f_{n}(x) d \mu(x)-\int_{X} f(x) d \mu(x)\right| \leqq \int_{X}\left|f_{n}(x)-f(x)\right| d \mu(x) \rightarrow 0 \text { as } n \rightarrow \infty
$$

The next proposition states that under the condition $\mu(X)<\infty$ ，the supposition of Vi－ tali＇s convergence theorem is weaker than that of the dominated convergence theorem and hence Vitali＇s convergence theorem is stronger than the dominated convergence theorem．

Proposition 4．5．

Assume $\mu(X)<\infty$ ．If a sequence of measurable functions $\left\{f_{n}: X \rightarrow \mathbb{C}\right\}_{n=1}^{\infty}$ converges to $f: X \rightarrow \mathbb{C}$ pointwise and there exists $g \in \mathcal{L}^{1}(X)$ s．t．$\left|f_{n}\right| \leqq g$ for each $n \in \mathbb{N}$ ，then $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{1}(X)$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ is uniformly integrable．

【Proof】

$\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{1}(X)$ follows immediately by $\left|f_{n}\right| \leqq g$ ．To show the uniform integrability of $\left\{f_{n}\right\}_{n=1}^{\infty}$ ，let $\epsilon>0$ ．By the dominated convergence theorem，we get $\lim _{M \rightarrow \infty} \int_{g \geqq M} g(x) d \mu(x)=$

0 ．Thus there is $M>0$ s．t． $\int_{g \geqq M} g(x) d \mu(x)<\frac{\epsilon}{2}$ ．Setting $\delta:=\frac{\epsilon}{2 M}$ and supposing $E \in \sum$ and $\mu(E)<\delta$ ，we can see that for each $n \in \mathbb{N}$ ，

$$
\begin{aligned}
\int_{E}\left|f_{n}(x)\right| d \mu(x) & \leqq \int_{E \cap\{g \geqq M\}} g(x) d \mu(x)+\int_{E \cap\{g<M\}} g(x) d \mu(x) \\
& \leqq \int_{g \geqq M} g(x) d \mu(x)+\int_{E} M d \mu(x) \\
& <\frac{\epsilon}{2}+M \mu(E) \\
& <\frac{\epsilon}{2}+M \delta \\
& =\epsilon .
\end{aligned}
$$

Therefore $\left\{f_{n}\right\}_{n=1}^{\infty}$ is uniformly integrable．

5 Appendix

5．1 Two Definitions of Uniform Integrability

In this subsection，suppose $\left(X, \sum, \mu\right)$ is a（positive）measure space and $\left\{f_{n}: X \rightarrow \mathbb{C}\right\}_{n=1}^{\infty}$ is a sequence of measurable functions．

In the section 4，we decided to say $\left\{f_{n}\right\}_{n=1}^{\infty}$ was uniformly integrable if $\left\{f_{n}\right\}_{n=1}^{\infty}$ satisfied the following condition ：

$$
\begin{equation*}
\forall \epsilon>0, \exists \delta>0 \text { s.t. } E \in \sum \text { and } \mu(E)<\delta \Longrightarrow \forall n \in \mathbb{N}, \int_{E}\left|f_{n}(x)\right| d \mu(x)<\epsilon \tag{5.1}
\end{equation*}
$$

On the other hand，some mathematicians define uniform integrability by

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \sup _{n \in \mathbb{N}} \int_{\left|f_{n}\right| \geqq M}\left|f_{n}(x)\right| d \mu(x)=0 . \tag{5.2}
\end{equation*}
$$

Actually，Royden［2］defines the uniform integrability by（5．1），whilst Billingsley［4］， Chung［3］，and 舟木［10］define that by（5．2）．

Under the constraint that $\mu(X)<\infty$ ，the condition（5．2）is stronger than（5．1）due to the following proposition．

Proposition 5．1．

Suppose $\mu(X)<\infty$ and consider the condition

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \int_{X}\left|f_{n}(x)\right| d \mu(x)<\infty . \tag{5.3}
\end{equation*}
$$

Then，we can see that

$$
\text { (5.1) and }(\text { (5.3) }) \Longleftrightarrow \text { (5.2) } \text {. }
$$

【Proof】

(\Longrightarrow)

Put $\lambda:=\sup _{n \in \mathbb{N}} \int_{X}\left|f_{n}(x)\right| d \mu(x)(<\infty)$. Let $\epsilon>0$. By the supposition ([5.1), there is $\delta>0$ s.t.

$$
\begin{equation*}
E \in \sum \text { and } \mu(E)<\delta \Longrightarrow \forall n \in \mathbb{N}, \int_{E}\left|f_{n}(x)\right| d \mu(x)<\epsilon \tag{5.4}
\end{equation*}
$$

Set $M_{0}:=\frac{\lambda}{\delta}$ and assume $M \geqq M_{0}$. We have

$$
\mu\left(\left|f_{n}\right| \geqq M\right)=\int_{\left|f_{n}\right| \geqq M} d \mu=\frac{1}{M} \int_{\left|f_{n}\right| \geqq M} M d \mu \leqq \frac{1}{M} \int_{\left|f_{n}\right| \geqq M}\left|f_{n}(x)\right| d \mu(x) \leqq \frac{\lambda}{M} \leqq \frac{\lambda}{M_{0}}=\delta
$$

and hence by (5.4),

$$
\forall n \in \mathbb{N}, \int_{\left|f_{n}\right| \geqq M}\left|f_{n}(x)\right| d \mu(x)<\epsilon
$$

holds and this shows $\sup _{n \in \mathbb{N}} \int_{\left|f_{n}\right| \geqq M}\left|f_{n}(x)\right| d \mu(x) \leqq \epsilon$. Thus (5.2) holds.
(\Longleftarrow)
By (5.2), there exists $M>0$ s.t. $\sup _{n \in \mathbb{N}} \int_{\left|f_{n}\right| \geqq M}\left|f_{n}(x)\right| d \mu(x) \leqq 1$. Thus

$$
\begin{aligned}
\sup _{n \in \mathbb{N}} \int_{X}\left|f_{n}(x)\right| d \mu(x) & \leqq \sup _{n \in \mathbb{N}} \int_{\left|f_{n}\right| \geqq M}\left|f_{n}(x)\right| d \mu(x)+\sup _{n \in \mathbb{N}} \int_{\left|f_{n}\right|<M}\left|f_{n}(x)\right| d \mu(x) \\
& \leqq 1+\sup _{n \in \mathbb{N}} \int_{\left|f_{n}\right|<M} M d \mu \\
& \leqq 1+\sup _{n \in \mathbb{N}} \int_{X} M d \mu \\
& =1+M \mu(X) \\
& <\infty
\end{aligned}
$$

Thus (5.3) has been confirmed.
Next, in order to check (5.1), fix $\epsilon>0$ arbitrarily. By (5.2), there exists $L>0$ s.t. $\sup _{n \in \mathbb{N}} \int_{\left|f_{n}\right| \geq L}\left|f_{n}(x)\right| d \mu(x)<\frac{\epsilon}{2}$. Now, set $\delta:=\frac{\epsilon}{2 L}$. Then $E \in \sum$ and $\mu(E)<\delta$ imply that for each $n \in \mathbb{N}$,

$$
\begin{aligned}
\int_{E}\left|f_{n}(x)\right| d \mu(x) & =\int_{E \cap\left\{\left|f_{n}\right| \geqq L\right\}}\left|f_{n}(x)\right| d \mu(x)+\int_{E \cap\left\{\left|f_{n}\right|<L\right\}}\left|f_{n}(x)\right| d \mu(x) \\
& \leqq \int_{\left|f_{n}\right| \geqq L}\left|f_{n}(x)\right| d \mu(x)+\int_{E} L d \mu \\
& \leqq \sup _{n \in \mathbb{N}} \int_{\left|f_{n}\right| \geqq L}\left|f_{n}(x)\right| d \mu(x)+L \mu(E) \\
& <\frac{\epsilon}{2}+L \delta \\
& =\epsilon .
\end{aligned}
$$

This completes the proof of (5.1).

References

［1］Erwin Kreyszig，＂Introductory Functional Analysis with Applications＂John Wiley \＆ Sons（1978）．
［2］H．L．Royden • P．M．Fitzpatrick，＂Real Analysis＂Pearson Education（2010）．
［3］Kai Lai Chung，＂A Course in Probability Theory＂Elsevier（2001）．
［4］Patrick Billingsley，＂Probability and Measure＂John Wiley \＆Sons（1995）．
［5］Sheldon Axler，＂Measure，Integration \＆Real Analysis＂Springer（2020）．
［6］Walter Rudin，＂Real and Complex Analysis＂McGraw－Hill（1987）．
［7］新井朝雄『ヒルベルト空間と量子力学』共立出版（2014）．
［8］柴田良弘『流体数学の基礎 上』岩波書店（2022）．
［9］荷見守助•長宗雄•瀬戸道生『関数解析入門 線型作用素のスペクトル』内田老鶴圃 （2018）．
［10］舟木直久『確率論』朝倉書店（2005）．

