Report 1

322301343, So Moriki
May 30, 2023

Contents

1 I. 1 Hilbert space and linear operator 1
1.1 Exercise 1 1
1.2 Exercise 2 1
2 I. 2 Ideals in $\mathcal{B}(\mathcal{H})$ 2
2.1 Exercise 3 2
3 I. 3 General linear operator 3
3.1 Exercise 4 3
3.2 Exercise 5 4
3.3 Exercise 6 6

1 I. 1 Hilbert space and linear operator

1.1 Exercise 1

Let $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H}$ and $f_{\infty} \in \mathcal{H}$. Then,
(i) $s_{n \rightarrow \infty}^{-\lim _{n}} f_{n}=f_{\infty} \Longrightarrow w-\lim _{n \rightarrow \infty} f_{n}=f_{\infty}$
(ii) $\quad \underset{n \rightarrow \infty}{-\lim _{n}} f_{n}=f_{\infty}$ and $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\mathcal{H}}=\left\|f_{\infty}\right\|_{\mathcal{H}} \Longrightarrow s-\lim _{n \rightarrow \infty} f_{n}=f_{\infty}$.

【Proof】

(i) Suppose $s-\lim _{n \rightarrow \infty} f_{n}=f_{\infty}$. For all $g \in \mathcal{H}$, we have

$$
\left|\left\langle g, f_{n}-f_{\infty}\right\rangle\right| \leqq\|g\|_{\mathcal{H}}\left\|f_{n}-f_{\infty}\right\|_{\mathcal{H}} .
$$

RHS converges to 0 as $n \rightarrow \infty$ since $s-\lim _{n \rightarrow \infty} f_{n}=f_{\infty}$, and thus $\lim _{n \rightarrow \infty}\left\langle g, f_{n}-f_{\infty}\right\rangle=0$.
(ii) Suppose $w-\lim _{n \rightarrow \infty} f_{n}=f_{\infty}$ and $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\mathcal{H}}=\left\|f_{\infty}\right\|_{\mathcal{H}}$. Note that $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\mathcal{H}}^{2}=\left\|f_{\infty}\right\|_{\mathcal{H}}^{2}$ holds from $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\mathcal{H}}=\left\|f_{\infty}\right\|_{\mathcal{H}}$. We have

$$
\begin{aligned}
\left\|f_{n}-f_{\infty}\right\|_{\mathcal{H}}^{2} & =\left|\left\langle f_{n}-f_{\infty}, f_{n}-f_{\infty}\right\rangle\right| \\
& =\left|\left\langle f_{n}, f_{n}-f_{\infty}\right\rangle-\left\langle f_{\infty}, f_{n}-f_{\infty}\right\rangle\right| \\
& \leqq\left|\left\langle f_{n}, f_{n}-f_{\infty}\right\rangle\right|+\left|\left\langle f_{\infty}, f_{n}-f_{\infty}\right\rangle\right| .
\end{aligned}
$$

Evaluating $\left|\left\langle f_{n}, f_{n}-f_{\infty}\right\rangle\right|$, we get

$$
\begin{aligned}
\left|\left\langle f_{n}, f_{n}-f_{\infty}\right\rangle\right| & =\left|\left\langle f_{n}, f_{n}\right\rangle-\left\langle f_{n}, f_{\infty}\right\rangle\right| \\
& =\left|\left\langle f_{n}, f_{n}\right\rangle-\left\langle f_{\infty}, f_{\infty}\right\rangle-\left\langle f_{n}-f_{\infty}, f_{\infty}\right\rangle\right| \\
& =\left|\left\|f_{n}\right\|_{\mathcal{H}}^{2}-\left\|f_{\infty}\right\|_{\mathcal{H}}^{2}-\left\langle f_{n}-f_{\infty}, f_{\infty}\right\rangle\right| \\
& \leqq\left|\left\|f_{n}\right\|_{\mathcal{H}}^{2}-\left\|f_{\infty}\right\|_{\mathcal{H}}^{2}\right|+\left|\left\langle f_{n}-f_{\infty}, f_{\infty}\right\rangle\right| \\
& =\left|\left\|f_{n}\right\|_{\mathcal{H}}^{2}-\left\|f_{\infty}\right\|_{\mathcal{H}}^{2}\right|+\left|\left\langle f_{\infty}, f_{n}-f_{\infty}\right\rangle\right| .
\end{aligned}
$$

Thus,

$$
\left\|f_{n}-f_{\infty}\right\|_{\mathcal{H}}^{2} \leqq\left|\left\|f_{n}\right\|_{\mathcal{H}}^{2}-\left\|f_{\infty}\right\|_{\mathcal{H}}^{2}\right|+\left|\left\langle f_{\infty}, f_{n}-f_{\infty}\right\rangle\right|+\left|\left\langle f_{\infty}, f_{n}-f_{\infty}\right\rangle\right| .
$$

The all three terms in RHS converges to 0 as $n \rightarrow \infty$ since $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\mathcal{H}}^{2}=\left\|f_{\infty}\right\|_{\mathcal{H}}^{2}$ and $w=\lim _{n \rightarrow \infty} f_{n}=f_{\infty}$. Thus we get $\lim _{n \rightarrow \infty}\left\|f_{n}-f_{\infty}\right\|_{\mathcal{H}}^{2}=0$, i.e., $s-\lim _{n \rightarrow \infty} f_{n}=f_{\infty}$.

1.2 Exercise 2

Let $\left\{B_{n}\right\}_{n=1}^{\infty} \subset \mathcal{B}(\mathcal{H}), B_{\infty} \in \mathcal{B}(\mathcal{H})$. Then,
(i) $u-\lim _{n \rightarrow \infty} B_{n}=B_{\infty} \Longrightarrow s-\lim _{n \rightarrow \infty} B_{n}=B_{\infty}$
（ii）$s-\lim _{n \rightarrow \infty} B_{n}=B_{\infty} \Longrightarrow w-\lim _{n \rightarrow \infty} B_{n}=B_{\infty}$.

【Proof】

（i）Suppose $u-\lim _{n \rightarrow \infty} B_{n}=B_{\infty}$ ，i．e．， $\lim _{n \rightarrow \infty}\left\|B_{n}-B_{\infty}\right\|=0$ ．
Let $f \in \mathcal{H}$ ．If $f=0$ ，obviously $\left\|B_{n} f-B_{\infty} f\right\|_{\mathcal{H}}=0 \rightarrow 0$ as $n \rightarrow \infty$ ．Consider the case $f \neq 0$ ．Then，

$$
\begin{aligned}
\left\|B_{n} f-B_{\infty} f\right\|_{\mathcal{H}} & =\|f\|_{\mathcal{H}} \frac{\left\|\left(B_{n}-B_{\infty}\right) f\right\|_{\mathcal{H}}}{\|f\|_{\mathcal{H}}} \\
& \leqq\|f\|_{\mathcal{H}} \sup _{\substack{f \in \mathcal{H} \\
f \neq 0}} \frac{\left\|\left(B_{n}-B_{\infty}\right) f\right\|_{\mathcal{H}}}{\|f\|_{\mathcal{H}}} \\
& =\|f\|_{\mathcal{H}}\left\|B_{n}-B_{\infty}\right\|_{n \rightarrow \infty}^{\rightarrow} 0 .
\end{aligned}
$$

Thus $s-\lim _{n \rightarrow \infty} B_{n}=B_{\infty}$.
（ii）Suppose $s-\lim _{n \rightarrow \infty} B_{n}=B_{\infty}$ ．Then，for all $f, g \in \mathcal{H}$ ，

$$
\left|\left\langle f,\left(B_{n}-B_{\infty}\right) g\right\rangle\right| \leqq\|f\|_{\mathcal{H}}\left\|\left(B_{n}-B_{\infty}\right) g\right\|_{\mathcal{H}}=\|f\|_{\mathcal{H}}\left\|B_{n} g-B_{\infty} g\right\|_{\mathcal{H}} \rightarrow \underset{n \rightarrow \infty}{ } 0 .
$$

Thus $w-\lim _{n \rightarrow \infty} B_{n}=B_{\infty}$.

2 I． 2 Ideals in $\mathcal{B}(\mathcal{H})$

2．1 Exercise 3

For Hilbert space \mathcal{H} ，let $\mathcal{F}(\mathcal{H})$ be a set of finite rank operators， $\mathcal{B}(\mathcal{H})$ be a set of bounded linear operators，and $\mathcal{K}(\mathcal{H})$ be a set of compact operators．Then，
（i） $\mathcal{F}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ ideal
（ii） $\mathcal{K}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ ideal

【Proof】

（i）First，we have to check the inclusion $\mathcal{F}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ ．Let $T \in \mathcal{F}(\mathcal{H})$ ．There exists $\left\{f_{j}, g_{j}\right\}_{j=1}^{N} \subset \mathcal{H}$ s．t．$T f=\sum_{j=1}^{N}\left\langle f_{j}, f\right\rangle g_{j}$ for all $f \in \mathcal{H}$ ．Then，for all $f \in \mathcal{H}$ ，we have $\|T f\|=\left\|\sum_{j=1}^{N}\left\langle f_{j}, f\right\rangle g_{j}\right\| \leqq \sum_{j=1}^{N}\left|\left\langle f_{j}, f\right\rangle\right|\left\|g_{j}\right\| \leqq \sum_{j=1}^{N}\left\|f_{j}\right\|\|f\|\left\|g_{j}\right\|=\left[\sum_{j=1}^{N}\left\|f_{j}\right\|\left\|g_{j}\right\|\right]\|f\|$.

Therefore $T \in \mathcal{B}(\mathcal{H})$ and $\mathcal{F}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ ．
Next，I＇ll show the ideality，i．e．，

$$
T \in \mathcal{F}(\mathcal{H}), S \in \mathcal{B}(\mathcal{H}) \Longrightarrow T S, S T \in \mathcal{F}(\mathcal{H})
$$

Let $T \in \mathcal{F}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{H})$. Then, from $T \in \mathcal{F}(\mathcal{H})$, there exists $\left\{f_{j}, g_{j}\right\}_{j=1}^{N} \subset \mathcal{H}$ s.t. $T f=\sum_{j=1}^{N}\left\langle f_{j}, f\right\rangle g_{j}$ for all $f \in \mathcal{H}$. we have, for all $f \in \mathcal{H}$,

$$
T S(f)=T(S(f))=\sum_{j=1}^{N}\left\langle f_{j}, S f\right\rangle g_{j}=\sum_{j=1}^{N}\left\langle S^{*} f_{j}, f\right\rangle g_{j} .
$$

Since $\left\{S^{*} f_{j}, g_{j}\right\}_{j=1}^{N} \subset \mathcal{H}$, we get $T S \in \mathcal{F}(\mathcal{H})$. Moreover,

$$
S T(f)=S(T(f))=S\left(\sum_{j=1}^{N}\left\langle f_{j}, f\right\rangle g_{j}\right)=\sum_{j=1}^{N}\left\langle f_{j}, f\right\rangle S g_{j}
$$

and $\left\{f_{j}, S g_{j}\right\}_{j=1}^{N} \subset \mathcal{H}$. Thus $S T \in \mathcal{F}(\mathcal{H})$.
(ii) $\mathcal{K}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ follows from the definition of $\mathcal{K}(\mathcal{H})$.

Let me show the ideality. Let $T \in \mathcal{K}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{H})$. Since $T \in \mathcal{K}(\mathcal{H})$, there is $\left\{T_{n}\right\}_{n=1}^{\infty} \subset \mathcal{F}(\mathcal{H})$ s.t. $\left\|T_{n}-T\right\| \rightarrow 0$. From (i), we see $\left\{T_{n} S\right\}_{n=1}^{\infty} \subset \mathcal{F}(\mathcal{H})$. Moreover,

$$
\left\|T_{n} S-T S\right\|=\left\|\left(T_{n}-T\right) S\right\| \leqq\left\|T_{n}-T\right\|\|S\| \rightarrow 0
$$

Thus $T S \in \mathcal{K}(\mathcal{H})$. Similarly, we get $\left\{S T_{n}\right\}_{n=1}^{\infty} \subset \mathcal{F}(\mathcal{H})$ from (i) and

$$
\left\|S T_{n}-S T\right\|=\left\|S\left(T_{n}-T\right)\right\| \leqq\|S\|\left\|T_{n}-T\right\| \rightarrow 0
$$

and thus $S T \in \mathcal{K}(\mathcal{H})$.

3 I. 3 General linear operator

3.1 Exercise 4

Let $D:=\left\{\left.f \in L^{2}\left|\int_{\mathbb{R}}\right| x f(x)\right|^{2} d x<\infty\right\}$, and define $X: D \rightarrow L^{2}$ by

$$
[X f](x)=x f(x)
$$

Then, (i) $D \subsetneq L^{2} \quad$ (ii) D is dense in $L^{2} \quad$ (iii) (X, D) is not bounded.

【Proof】

(i) Clearly, $D \subset L^{2}$ from the definition of D. To show $D \subsetneq L^{2}$, we have to find f s.t. $f \in L^{2}$ and $f \notin D$.
Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{ll}\frac{1}{x} & \text { if } x \geqq 1 \\ 0 & \text { otherwise }\end{array}\right.$.

Then, $f \in L^{2}$ but we have

$$
\int_{\mathbb{R}}|x f(x)|^{2} d x=\int_{1}^{\infty}\left|x \cdot \frac{1}{x}\right|^{2} d x=\int_{1}^{\infty} 1 d x=\infty
$$

Thus $f \notin D$.
(ii) First, I'll check $C_{c} \subset D$, where C_{c} is the set of continuous functions with compact support.

For arbitrary $f \in C_{c}$, we can see

$$
\int_{\mathbb{R}}|x f(x)|^{2} d x=\int_{\operatorname{supp} f}|x f(x)|^{2} d x+\int_{\mathbb{R} \backslash \operatorname{supp} f}|x f(x)|^{2} d x=\int_{\operatorname{supp} f}|x f(x)|^{2} d x
$$

and the mapping $x \mapsto|x f(x)|^{2}$ is continuous on $\operatorname{supp} f$, which is compact in \mathbb{R}, thus the integral is finite and therefore $f \in D$.

Now, we have $C_{c} \subset D \subset L^{2}$, and using the fact that C_{c} is dense in L^{2}, we can see D is dense in L^{2}.
(iii) Suppose (X, D) is bounded, i.e., suppose there exists $M>0$ such that

$$
\|X f\|_{2} \leqq M\|f\|_{2} \text { for all } f \in D
$$

hence

$$
\|X f\|_{2}^{2} \leqq M^{2}\|f\|_{2}^{2} \text { for all } f \in D
$$

Let n be a natural number such that $n>M$ (e.g. $n:=\lfloor M\rfloor+1$, where $\lfloor\cdot\rfloor$ is the floor function), and define $f: \mathbb{R} \rightarrow \mathbb{C}$ by $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \in[n, n+1] \\ 0 & \text { otherwise }\end{array}\right.$.
Then, $f \in D$ since $\int_{\mathbb{R}}|x f(x)|^{2} d x=\int_{n}^{n+1} x^{2} d x<\infty$ and we have

$$
\|f\|_{2}^{2}=\int_{\mathbb{R}}|f(x)|^{2} d x=\int_{n}^{n+1} 1 d x=1
$$

and

$$
\|X f\|_{2}^{2}=\int_{\mathbb{R}}|x f(x)|^{2} d x=\int_{n}^{n+1} x^{2} d x=n^{2}+n+\frac{1}{3} .
$$

Thus we get $n^{2}+n+\frac{1}{3} \leqq M^{2}$. This is contradiction because $M^{2}<n^{2}<n^{2}+n+\frac{1}{3}$. Therefore (X, D) is not bounded.

3.2 Exercise 5

Let (X, D) be the operator defined in Exercise 4. Then,
(i) $\sigma_{p}(X)=\emptyset$
(ii) $\sigma(X)=\mathbb{R}$

【Proof】

(i) Suppose some $a \in \mathbb{C}$ is in $\sigma_{p}(X)$. Then, there is $f \in L^{2}$ s.t. $f \neq 0$ (in the sense of L^{2}) and $X f=a f$. Thus we have $(x-a) f(x)=0$ a.e. $x \in \mathbb{R}$. This means that there exists $N \subset \mathbb{R}$, whose Lebesgue measure is zero, such that $(x-a) f(x)=0$ for $x \in \mathbb{R} \backslash N$.

Now, assume $a \notin \mathbb{R}$. Dividing the equation above by $x-a$, we get $f(x)=0$ for $x \in \mathbb{R} \backslash N$. This indicates that $f(x)=0$ a.e. $x \in \mathbb{R}$, but this contradicts $f \neq 0$. Thus $a \in \mathbb{R}$.
Noting that $(x-a) f(x)=0$ for $x \in \mathbb{R} \backslash N$, we can say

$$
f(x)=0 \text { for } x \in(\mathbb{R} \backslash N) \cap(\mathbb{R} \backslash\{a\}) .
$$

The complement of $(\mathbb{R} \backslash N) \cap(\mathbb{R} \backslash\{a\})$ is $N \cup\{a\}$ and its Lebesgue measure is zero, so $f(x)=0$ a.e. $x \in \mathbb{R}$. This contradicts $f \neq 0$.
Consequensely, such a doesn't exist, i.e., $\sigma_{p}(X)=\emptyset$.
(ii) According to [2] and [3], the resolvent set of X, say $\rho(X)$, can be written as

$$
\rho(X)=\left\{\lambda \in \mathbb{C} \mid \operatorname{Ker}(X-\lambda \cdot 1)=\{0\} \text { and } \operatorname{Ran}(X-\lambda \cdot 1)=L^{2}\right\}
$$

Let me use this fact.
First, I'll show $\mathbb{R} \subset \sigma(X)$. Let $\lambda \in \mathbb{R}$. Suppose $\operatorname{Ran}(X-\lambda \cdot 1)=L^{2}$. Define $g:=\sqrt{\chi(\lambda, \lambda+1)}$. Clearly $g \in L^{2}$. From $\operatorname{Ran}(X-\lambda \cdot 1)=L^{2}$, there exists $h \in L^{2}$ s.t. $(X-\lambda \cdot 1) h=g$. Then, $(x-\lambda) h(x)=g(x)$ a.e. $x \in \mathbb{R}$, and we get $h(x)=\frac{g(x)}{x-\lambda}$ a.e. $x \in \mathbb{R}$ because $\{\lambda\}$ is singleton in \mathbb{R}. Now, consider the square integral of h. We have
$\int_{\mathbb{R}}|h(x)|^{2} d x=\int_{\mathbb{R}}\left|\frac{g(x)}{x-\lambda}\right|^{2} d x=\int_{\mathbb{R}} \frac{\chi_{(\lambda, \lambda+1)}(x)}{(x-\lambda)^{2}} d x=\int_{\lambda}^{\lambda+1} \frac{1}{(x-\lambda)^{2}} d x=\int_{0}^{1} \frac{1}{x^{2}} d x=\infty$.
This contradicts $h \in L^{2}$. Therefore $\operatorname{Ran}(X-\lambda \cdot 1) \neq L^{2}$, so $\lambda \notin \rho(X)$, i.e., $\lambda \in \sigma(X)$. Conversely, let me show that $\sigma(X) \subset \mathbb{R}$. This is equivalent to $\mathbb{C} \backslash \mathbb{R} \subset \rho(X)$ so it suffices to show that $\lambda \in \mathbb{C} \backslash \mathbb{R}$ implies $\lambda \in \rho(X)$.
Let $\lambda \in \mathbb{C} \backslash \mathbb{R}$.
First, suppose $\operatorname{Ker}(X-\lambda \cdot 1) \neq\{0\}$. Then, there exists $g \neq 0$ s.t. $(X-\lambda \cdot 1) g=0$. Thereupon $(x-\lambda) g(x)=0$ a.e. $x \in \mathbb{R}$. Dividing the equation by $x-\lambda$ gives us $g(x)=0$ a.e. $x \in \mathbb{R}$, but this contradicts $g \neq 0$. Thus $\operatorname{Ker}(X-\lambda \cdot 1)=\{0\}$.
Next, assume $\operatorname{Ran}(X-\lambda \cdot 1) \neq L^{2}$. From the definition of $X-\lambda \cdot 1$, the inclusion $\operatorname{Ran}(X-\lambda \cdot 1) \subset L^{2}$ must hold so it follows that $\operatorname{Ran}(X-\lambda \cdot 1) \subsetneq L^{2}$. Then, there is $g \in L^{2}$ s.t. $g \notin \operatorname{Ran}(X-\lambda \cdot 1)$. Define $h: \mathbb{R} \rightarrow \mathbb{C}$ as $h(x)=\frac{g(x)}{x-\lambda}$. Note that
for all $x \in \mathbb{R}$, we have $|x-\lambda|=\sqrt{(x-\operatorname{Re} \lambda)^{2}+(\operatorname{Im} \lambda)^{2}} \geqq|\operatorname{Im} \lambda|>0$ since $\operatorname{Im} \lambda \neq 0$. Thus we get

$$
\int_{\mathbb{R}}|h(x)|^{2} d x=\int_{\mathbb{R}}\left|\frac{g(x)}{x-\lambda}\right|^{2} d x \leqq \frac{1}{|\operatorname{Im} \lambda|^{2}} \int_{\mathbb{R}}|g(x)|^{2} d x<\infty
$$

This shows $h \in L^{2}$. Moreover, $[(X-\lambda \cdot 1) h](x)=(x-\lambda) h(x)=g(x)$. This contradicts $g \notin \operatorname{Ran}(X-\lambda \cdot 1)$. Therefore $\operatorname{Ran}(X-\lambda \cdot 1)=L^{2}$.

Thus we get $\operatorname{Ker}(X-\lambda \cdot 1)=\{0\}$ and $\operatorname{Ran}(X-\lambda \cdot 1)=L^{2}$, i.e., $\lambda \in \rho(X)$.
We have shown that any $\lambda \in \mathbb{C} \backslash \mathbb{R}$ belongs to $\rho(X)$, and therefore $\sigma(X) \subset \mathbb{R}$.
Then we have finished the proof of $\sigma(X) \supset \mathbb{R}$ and $\sigma(X) \subset \mathbb{R}$. Eventually $\sigma(X)=\mathbb{R}$.

3.3 Exercise 6

Let $(A, D(A))$ is densely defined linear operator. Then,
(I) $\left(A^{*}, D\left(A^{*}\right)\right)$ is closed
(II) $\operatorname{Ker} A^{*}=(\operatorname{Ran} A)^{\perp}$

【Proof】

Note that $\langle f, A g\rangle=\left\langle A^{*} f, g\right\rangle$ for $f \in D\left(A^{*}\right)$ and $g \in D(A)$. This is because, for $f \in D\left(A^{*}\right)$ and $g \in D(A)$, there is $f^{*} \in \mathcal{H}$ which guarantees $\langle f, A g\rangle=\left\langle f^{*}, g\right\rangle=\left\langle A^{*} f, g\right\rangle$.
(I) Let $\left\{f_{n}\right\} \subset D\left(A^{*}\right)$ with $f_{n} \rightarrow f \in \mathcal{H}$ and $\left\{A^{*} f_{n}\right\}$ is Cauchy sequence. We have to show $f \in D\left(A^{*}\right)$ and $\lim _{n \rightarrow \infty} A^{*} f_{n}=A^{*} f$.
(i) $f \in D\left(A^{*}\right)$.

Since $\left\{A^{*} f_{n}\right\}_{n=1}^{\infty}$ is Cauchy in Hilbert space \mathcal{H}, there exists $f^{*} \in \mathcal{H}$ s.t. $\lim _{n \rightarrow \infty} A^{*} f_{n}=f^{*}$. Then, for any $g \in D(A)$, we have

$$
\langle f, A g\rangle=\left\langle\lim _{n \rightarrow \infty} f_{n}, A g\right\rangle=\lim _{n \rightarrow \infty}\left\langle f_{n}, A g\right\rangle=\lim _{n \rightarrow \infty}\left\langle A^{*} f_{n}, g\right\rangle=\left\langle\lim _{n \rightarrow \infty} A^{*} f_{n}, g\right\rangle=\left\langle f^{*}, g\right\rangle,
$$

and thus $f \in D\left(A^{*}\right)$.
(ii) $\lim _{n \rightarrow \infty} A^{*} f_{n}=A^{*} f$.

This follows from the definition of f^{*} and $A^{*} . f^{*}$ has been defined as $\lim _{n \rightarrow \infty} A^{*} f_{n}=$ f^{*}, and we have $A^{*} f=f^{*}$ from the definition of A^{*}. Thereupon $\lim _{n \rightarrow \infty} A^{*} f_{n}=$ $f^{*}=A^{*} f$.
(II) Let $f \in \operatorname{Ker} A^{*}$. Then, for all $g \in \operatorname{Ran} A$, there exists $h \in D(A)$ s.t. $g=A h$, and thus we have

$$
\langle f, g\rangle=\langle f, A h\rangle=\left\langle A^{*} f, h\right\rangle=\langle 0, h\rangle=0 .
$$

Therefore $f \in(\operatorname{Ran} A)^{\perp}$ and we get $\operatorname{Ker} A^{*} \subset(\operatorname{Ran} A)^{\perp}$.

Conversely，let me show $(\operatorname{Ran} A)^{\perp} \subset \operatorname{Ker} A^{*}$ ．Assume $f \in(\operatorname{Ran} A)^{\perp}$ ．Set $f^{*}:=0 \in$ \mathcal{H} ．Then，for all $g \in D(A)$ ，we have $\langle f, A g\rangle=0$ from $f \in(\operatorname{Ran} A)^{\perp}$ so

$$
\langle f, A g\rangle=0=\langle 0, g\rangle=\left\langle f^{*}, g\right\rangle .
$$

Thus，$A^{*} f=f^{*}=0$ from the definiion of A^{*} ．Hereupon $f \in \operatorname{Ker} A^{*}$ ．
Therefore we get $\operatorname{Ker} A^{*} \subset(\operatorname{Ran} A)^{\perp}$ and $(\operatorname{Ran} A)^{\perp} \subset \operatorname{Ker} A^{*}$ ，i．e．， $\operatorname{Ker} A^{*}=(\operatorname{Ran} A)^{\perp}$ ．

References

［1］Erwin Kreyszig，＂Introductory Functional Analysis with Applications＂Wiley（1989）．
［2］S．Richard，＂Operator theory on Hilbert spaces＂（2019），https：／／www．math．nagoya－ u．ac．jp／～richard／teaching／s2019／Operators．pdf
［3］平尾淳一•牧野哲•師啓二•徳永旻•山本正樹『量子力学 I 』森北出版（2008）．

