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1 Continuation of the Exercises of Report 1

1.1 Exercise 7

Let U : H → H be an unitary operator. Prove σ(U) ⊂ S, where S = {z ∈ C | |z| = 1}.

To solve this exercise, we’ll prepare the following lemma.

Lemma 1.1.
Suppose X ∈ B(H, H) and ∥X∥ < 1. Then, (1 − X)−1 exists and is bounded on H. In

particular, Ker(1 − X) = {0}.

【Proof】
For each k ∈ N ∪ {0}, we have ∥Xk∥ = ∥XX · · · X∥ ≦ ∥X∥∥X∥ · · · ∥X∥ = ∥X∥k since

X is bounded. Thus we get

∞∑
k=0

∥Xk∥ ≦
∞∑

k=0
∥X∥k < ∞

due to ∥X∥ < 1. Therefore
∞∑

k=0
Xk is absolutely convergent. Moreover, B(H, H) is com-

plete since H is complete. These facts indicate that
∞∑

k=0
Xk is convergent, because absolute

convergence implies convergence in complete spaces. As a side note,
∞∑

k=0
Xk is called the

Neumann series.
Now, simple calculation yields

(
N∑

k=0
Xk

)
(1 − X) = (1 − X)

(
N∑

k=0
Xk

)
= 1 − XN+1,

and as N → ∞, we have XN+1 → 0 since ∥XN+1∥ ≦ ∥X∥N+1 → 0, and hence
( ∞∑

k=0
Xk

)
(1 − X) = (1 − X)

( ∞∑
k=0

Xk

)
= 1.

Thus (1 − X)−1 =
∞∑

k=0
Xk. To see this is bounded, let f ∈ H and observe that

∥∥∥∥∥
(

N∑
k=0

Xk

)
f

∥∥∥∥∥ ≦
∥∥∥∥∥

N∑
k=0

Xk

∥∥∥∥∥ ∥f∥ ≦
N∑

k=0
∥X∥k ∥f∥ = 1 − ∥X∥N+1

1 − ∥X∥
∥f∥

and letting N → ∞, we get ∥(1 − X)−1f∥ ≦ 1
1 − ∥X∥

∥f∥.

Ker(1 − X) = {0} follows by

(1 − X)f = 0 =⇒ f = (1 − X)−1(1 − X)f = (1 − X)−10 = 0.
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So, let us make a start on the exercise 7.

【Solution of Exercise 7】
It suffices to show that C \ S ⊂ ρ(U). Let λ ∈ C \ S.
First, assume |λ| < 1. In order to see λ ∈ ρ(U), we have to check Ker(U−λ·1) = {0} and

(U − λ · 1)−1 is bounded. We have Ker(1 − λU−1) = {0} by ∥λU−1∥ = |λ|∥U−1∥ = |λ| < 1
and by the lemma 1.1. Moreover, Ker(U) = {0} since U is unitary. Now, noting that

U − λ · 1 = U(1 − λU−1),

we can see Ker(U − λ · 1) = {0} and (U − λ · 1)−1 = (1 − λU−1)−1U−1, which is bounded
by the lemma 1.1 and by the unitarity of U−1. Thus λ ∈ ρ(U).

Next, assume |λ| > 1. We have

U − λ · 1 = −λ
(

1 − 1
λ

U
)

.

Since
∥∥∥∥1

λ
U
∥∥∥∥ =

∣∣∣∣1λ
∣∣∣∣ ∥U∥ < 1, we see that Ker

(
1 − 1

λ
U
)

= {0} and
(

1 − 1
λ

U
)−1

exists
and is bounded by the lemma 1.1. Hence Ker(U − λ · 1) = {0} and (U − λ · 1)−1 =

− 1
λ

(
1 − 1

λ
U
)−1

is bounded. Therefore, λ ∈ ρ(U).

2 The Cayley Transform
This section 2 will introduce a special operator, the Cayley transform. Let H be a
Hilbert space on C.

Lemma 2.1.
Suppose H ̸= {0}, and let A : D(A) → H be a bounded linear operator. If D(A) = H

and ⟨Af, f⟩ = 0 for all f ∈ D(A), then A = 0.

【Proof】
We have to show that Af = 0 for all f ∈ D(A). Let f ∈ D(A), and put g := Af.

Now, fix c ∈ C arbitrarily. Since cf + g ∈ H = D(A), by the supposition, we have
⟨A(cf + g), cf + g⟩ = 0. Moreover, the supposition gives ⟨Af, f⟩ = ⟨Ag, g⟩ = 0. Thus

0 = ⟨A(cf + g), cf + g⟩
= |c|2⟨Af, f⟩ + c⟨Af, g⟩ + c⟨Ag, f⟩ + ⟨Ag, g⟩
= c⟨Af, g⟩ + c⟨Ag, f⟩.

Since c is arbitrary, we can consider the cases c = 1 and c = i. Then, we get

⟨Af, g⟩ + ⟨Ag, f⟩ = 0

and
⟨Af, g⟩ − ⟨Ag, f⟩ = 0.

2



Adding these two equalities gives us ⟨Af, g⟩ = 0. Recalling that g = Af , we get ∥Af∥2 = 0,
i.e., Af = 0.

Lemma 2.2.
Let A : D(A) → H be a self-adjoint operator. Then, A + i · 1 : D(A) → H is injective.

In particular, (A + i · 1)−1 exists with the domain Ran(A + i · 1) and the codomain D(A).

【Proof】
For each f ∈ D(A), simple calculation and the self-adjointness of A yield

∥(A + i · 1)f∥2 = ⟨(A + i · 1)f, (A + i · 1)f⟩
= ⟨Af, Af⟩ + ⟨Af, if⟩ + ⟨if, Af⟩ + ⟨if, if⟩
= ∥Af∥2 − i⟨Af, f⟩ + i⟨f, Af⟩ + ∥f∥2

= ∥Af∥2 − i⟨Af, f⟩ + i⟨Af, f⟩ + ∥f∥2

= ∥Af∥2 + ∥f∥2

≧ ∥f∥2.

This shows that for each f ∈ D(A), (A + i · 1)f = 0 implies f = 0. Thus A + i · 1 is
injective and hence (A + i · 1)−1 exists with the domain Ran(A + i · 1) and the codomain
D(A).

Definition 2.3 (Cayley transform).
Suppose H ̸= {0}, and let A : D(A) → H be a self-adjoint operator. The operator

C : Ran(A + i · 1) → Ran(A − i · 1) defined by

C := (A − i · 1)(A + i · 1)−1

is called the Cayley transform of A. This is well-defined because (A + i · 1)−1 exists
with the domain Ran(A + i · 1) and the codomain D(A) by the lemma 2.2.

Proposition 2.4.
Suppose H ̸= {0} and let A : D(A) → H be a self-adjoint operator. Then, C is unitary.

【Proof】
Actually, Ran(A + i · 1) = Ran(A − i · 1) = H holds by the self-adjointness of A, so we

get D(C) = H and Ran(C) = H. I omit the proof of this because the argument is rather
long. If you want to check it, see e.g. [9, Theorem 7.23].

First, we’ll see that ∥Cf∥ = ∥f∥ for all f ∈ D(C) = H. Let f ∈ H. For the viewability,
put g := (A + i · 1)−1f.

∥Cf∥2 = ∥(A − i · 1)(A + i · 1)−1f∥2

= ∥(A − i · 1)g∥2

= ∥Ag − ig∥2

= ⟨Ag − ig, Ag − ig⟩
= ⟨Ag, Ag⟩ + ⟨Ag, −ig⟩ + ⟨−ig, Ag⟩ + ⟨ig, ig⟩.
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Now, we can see ⟨Ag, −ig⟩ = ⟨g, A(−ig)⟩ = ⟨g, −iAg⟩ = ⟨ig, Ag⟩. Similarly, ⟨−ig, Ag⟩ =
⟨Ag, ig⟩. Thus,

∥Cf∥2 = ⟨Ag, Ag⟩ + ⟨ig, Ag⟩ + ⟨Ag, ig⟩ + ⟨ig, ig⟩
= ⟨Ag + ig, Ag + ig⟩
= ∥Ag + ig∥2

= ∥(A + i · 1)g∥2

= ∥(A + i · 1)(A + i · 1)−1f∥2

= ∥f∥2.

This shows ∥Cf∥ = ∥f∥.
Next, we will check that C is unitary. Since ∥Cf∥ = ∥f∥ for all f ∈ H, C is bounded

and so is C∗C − 1. Now, for all h ∈ H, we have

⟨(C∗C − 1)h, h⟩ = ⟨C∗Ch − h, h⟩
= ⟨C∗Ch, h⟩ − ⟨h, h⟩
= ⟨Ch, Ch⟩ − ⟨h, h⟩
= ∥Ch∥2 − ∥h∥2

= 0

and hence C∗C − 1 = 0 by the lemma 2.1. Therefore C∗C = 1. Moreover, C is injective
because ∥Cf∥ = ∥f∥ for all f ∈ H. The injectivity of C and D(C) = H = Ran(C)
indicate that C−1 exists with the domain H and the codomain H. Hence C∗ = C∗CC−1 =
1 · C−1 = C−1. Therefore C is unitary.

3 Parseval’s Identity for a H-valued Function and an
Operator in B(H, H)

In this section, let H be a separable Hilbert space on C, and we aim for Parseval’s
identity for a H-valued function and an operator in B(H, H) :

∑
n∈Z

∥∥∥B(f̂(n))
∥∥∥2

= 1
2π

∫ 2π

0
∥B(f(x))∥2 dx.

Lemma 3.1.
Let B ∈ B(H, H) and g : [0, 2π] → H be Bochner integrable, i.e.,

∫ 2π

0
∥g(θ)∥ dθ < ∞

or g ∈ L1([0, 2π], H). Then, B ◦ g is Bochner integrable and
∫ 2π

0
B ◦ g(θ) dθ = B

(∫ 2π

0
g(θ) dθ

)
.

This formula can be rewritten to
∫ 2π

0
B(g(θ)) dθ = B

(∫ 2π

0
g(θ) dθ

)
, so this lemma says
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we can interchange an operator and an integral sign.

【Proof】
Bochner integrability of B ◦ g is seen by
∫ 2π

0
∥B ◦ g(θ)∥ dθ =

∫ 2π

0
∥B(g(θ))∥ dθ ≦

∫ 2π

0
∥B∥ ∥g(θ)∥ dθ = ∥B∥

∫ 2π

0
∥g(θ)∥ dθ < ∞.

Bochner integral can be regarded as the limit of Riemann sum. Setting 0 = c0 < c1 <

· · · < cn = 2π as a partition of [0, 2π] and taking γk ∈ [ck−1, ck] for each k, we get

∫ 2π

0
B ◦ g(θ) dθ = lim

n→∞

n∑
k=1

B ◦ g(γk)(ck − ck−1)

= lim
n→∞

n∑
k=1

B(g(γk))(ck − ck−1)

= lim
n→∞

n∑
k=1

B(g(γk)(ck − ck−1))

= B

(
lim

n→∞

n∑
k=1

g(γk)(ck − ck−1)
)

= B
(∫ 2π

0
g(θ) dθ

)
,

where we put ∑ and lim under B by the linearity and the continuity of B.

Lemma 3.2 (Parseval’s identity for H-valued functions).
For h ∈ L2([0, 2π], H),

∑
n∈Z

∥ĥ(n)∥2 = 1
2π

∫ 2π

0
∥h(x)∥2 dx

holds, where ĥ(n) is the n-th Fourier coefficient of h.

【Proof】
Since H is separable, we can choose {ek}∞

k=1 as a countable orthonormal basis of H.
For each k ∈ N, define the function hk : [0, 2π] → C by

hk(x) = ⟨h(x), ek⟩.

Each hk is in L2([0, 2π],C) because
∫ 2π

0
|hk(x)|2 dx ≦ ∥ek∥2

∫ 2π

0
∥h(x)∥2 dx < ∞

holds by the Cauchy-Schwarz inequality. Applying Parseval’s identity for square integrable
complex functions to each hk, we get

∑
n∈Z

|ĥk(n)|2 = 1
2π

∫ 2π

0
|hk(x)|2 dx. (3.1)
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For each n ∈ Z and each k ∈ N, noting that we can put the integral symbol into inner
product, we can see

ĥk(n) = 1
2π

∫ 2π

0
e−inθhk(θ) dθ

= 1
2π

∫ 2π

0
e−inθ⟨h(θ), ek⟩ dθ

= 1
2π

∫ 2π

0
⟨e−inθh(θ), ek⟩ dθ

=
〈 1

2π

∫ 2π

0
e−inθh(θ) dθ, ek

〉
= ⟨ĥ(n), ek⟩

so (3.1) is rewritten to

∑
n∈Z

|⟨ĥ(n), ek⟩|2 = 1
2π

∫ 2π

0
|hk(x)|2 dx.

Moreover, since {ek}∞
k=1 is an orthonormal basis of H, we have

∥∥∥ĥ(n)
∥∥∥2

=
∞∑

k=1
|⟨ĥ(n), ek⟩|2

and ∞∑
k=1

|⟨h(x), ek⟩|2 = ∥h(x)∥2 .

Using the formulas above, we get

∑
n∈Z

∥∥∥ĥ(n)
∥∥∥2

=
∑
n∈Z

∞∑
k=1

|⟨ĥ(n), ek⟩|2

=
∞∑

k=1

∑
n∈Z

|⟨ĥ(n), ek⟩|2

=
∞∑

k=1

1
2π

∫ 2π

0
|hk(x)|2 dx

= 1
2π

∫ 2π

0

∞∑
k=1

|hk(x)|2 dx

= 1
2π

∫ 2π

0

∞∑
k=1

|⟨h(x), ek⟩|2 dx

= 1
2π

∫ 2π

0
∥h(x)∥2 dx.

∑
n∈Z

∞∑
k=1

=
∞∑

k=1

∑
n∈Z

and
∞∑

k=1

∫ 2π

0
=
∫ 2π

0

∞∑
k=1

are justified by Tonelli’s theorem.

Theorem 3.3 (Parseval’s identity for a H-valued function and an operator in
B(H, H)).

6



If f ∈ L2([0, 2π], H) and B ∈ B(H, H), then B ◦ f ∈ L2([0, 2π], H) and

∑
n∈Z

∥∥∥B(f̂(n))
∥∥∥2

= 1
2π

∫ 2π

0
∥B(f(x))∥2 dx,

where f̂(n) is the n-th Fourier coefficient of f .

【Proof】
We can see B ◦ f ∈ L2([0, 2π], H) by

∫ 2π

0
∥B ◦ f(x)∥2 dx =

∫ 2π

0
∥B(f(x))∥2 dx ≦ ∥B∥2

∫ 2π

0
∥f(x)∥2 dx < ∞.

Applying the lemma 3.2 to B ◦ f , we get

∑
n∈Z

∥∥∥(B ◦ f )̂ (n)
∥∥∥2

= 1
2π

∫ 2π

0
∥B ◦ f(x)∥2 dx. (3.2)

Now, we have

(B ◦ f )̂ (n) = 1
2π

∫ 2π

0
e−inθB(f(θ)) dθ

= 1
2π

∫ 2π

0
B(e−inθf(θ)) dθ

= 1
2π

B
(∫ 2π

0
e−inθf(θ) dθ

)
= B

( 1
2π

∫ 2π

0
e−inθf(θ) dθ

)
= B(f̂(n)).

The interchange of B and
∫

is justified by f ∈ L2([0, 2π], H) ⊂ L1([0, 2π], H) and the
lemma 3.1. Therefore (3.2) implies

∑
n∈Z

∥∥∥B(f̂(n))
∥∥∥2

= 1
2π

∫ 2π

0
∥B(f(x))∥2 dx.

4 Vitali’s Convergence Theorem
We’ll see about Vitali’s convergence theorem we used in the middle of the lecture.
In this section, assume that (X,

∑
, µ) is a (positive) measure space.

Definition 4.1 (uniform integrability).
Let {fn : X → C}∞

n=1 be a sequence of measurable functions. We say {fn}∞
n=1 is

uniformly integrable if for all ϵ > 0, there exists δ > 0 s.t.

E ∈ ∑ and µ(E) < δ

imply
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∫
E

|fn(x)|dµ(x) < ϵ for each n ∈ N.

Lemma 4.2.
For a sequence of measurable functions {fn : X → C}∞

n=1 and a measurable function
f : X → C, if {fn}∞

n=1 is uniformly integrable and {fn}∞
n=1 converges to f pointwise, then

{fn − f}∞
n=1 is also uniformly integrable.

【Proof】
Let ϵ > 0. By the uniform integrability of {fn}∞

n=1, there is δ > 0 s.t. E ∈ ∑ and
µ(E) < δ imply ∫

E
|fn(x)|dµ(x) <

ϵ

2
for each n ∈ N. (4.1)

Assume E ∈ ∑ and µ(E) < δ. Then (4.1) holds so we get∫
E

|f(x)|dµ(x) ≦ lim
n→∞

∫
E

|fn(x)|dµ(x) ≦ ϵ

2

by Fatou’s lemma. Thereupon, for each n ∈ N, we have∫
E

|fn(x) − f(x)|dµ(x) ≦
∫

E
|fn(x)|dµ(x) +

∫
E

|f(x)|dµ(x) <
ϵ

2
+ ϵ

2
= ϵ.

Thus {fn − f}∞
n=1 is uniformly integrable.

Lemma 4.3.
Suppose µ(X) < ∞. For a sequence of measurable functions {fn : X → C}∞

n=1 and a
measurable function f : X → C, if {fn}∞

n=1 is uniformly integrable, {fn}∞
n=1 ⊂ L1(X),

and {fn}∞
n=1 converges to f pointwise, then f ∈ L1(X).

【Proof】
By the lemma 4.2, {fn − f}∞

n=1 is uniformly integrable. Thus there is δ > 0 s.t.
E ∈ ∑ and µ(E) < δ imply

∫
E

|fn(x) − f(x)|dµ(x) < 1 for each n ∈ N. Egorov’s theorem
guarantees that there exists A ∈ ∑ s.t. µ(X\A) < δ and {fn}∞

n=1 converges to f uniformly
on A. Hereupon there is N ∈ N s.t. |fN(x) − f(x)| < 1 for all x ∈ A. Hence we can see
that ∫

X
|f(x)|dµ(x)

≦
∫

X
|f(x) − fN(x)|dµ(x) +

∫
X

|fN(x)|dµ(x)

=
∫

A
|f(x) − fN(x)|dµ(x) +

∫
X\A

|f(x) − fN(x)|dµ(x) +
∫

X
|fN(x)|dµ(x)

≦ µ(A) + 1 +
∫

X
|fN(x)|dµ(x)

< ∞,

where the last line follows by µ(X) < ∞ and fN ∈ L1. Therefore f ∈ L1.

Theorem 4.4 (Vitali’s convergence theorem).
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Suppose µ(X) < ∞, a sequence of measurable functions {fn : X → C}∞
n=1 ⊂ L1(X) is

uniformly integrable, and {fn}∞
n=1 converges to a measurable function f : X → C. Then,

f ∈ L1(X) and lim
n→∞

∫
X

|fn(x) − f(x)|dµ(x) = 0, and eventually, lim
n→∞

∫
X

fn(x) dµ(x) =∫
X

f(x) dµ(x).

The argument of the proof is similar to that of the proof of the lemma 4.3.

【Proof】
f ∈ L1 follows by the lemma 4.3, so let us show lim

n→∞

∫
X

|fn(x) − f(x)|dµ(x) = 0.
Let ϵ > 0. Since {fn − f}∞

n=1 is uniformly integrable by the lemma 4.2, there is δ > 0
s.t. E ∈ ∑ and µ(E) < δ imply

∫
E

|fn(x) − f(x)|dµ(x) <
ϵ

2
for each n ∈ N. Egorov’s

theorem justifies the existence of A ∈ ∑ s.t. µ(X \ A) < δ and {fn}∞
n=1 converges to f

uniformly on A. Thus there is N ∈ N s.t.

n ≧ N =⇒ |fn(x) − f(x)| <
ϵ

2(1 + µ(X))
for all x ∈ A.

If n ≧ N , then we have∫
X

|fn(x) − f(x)|dµ(x) =
∫

A
|fn(x) − f(x)|dµ(x) +

∫
X\A

|fn(x) − f(x)|dµ(x)

< µ(A) · ϵ

2(1 + µ(X))
+ ϵ

2
≦ µ(X) · ϵ

2(1 + µ(X))
+ ϵ

2
< ϵ.

Therefore lim
n→∞

∫
X

|fn(x) − f(x)|dµ(x) = 0.

Finally, lim
n→∞

∫
X

fn(x)dµ(x) =
∫

X
f(x)dµ(x) follows by∣∣∣∣∫

X
fn(x)dµ(x) −

∫
X

f(x)dµ(x)
∣∣∣∣ ≦ ∫

X
|fn(x) − f(x)|dµ(x) → 0 as n → ∞.

The next proposition states that under the condition µ(X) < ∞, the supposition of Vi-
tali’s convergence theorem is weaker than that of the dominated convergence theorem and
hence Vitali’s convergence theorem is stronger than the dominated convergence theorem.

Proposition 4.5.
Assume µ(X) < ∞. If a sequence of measurable functions {fn : X → C}∞

n=1 converges
to f : X → C pointwise and there exists g ∈ L1(X) s.t. |fn| ≦ g for each n ∈ N, then
{fn}∞

n=1 ⊂ L1(X) and {fn}∞
n=1 is uniformly integrable.

【Proof】
{fn}∞

n=1 ⊂ L1(X) follows immediately by |fn| ≦ g. To show the uniform integrability of
{fn}∞

n=1, let ϵ > 0. By the dominated convergence theorem, we get lim
M→∞

∫
g≧M

g(x) dµ(x) =

9



0. Thus there is M > 0 s.t.
∫

g≧M
g(x) dµ(x) <

ϵ

2
. Setting δ := ϵ

2M
and supposing E ∈ ∑

and µ(E) < δ, we can see that for each n ∈ N,∫
E

|fn(x)|dµ(x) ≦
∫

E∩{g≧M}
g(x) dµ(x) +

∫
E∩{g<M}

g(x) dµ(x)

≦
∫

g≧M
g(x) dµ(x) +

∫
E

M dµ(x)

<
ϵ

2
+ Mµ(E)

<
ϵ

2
+ Mδ

= ϵ.

Therefore {fn}∞
n=1 is uniformly integrable.

5 Appendix

5.1 Two Definitions of Uniform Integrability

In this subsection, suppose (X,
∑

, µ) is a (positive) measure space and {fn : X → C}∞
n=1

is a sequence of measurable functions.
In the section 4, we decided to say {fn}∞

n=1 was uniformly integrable if {fn}∞
n=1 satisfied

the following condition :

∀ϵ > 0, ∃ δ > 0 s.t. E ∈
∑

and µ(E) < δ =⇒ ∀n ∈ N,
∫

E
|fn(x)|dµ(x) < ϵ. (5.1)

On the other hand, some mathematicians define uniform integrability by

lim
M→∞

sup
n∈N

∫
|fn|≧M

|fn(x)|dµ(x) = 0. (5.2)

Actually, Royden [2] defines the uniform integrability by (5.1), whilst Billingsley [4],
Chung [3], and 舟木 [10] define that by (5.2).

Under the constraint that µ(X) < ∞, the condition (5.2) is stronger than (5.1) due to
the following proposition.

Proposition 5.1.
Suppose µ(X) < ∞ and consider the condition

sup
n∈N

∫
X

|fn(x)|dµ(x) < ∞. (5.3)

Then, we can see that

(5.1) and (5.3) ⇐⇒ (5.2).

【Proof】
(=⇒)
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Put λ := sup
n∈N

∫
X

|fn(x)|dµ(x)(< ∞). Let ϵ > 0. By the supposition (5.1), there is δ > 0
s.t.

E ∈
∑

and µ(E) < δ =⇒ ∀n ∈ N,
∫

E
|fn(x)|dµ(x) < ϵ. (5.4)

Set M0 := λ

δ
and assume M ≧ M0. We have

µ(|fn| ≧ M) =
∫

|fn|≧M
dµ = 1

M

∫
|fn|≧M

Mdµ ≦ 1
M

∫
|fn|≧M

|fn(x)|dµ(x) ≦ λ

M
≦ λ

M0
= δ

and hence by (5.4),

∀n ∈ N,
∫

|fn|≧M
|fn(x)|dµ(x) < ϵ

holds and this shows sup
n∈N

∫
|fn|≧M

|fn(x)|dµ(x) ≦ ϵ. Thus (5.2) holds.

(⇐=)
By (5.2), there exists M > 0 s.t. sup

n∈N

∫
|fn|≧M

|fn(x)|dµ(x) ≦ 1. Thus

sup
n∈N

∫
X

|fn(x)|dµ(x) ≦ sup
n∈N

∫
|fn|≧M

|fn(x)|dµ(x) + sup
n∈N

∫
|fn|<M

|fn(x)|dµ(x)

≦ 1 + sup
n∈N

∫
|fn|<M

Mdµ

≦ 1 + sup
n∈N

∫
X

Mdµ

= 1 + Mµ(X)
< ∞.

Thus (5.3) has been confirmed.
Next, in order to check (5.1), fix ϵ > 0 arbitrarily. By (5.2), there exists L > 0 s.t.

sup
n∈N

∫
|fn|≧L

|fn(x)|dµ(x) <
ϵ

2
. Now, set δ := ϵ

2L
. Then E ∈ ∑ and µ(E) < δ imply that

for each n ∈ N,∫
E

|fn(x)|dµ(x) =
∫

E∩{|fn|≧L}
|fn(x)|dµ(x) +

∫
E∩{|fn|<L}

|fn(x)|dµ(x)

≦
∫

|fn|≧L
|fn(x)|dµ(x) +

∫
E

L dµ

≦ sup
n∈N

∫
|fn|≧L

|fn(x)|dµ(x) + Lµ(E)

<
ϵ

2
+ Lδ

= ϵ.

This completes the proof of (5.1).
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