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1 I.1 Hilbert space and linear operator

1.1 Exercise 1

Let {fn}∞
n=1 ⊂ H and f∞ ∈ H. Then,

(i) s − lim
n→∞

fn = f∞ =⇒ w − lim
n→∞

fn = f∞

(ii) w − lim
n→∞

fn = f∞ and lim
n→∞

‖fn‖H = ‖f∞‖H =⇒ s − lim
n→∞

fn = f∞.

【Proof】

(i) Suppose s − lim
n→∞

fn = f∞. For all g ∈ H, we have

|〈g, fn − f∞〉| ≦ ‖g‖H‖fn − f∞‖H.

RHS converges to 0 as n → ∞ since s − lim
n→∞

fn = f∞, and thus lim
n→∞

〈g, fn − f∞〉 = 0.

(ii) Suppose w − lim
n→∞

fn = f∞ and lim
n→∞

‖fn‖H = ‖f∞‖H. Note that lim
n→∞

‖fn‖2
H = ‖f∞‖2

H

holds from lim
n→∞

‖fn‖H = ‖f∞‖H. We have

‖fn − f∞‖2
H = |〈fn − f∞, fn − f∞〉|

= |〈fn, fn − f∞〉 − 〈f∞, fn − f∞〉|
≦ |〈fn, fn − f∞〉| + |〈f∞, fn − f∞〉|.

Evaluating |〈fn, fn − f∞〉|, we get

|〈fn, fn − f∞〉| = |〈fn, fn〉 − 〈fn, f∞〉|
= |〈fn, fn〉 − 〈f∞, f∞〉 − 〈fn − f∞, f∞〉|
= |‖fn‖2

H − ‖f∞‖2
H − 〈fn − f∞, f∞〉|

≦ |‖fn‖2
H − ‖f∞‖2

H| + |〈fn − f∞, f∞〉|
= |‖fn‖2

H − ‖f∞‖2
H| + |〈f∞, fn − f∞〉|.

Thus,

‖fn − f∞‖2
H ≦ |‖fn‖2

H − ‖f∞‖2
H| + |〈f∞, fn − f∞〉| + |〈f∞, fn − f∞〉|.

The all three terms in RHS converges to 0 as n → ∞ since lim
n→∞

‖fn‖2
H = ‖f∞‖2

H and
w − lim

n→∞
fn = f∞. Thus we get lim

n→∞
‖fn − f∞‖2

H = 0, i.e., s − lim
n→∞

fn = f∞.

1.2 Exercise 2

Let {Bn}∞
n=1 ⊂ B(H), B∞ ∈ B(H). Then,

(i) u − lim
n→∞

Bn = B∞ =⇒ s − lim
n→∞

Bn = B∞
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(ii) s − lim
n→∞

Bn = B∞ =⇒ w − lim
n→∞

Bn = B∞.

【Proof】

(i) Suppose u − lim
n→∞

Bn = B∞, i.e., lim
n→∞

‖Bn − B∞‖ = 0.

Let f ∈ H. If f = 0, obviously ‖Bnf − B∞f‖H = 0 → 0 as n → ∞. Consider the
case f 6= 0. Then,

‖Bnf − B∞f‖H = ‖f‖H
‖(Bn − B∞)f‖H

‖f‖H

≦ ‖f‖Hsup
f∈H
f 6=0

‖(Bn − B∞)f‖H

‖f‖H

= ‖f‖H‖Bn − B∞‖ →
n→∞

0.

Thus s − lim
n→∞

Bn = B∞.

(ii) Suppose s − lim
n→∞

Bn = B∞. Then, for all f, g ∈ H,

|〈f, (Bn − B∞)g〉| ≦ ‖f‖H‖(Bn − B∞)g‖H = ‖f‖H‖Bng − B∞g‖H →
n→∞

0.

Thus w − lim
n→∞

Bn = B∞.

2 I.2 Ideals in B(H)

2.1 Exercise 3

For Hilbert space H, let F(H) be a set of finite rank operators, B(H) be a set of bounded
linear operators, and K(H) be a set of compact operators. Then,

(i) F(H) ⊂ B(H) ideal　 (ii) K(H) ⊂ B(H) ideal

【Proof】

(i) First, we have to check the inclusion F(H) ⊂ B(H). Let T ∈ F(H). There exists

{fj, gj}N
j=1 ⊂ H s.t. Tf =

N∑
j=1

〈fj, f〉gj for all f ∈ H. Then, for all f ∈ H, we have

‖Tf‖ =

∥∥∥∥∥∥
N∑

j=1
〈fj, f〉gj

∥∥∥∥∥∥ ≦
N∑

j=1
|〈fj, f〉|‖gj‖ ≦

N∑
j=1

‖fj‖‖f‖‖gj‖ =

 N∑
j=1

‖fj‖‖gj‖

 ‖f‖.

Therefore T ∈ B(H) and F(H) ⊂ B(H).

Next, I’ll show the ideality, i.e.,

T ∈ F(H), S ∈ B(H) =⇒ TS, ST ∈ F(H).
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Let T ∈ F(H) and S ∈ B(H). Then, from T ∈ F(H), there exists {fj, gj}N
j=1 ⊂ H

s.t. Tf =
N∑

j=1
〈fj, f〉gj for all f ∈ H. we have, for all f ∈ H,

TS(f) = T (S(f)) =
N∑

j=1
〈fj, Sf〉gj =

N∑
j=1

〈S∗fj, f〉gj.

Since {S∗fj, gj}N
j=1 ⊂ H, we get TS ∈ F(H). Moreover,

ST (f) = S(T (f)) = S

 N∑
j=1

〈fj, f〉gj

 =
N∑

j=1
〈fj, f〉Sgj

and {fj, Sgj}N
j=1 ⊂ H. Thus ST ∈ F(H).

(ii) K(H) ⊂ B(H) follows from the definition of K(H).

Let me show the ideality. Let T ∈ K(H) and S ∈ B(H). Since T ∈ K(H), there is
{Tn}∞

n=1 ⊂ F(H) s.t. ‖Tn − T‖ → 0. From (i), we see {TnS}∞
n=1 ⊂ F(H). Moreover,

‖TnS − TS‖ = ‖(Tn − T )S‖ ≦ ‖Tn − T‖‖S‖ → 0.

Thus TS ∈ K(H). Similarly, we get {STn}∞
n=1 ⊂ F(H) from (i) and

‖STn − ST‖ = ‖S(Tn − T )‖ ≦ ‖S‖‖Tn − T‖ → 0

and thus ST ∈ K(H).

3 I.3 General linear operator

3.1 Exercise 4

Let D :=
{

f ∈ L2
∣∣∣∣ ∫

R
|xf(x)|2 dx < ∞

}
, and define X : D → L2 by

[Xf ](x) = xf(x).

Then, (i) D ⊊ L2　 (ii) D is dense in L2　 (iii) (X, D) is not bounded.

【Proof】

(i) Clearly, D ⊂ L2 from the definition of D. To show D ⊊ L2, we have to find f s.t.
f ∈ L2 and f /∈ D.

Consider f : R → R defined by f(x) =


1
x

if x ≧ 1

0 otherwise
.
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Then, f ∈ L2 but we have

∫
R

|xf(x)|2 dx =
∫ ∞

1

∣∣∣∣x · 1
x

∣∣∣∣2 dx =
∫ ∞

1
1 dx = ∞.

Thus f /∈ D.

(ii) First, I’ll check Cc ⊂ D, where Cc is the set of continuous functions with compact
support.

For arbitrary f ∈ Cc, we can see∫
R

|xf(x)|2 dx =
∫

suppf
|xf(x)|2 dx +

∫
R\suppf

|xf(x)|2 dx =
∫

suppf
|xf(x)|2 dx,

and the mapping x 7→ |xf(x)|2 is continuous on suppf , which is compact in R, thus
the integral is finite and therefore f ∈ D.

Now, we have Cc ⊂ D ⊂ L2, and using the fact that Cc is dense in L2, we can see
D is dense in L2.

(iii) Suppose (X, D) is bounded, i.e., suppose there exists M > 0 such that

‖Xf‖2 ≦ M‖f‖2 for all f ∈ D

hence

‖Xf‖2
2 ≦ M2‖f‖2

2 for all f ∈ D.

Let n be a natural number such that n > M (e.g. n := bMc + 1, where b·c is the

floor function), and define f : R → C by f(x) =

1 if x ∈ [n, n + 1]

0 otherwise
.

Then, f ∈ D since
∫
R

|xf(x)|2 dx =
∫ n+1

n
x2 dx < ∞ and we have

‖f‖2
2 =

∫
R

|f(x)|2 dx =
∫ n+1

n
1 dx = 1

and
‖Xf‖2

2 =
∫
R

|xf(x)|2 dx =
∫ n+1

n
x2 dx = n2 + n + 1

3
.

Thus we get n2 + n + 1
3
≦ M2. This is contradiction because M2 < n2 < n2 + n + 1

3
.

Therefore (X, D) is not bounded.

3.2 Exercise 5

Let (X, D) be the operator defined in Exercise 4. Then,
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(i) σp(X) = ∅　 (ii) σ(X) = R

【Proof】

(i) Suppose some a ∈ C is in σp(X). Then, there is f ∈ L2 s.t. f 6= 0 (in the sense
of L2) and Xf = af. Thus we have (x − a)f(x) = 0 a.e. x ∈ R. This means that
there exists N ⊂ R, whose Lebesgue measure is zero, such that (x − a)f(x) = 0 for
x ∈ R \ N.

Now, assume a /∈ R. Dividing the equation above by x − a, we get f(x) = 0 for
x ∈ R\N. This indicates that f(x) = 0 a.e. x ∈ R, but this contradicts f 6= 0. Thus
a ∈ R.

Noting that (x − a)f(x) = 0 for x ∈ R \ N , we can say

f(x) = 0 for x ∈ (R \ N) ∩ (R \ {a}).

The complement of (R \ N) ∩ (R \ {a}) is N ∪ {a} and its Lebesgue measure is zero,
so f(x) = 0 a.e. x ∈ R. This contradicts f 6= 0.

Consequensely, such a doesn’t exist, i.e., σp(X) = ∅.

(ii) According to [2] and [3], the resolvent set of X, say ρ(X), can be written as

ρ(X) = {λ ∈ C | Ker(X − λ · 1) = {0} and Ran(X − λ · 1) = L2}.

Let me use this fact.

First, I’ll show R ⊂ σ(X). Let λ ∈ R. Suppose Ran(X − λ · 1) = L2. Define
g := √

χ(λ,λ+1). Clearly g ∈ L2. From Ran(X − λ · 1) = L2, there exists h ∈ L2 s.t.

(X − λ · 1)h = g. Then, (x − λ)h(x) = g(x) a.e. x ∈ R, and we get h(x) = g(x)
x − λ

a.e. x ∈ R because {λ} is singleton in R. Now, consider the square integral of h.
We have

∫
R

|h(x)|2 dx =
∫
R

∣∣∣∣∣ g(x)
x − λ

∣∣∣∣∣
2

dx =
∫
R

χ(λ,λ+1)(x)
(x − λ)2 dx =

∫ λ+1

λ

1
(x − λ)2 dx =

∫ 1

0

1
x2 dx = ∞.

This contradicts h ∈ L2. Therefore Ran(X −λ ·1) 6= L2, so λ /∈ ρ(X), i.e., λ ∈ σ(X).

Conversely, let me show that σ(X) ⊂ R. This is equivalent to C \ R ⊂ ρ(X) so it
suffices to show that λ ∈ C \ R implies λ ∈ ρ(X).

Let λ ∈ C \ R.

First, suppose Ker(X − λ · 1) 6= {0}. Then, there exists g 6= 0 s.t. (X − λ · 1)g = 0.

Thereupon (x − λ)g(x) = 0 a.e. x ∈ R. Dividing the equation by x − λ gives us
g(x) = 0 a.e. x ∈ R, but this contradicts g 6= 0. Thus Ker(X − λ · 1) = {0}.

Next, assume Ran(X − λ · 1) 6= L2. From the definition of X − λ · 1, the inclusion
Ran(X − λ · 1) ⊂ L2 must hold so it follows that Ran(X − λ · 1) ⊊ L2. Then, there

is g ∈ L2 s.t. g /∈ Ran(X − λ · 1). Define h : R → C as h(x) = g(x)
x − λ

. Note that
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for all x ∈ R, we have |x − λ| =
√

(x − Reλ)2 + (Imλ)2 ≧ |Imλ| > 0 since Imλ 6= 0.

Thus we get

∫
R

|h(x)|2 dx =
∫
R

∣∣∣∣∣ g(x)
x − λ

∣∣∣∣∣
2

dx ≦ 1
|Imλ|2

∫
R

|g(x)|2 dx < ∞.

This shows h ∈ L2. Moreover, [(X−λ·1)h](x) = (x−λ)h(x) = g(x). This contradicts
g /∈ Ran(X − λ · 1). Therefore Ran(X − λ · 1) = L2.

Thus we get Ker(X − λ · 1) = {0} and Ran(X − λ · 1) = L2, i.e., λ ∈ ρ(X).

We have shown that any λ ∈ C \ R belongs to ρ(X), and therefore σ(X) ⊂ R.

Then we have finished the proof of σ(X) ⊃ R and σ(X) ⊂ R. Eventually σ(X) = R.

3.3 Exercise 6

Let (A, D(A)) is densely defined linear operator. Then,

(I) (A∗, D(A∗)) is closed　 (II) KerA∗ = (RanA)⊥

【Proof】
Note that 〈f, Ag〉 = 〈A∗f, g〉 for f ∈ D(A∗) and g ∈ D(A). This is because, for

f ∈ D(A∗) and g ∈ D(A), there is f ∗ ∈ H which guarantees 〈f, Ag〉 = 〈f ∗, g〉 = 〈A∗f, g〉.

(I) Let {fn} ⊂ D(A∗) with fn → f ∈ H and {A∗fn} is Cauchy sequence. We have to
show f ∈ D(A∗) and lim

n→∞
A∗fn = A∗f.

(i) f ∈ D(A∗).
Since {A∗fn}∞

n=1 is Cauchy in Hilbert space H, there exists f ∗ ∈ H s.t.
lim

n→∞
A∗fn = f ∗. Then, for any g ∈ D(A), we have

〈f, Ag〉 = 〈 lim
n→∞

fn, Ag〉 = lim
n→∞

〈fn, Ag〉 = lim
n→∞

〈A∗fn, g〉 = 〈 lim
n→∞

A∗fn, g〉 = 〈f ∗, g〉,

and thus f ∈ D(A∗).

(ii) lim
n→∞

A∗fn = A∗f.

This follows from the definition of f ∗ and A∗. f ∗ has been defined as lim
n→∞

A∗fn =
f ∗, and we have A∗f = f ∗ from the definition of A∗. Thereupon lim

n→∞
A∗fn =

f ∗ = A∗f.

(II) Let f ∈ KerA∗. Then, for all g ∈ RanA, there exists h ∈ D(A) s.t. g = Ah, and
thus we have

〈f, g〉 = 〈f, Ah〉 = 〈A∗f, h〉 = 〈0, h〉 = 0.

Therefore f ∈ (RanA)⊥ and we get KerA∗ ⊂ (RanA)⊥.
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Conversely, let me show (RanA)⊥ ⊂ KerA∗. Assume f ∈ (RanA)⊥. Set f ∗ := 0 ∈
H. Then, for all g ∈ D(A), we have 〈f, Ag〉 = 0 from f ∈ (RanA)⊥ so

〈f, Ag〉 = 0 = 〈0, g〉 = 〈f ∗, g〉.

Thus, A∗f = f ∗ = 0 from the definiion of A∗. Hereupon f ∈ KerA∗.

Therefore we get KerA∗ ⊂ (RanA)⊥ and (RanA)⊥ ⊂ KerA∗, i.e., KerA∗ = (RanA)⊥.
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