Report 1

322301343, So Moriki

May 30, 2023

Contents

1	I.1 Hilbert space and linear operator	1
	1.1 Exercise 1	1
	1.2 Exercise 2	1
2	I.2 Ideals in $\mathcal{B}(\mathcal{H})$	2
	2.1 Exercise 3	2
3	I.3 General linear operator	3
	3.1 Exercise 4	3
	3.2 Exercise 5	4
	3.3 Exercise 6	6

1 I.1 Hilbert space and linear operator

1.1 Exercise 1

Let $\{f_n\}_{n=1}^{\infty} \subset \mathcal{H}$ and $f_{\infty} \in \mathcal{H}$. Then,

(i)
$$s - \lim_{n \to \infty} f_n = f_{\infty} \implies w - \lim_{n \to \infty} f_n = f_{\infty}$$

(ii) $w - \lim_{n \to \infty} f_n = f_{\infty}$ and $\lim_{n \to \infty} ||f_n||_{\mathcal{H}} = ||f_{\infty}||_{\mathcal{H}} \implies s - \lim_{n \to \infty} f_n = f_{\infty}$

[Proof]

(i) Suppose $s - \lim_{n \to \infty} f_n = f_{\infty}$. For all $g \in \mathcal{H}$, we have

$$|\langle g, f_n - f_\infty \rangle| \le ||g||_{\mathcal{H}} ||f_n - f_\infty||_{\mathcal{H}}.$$

RHS converges to 0 as $n \to \infty$ since $s - \lim_{n \to \infty} f_n = f_\infty$, and thus $\lim_{n \to \infty} \langle g, f_n - f_\infty \rangle = 0$.

(ii) Suppose $w - \lim_{n \to \infty} f_n = f_\infty$ and $\lim_{n \to \infty} ||f_n||_{\mathcal{H}} = ||f_\infty||_{\mathcal{H}}$. Note that $\lim_{n \to \infty} ||f_n||_{\mathcal{H}}^2 = ||f_\infty||_{\mathcal{H}}^2$ holds from $\lim_{n \to \infty} ||f_n||_{\mathcal{H}} = ||f_\infty||_{\mathcal{H}}$. We have

$$\|f_n - f_\infty\|_{\mathcal{H}}^2 = |\langle f_n - f_\infty, f_n - f_\infty \rangle|$$

= $|\langle f_n, f_n - f_\infty \rangle - \langle f_\infty, f_n - f_\infty \rangle|$
 $\leq |\langle f_n, f_n - f_\infty \rangle| + |\langle f_\infty, f_n - f_\infty \rangle|.$

Evaluating $|\langle f_n, f_n - f_\infty \rangle|$, we get

$$\begin{aligned} |\langle f_n, f_n - f_{\infty} \rangle| &= |\langle f_n, f_n \rangle - \langle f_n, f_{\infty} \rangle| \\ &= |\langle f_n, f_n \rangle - \langle f_{\infty}, f_{\infty} \rangle - \langle f_n - f_{\infty}, f_{\infty} \rangle| \\ &= |||f_n||_{\mathcal{H}}^2 - ||f_{\infty}||_{\mathcal{H}}^2 - \langle f_n - f_{\infty}, f_{\infty} \rangle| \\ &\leq |||f_n||_{\mathcal{H}}^2 - ||f_{\infty}||_{\mathcal{H}}^2| + |\langle f_n - f_{\infty}, f_{\infty} \rangle| \\ &= |||f_n||_{\mathcal{H}}^2 - ||f_{\infty}||_{\mathcal{H}}^2| + |\langle f_{\infty}, f_n - f_{\infty} \rangle|. \end{aligned}$$

Thus,

$$\|f_n - f_\infty\|_{\mathcal{H}}^2 \leq \|\|f_n\|_{\mathcal{H}}^2 - \|f_\infty\|_{\mathcal{H}}^2 + |\langle f_\infty, f_n - f_\infty\rangle| + |\langle f_\infty, f_n - f_\infty\rangle|.$$

The all three terms in RHS converges to 0 as $n \to \infty$ since $\lim_{n \to \infty} ||f_n||^2_{\mathcal{H}} = ||f_{\infty}||^2_{\mathcal{H}}$ and $w - \lim_{n \to \infty} f_n = f_{\infty}$. Thus we get $\lim_{n \to \infty} ||f_n - f_{\infty}||^2_{\mathcal{H}} = 0$, i.e., $s - \lim_{n \to \infty} f_n = f_{\infty}$.

1.2 Exercise 2

Let $\{B_n\}_{n=1}^{\infty} \subset \mathcal{B}(\mathcal{H}), B_{\infty} \in \mathcal{B}(\mathcal{H})$. Then,

(i)
$$u - \lim_{n \to \infty} B_n = B_\infty \implies s - \lim_{n \to \infty} B_n = B_\infty$$

(ii)
$$s - \lim_{n \to \infty} B_n = B_\infty \implies w - \lim_{n \to \infty} B_n = B_\infty.$$

[Proof]

(i) Suppose $u - \lim_{n \to \infty} B_n = B_{\infty}$, i.e., $\lim_{n \to \infty} ||B_n - B_{\infty}|| = 0$. Let $f \in \mathcal{H}$. If f = 0, obviously $||B_n f - B_{\infty} f||_{\mathcal{H}} = 0 \to 0$ as $n \to \infty$. Consider the case $f \neq 0$. Then,

$$||B_n f - B_\infty f||_{\mathcal{H}} = ||f||_{\mathcal{H}} \frac{||(B_n - B_\infty)f||_{\mathcal{H}}}{||f||_{\mathcal{H}}}$$
$$\leq ||f||_{\mathcal{H}} \sup_{\substack{f \in \mathcal{H} \\ f \neq 0}} \frac{||(B_n - B_\infty)f||_{\mathcal{H}}}{||f||_{\mathcal{H}}}$$
$$= ||f||_{\mathcal{H}} ||B_n - B_\infty|| \underset{n \to \infty}{\to} 0.$$

Thus $s - \lim_{n \to \infty} B_n = B_{\infty}$.

(ii) Suppose $s - \lim_{n \to \infty} B_n = B_{\infty}$. Then, for all $f, g \in \mathcal{H}$,

$$|\langle f, (B_n - B_\infty)g\rangle| \leq ||f||_{\mathcal{H}} ||(B_n - B_\infty)g||_{\mathcal{H}} = ||f||_{\mathcal{H}} ||B_ng - B_\infty g||_{\mathcal{H}} \underset{n \to \infty}{\to} 0.$$

Thus $w - \lim_{n \to \infty} B_n = B_{\infty}$.

2	I.2	Ideals	in	$\mathcal{B}($	(\mathcal{H})

2.1 Exercise 3

For Hilbert space \mathcal{H} , let $\mathcal{F}(\mathcal{H})$ be a set of finite rank operators, $\mathcal{B}(\mathcal{H})$ be a set of bounded linear operators, and $\mathcal{K}(\mathcal{H})$ be a set of compact operators. Then,

(i)
$$\mathcal{F}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$$
 ideal (ii) $\mathcal{K}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ ideal

[Proof]

(i) First, we have to check the inclusion $\mathcal{F}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$. Let $T \in \mathcal{F}(\mathcal{H})$. There exists $\{f_j, g_j\}_{j=1}^N \subset \mathcal{H} \text{ s.t. } Tf = \sum_{j=1}^N \langle f_j, f \rangle g_j \text{ for all } f \in \mathcal{H}.$ Then, for all $f \in \mathcal{H}$, we have

$$||Tf|| = \left\|\sum_{j=1}^{N} \langle f_j, f \rangle g_j\right\| \le \sum_{j=1}^{N} |\langle f_j, f \rangle| ||g_j|| \le \sum_{j=1}^{N} ||f_j|| ||f|| ||g_j|| = \left[\sum_{j=1}^{N} ||f_j|| ||g_j||\right] ||f||.$$

Therefore $T \in \mathcal{B}(\mathcal{H})$ and $\mathcal{F}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$.

Next, I'll show the ideality, i.e.,

$$T \in \mathcal{F}(\mathcal{H}), S \in \mathcal{B}(\mathcal{H}) \implies TS, ST \in \mathcal{F}(\mathcal{H}).$$

Let $T \in \mathcal{F}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{H})$. Then, from $T \in \mathcal{F}(\mathcal{H})$, there exists $\{f_j, g_j\}_{j=1}^N \subset \mathcal{H}$ s.t. $Tf = \sum_{j=1}^N \langle f_j, f \rangle g_j$ for all $f \in \mathcal{H}$. we have, for all $f \in \mathcal{H}$,

$$TS(f) = T(S(f)) = \sum_{j=1}^{N} \langle f_j, Sf \rangle g_j = \sum_{j=1}^{N} \langle S^* f_j, f \rangle g_j.$$

Since $\{S^*f_j, g_j\}_{j=1}^N \subset \mathcal{H}$, we get $TS \in \mathcal{F}(\mathcal{H})$. Moreover,

$$ST(f) = S(T(f)) = S\left(\sum_{j=1}^{N} \langle f_j, f \rangle g_j\right) = \sum_{j=1}^{N} \langle f_j, f \rangle Sg_j$$

and $\{f_j, Sg_j\}_{j=1}^N \subset \mathcal{H}$. Thus $ST \in \mathcal{F}(\mathcal{H})$.

(ii) $\mathcal{K}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ follows from the definition of $\mathcal{K}(\mathcal{H})$.

Let me show the ideality. Let $T \in \mathcal{K}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{H})$. Since $T \in \mathcal{K}(\mathcal{H})$, there is $\{T_n\}_{n=1}^{\infty} \subset \mathcal{F}(\mathcal{H})$ s.t. $||T_n - T|| \to 0$. From (i), we see $\{T_nS\}_{n=1}^{\infty} \subset \mathcal{F}(\mathcal{H})$. Moreover,

$$||T_n S - TS|| = ||(T_n - T)S|| \le ||T_n - T|| ||S|| \to 0.$$

Thus $TS \in \mathcal{K}(\mathcal{H})$. Similarly, we get $\{ST_n\}_{n=1}^{\infty} \subset \mathcal{F}(\mathcal{H})$ from (i) and

$$||ST_n - ST|| = ||S(T_n - T)|| \le ||S|| ||T_n - T|| \to 0$$

and thus $ST \in \mathcal{K}(\mathcal{H})$.

3 I.3 General linear operator

3.1 Exercise 4

Let
$$D := \left\{ f \in L^2 \mid \int_{\mathbb{R}} |xf(x)|^2 dx < \infty \right\}$$
, and define $X : D \to L^2$ by $[Xf](x) = xf(x)$.

Then, (i) $D \subsetneq L^2$ (ii) D is dense in L^2 (iii) (X, D) is not bounded.

[Proof]

(i) Clearly, $D \subset L^2$ from the definition of D. To show $D \subsetneq L^2$, we have to find f s.t. $f \in L^2$ and $f \notin D$.

Consider
$$f : \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \ge 1\\ 0 & \text{otherwise} \end{cases}$.

Then, $f \in L^2$ but we have

$$\int_{\mathbb{R}} |xf(x)|^2 dx = \int_1^\infty \left| x \cdot \frac{1}{x} \right|^2 dx = \int_1^\infty 1 dx = \infty.$$

Thus $f \notin D$.

(ii) First, I'll check $C_c \subset D$, where C_c is the set of continuous functions with compact support.

For arbitrary $f \in C_c$, we can see

$$\int_{\mathbb{R}} |xf(x)|^2 dx = \int_{\operatorname{supp} f} |xf(x)|^2 dx + \int_{\mathbb{R}\setminus\operatorname{supp} f} |xf(x)|^2 dx = \int_{\operatorname{supp} f} |xf(x)|^2 dx,$$

and the mapping $x \mapsto |xf(x)|^2$ is continuous on $\operatorname{supp} f$, which is compact in \mathbb{R} , thus the integral is finite and therefore $f \in D$.

Now, we have $C_c \subset D \subset L^2$, and using the fact that C_c is dense in L^2 , we can see D is dense in L^2 .

(iii) Suppose (X, D) is bounded, i.e., suppose there exists M > 0 such that

$$||Xf||_2 \leq M ||f||_2 \text{ for all } f \in D$$

hence

$$||Xf||_2^2 \leq M^2 ||f||_2^2$$
 for all $f \in D$.

Let *n* be a natural number such that n > M (e.g. $n := \lfloor M \rfloor + 1$, where $\lfloor \cdot \rfloor$ is the floor function), and define $f : \mathbb{R} \to \mathbb{C}$ by $f(x) = \begin{cases} 1 & \text{if } x \in [n, n+1] \\ 0 & \text{otherwise} \end{cases}$.

Then, $f \in D$ since $\int_{\mathbb{R}} |xf(x)|^2 dx = \int_n^{n+1} x^2 dx < \infty$ and we have

$$||f||_{2}^{2} = \int_{\mathbb{R}} |f(x)|^{2} dx = \int_{n}^{n+1} 1 dx = 1$$

and

$$||Xf||_{2}^{2} = \int_{\mathbb{R}} |xf(x)|^{2} dx = \int_{n}^{n+1} x^{2} dx = n^{2} + n + \frac{1}{3}.$$

Thus we get $n^2 + n + \frac{1}{3} \leq M^2$. This is contradiction because $M^2 < n^2 < n^2 + n + \frac{1}{3}$. Therefore (X, D) is not bounded.

3.2 Exercise 5

Let (X, D) be the operator defined in Exercise 4. Then,

(i)
$$\sigma_p(X) = \emptyset$$
 (ii) $\sigma(X) = \mathbb{R}$

[Proof]

(i) Suppose some $a \in \mathbb{C}$ is in $\sigma_p(X)$. Then, there is $f \in L^2$ s.t. $f \neq 0$ (in the sense of L^2) and Xf = af. Thus we have (x - a)f(x) = 0 a.e. $x \in \mathbb{R}$. This means that there exists $N \subset \mathbb{R}$, whose Lebesgue measure is zero, such that (x - a)f(x) = 0 for $x \in \mathbb{R} \setminus N$.

Now, assume $a \notin \mathbb{R}$. Dividing the equation above by x - a, we get f(x) = 0 for $x \in \mathbb{R} \setminus N$. This indicates that f(x) = 0 a.e. $x \in \mathbb{R}$, but this contradicts $f \neq 0$. Thus $a \in \mathbb{R}$.

Noting that (x - a)f(x) = 0 for $x \in \mathbb{R} \setminus N$, we can say

$$f(x) = 0$$
 for $x \in (\mathbb{R} \setminus N) \cap (\mathbb{R} \setminus \{a\}).$

The complement of $(\mathbb{R} \setminus N) \cap (\mathbb{R} \setminus \{a\})$ is $N \cup \{a\}$ and its Lebesgue measure is zero, so f(x) = 0 a.e. $x \in \mathbb{R}$. This contradicts $f \neq 0$.

Consequensely, such a doesn't exist, i.e., $\sigma_p(X) = \emptyset$.

(ii) According to [2] and [3], the resolvent set of X, say $\rho(X)$, can be written as

$$\rho(X) = \{\lambda \in \mathbb{C} \mid \operatorname{Ker}(X - \lambda \cdot 1) = \{0\} \text{ and } \operatorname{Ran}(X - \lambda \cdot 1) = L^2\}.$$

Let me use this fact.

First, I'll show $\mathbb{R} \subset \sigma(X)$. Let $\lambda \in \mathbb{R}$. Suppose $\operatorname{Ran}(X - \lambda \cdot 1) = L^2$. Define $g := \sqrt{\chi_{(\lambda,\lambda+1)}}$. Clearly $g \in L^2$. From $\operatorname{Ran}(X - \lambda \cdot 1) = L^2$, there exists $h \in L^2$ s.t. $(X - \lambda \cdot 1)h = g$. Then, $(x - \lambda)h(x) = g(x)$ a.e. $x \in \mathbb{R}$, and we get $h(x) = \frac{g(x)}{x - \lambda}$ a.e. $x \in \mathbb{R}$ because $\{\lambda\}$ is singleton in \mathbb{R} . Now, consider the square integral of h. We have

$$\int_{\mathbb{R}} |h(x)|^2 dx = \int_{\mathbb{R}} \left| \frac{g(x)}{x - \lambda} \right|^2 dx = \int_{\mathbb{R}} \frac{\chi_{(\lambda, \lambda+1)}(x)}{(x - \lambda)^2} dx = \int_{\lambda}^{\lambda+1} \frac{1}{(x - \lambda)^2} dx = \int_0^1 \frac{1}{x^2} dx = \infty$$

This contradicts $h \in L^2$. Therefore $\operatorname{Ran}(X - \lambda \cdot 1) \neq L^2$, so $\lambda \notin \rho(X)$, i.e., $\lambda \in \sigma(X)$. Conversely, let me show that $\sigma(X) \subset \mathbb{R}$. This is equivalent to $\mathbb{C} \setminus \mathbb{R} \subset \rho(X)$ so it suffices to show that $\lambda \in \mathbb{C} \setminus \mathbb{R}$ implies $\lambda \in \rho(X)$.

Let $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

First, suppose $\operatorname{Ker}(X - \lambda \cdot 1) \neq \{0\}$. Then, there exists $g \neq 0$ s.t. $(X - \lambda \cdot 1)g = 0$. Thereupon $(x - \lambda)g(x) = 0$ a.e. $x \in \mathbb{R}$. Dividing the equation by $x - \lambda$ gives us g(x) = 0 a.e. $x \in \mathbb{R}$, but this contradicts $g \neq 0$. Thus $\operatorname{Ker}(X - \lambda \cdot 1) = \{0\}$.

Next, assume $\operatorname{Ran}(X - \lambda \cdot 1) \neq L^2$. From the definition of $X - \lambda \cdot 1$, the inclusion $\operatorname{Ran}(X - \lambda \cdot 1) \subset L^2$ must hold so it follows that $\operatorname{Ran}(X - \lambda \cdot 1) \subsetneq L^2$. Then, there is $g \in L^2$ s.t. $g \notin \operatorname{Ran}(X - \lambda \cdot 1)$. Define $h : \mathbb{R} \to \mathbb{C}$ as $h(x) = \frac{g(x)}{x - \lambda}$. Note that

for all $x \in \mathbb{R}$, we have $|x - \lambda| = \sqrt{(x - \operatorname{Re}\lambda)^2 + (\operatorname{Im}\lambda)^2} \ge |\operatorname{Im}\lambda| > 0$ since $\operatorname{Im}\lambda \neq 0$. Thus we get

$$\int_{\mathbb{R}} |h(x)|^2 \, dx = \int_{\mathbb{R}} \left| \frac{g(x)}{x - \lambda} \right|^2 \, dx \leq \frac{1}{|\mathrm{Im}\lambda|^2} \int_{\mathbb{R}} |g(x)|^2 \, dx < \infty.$$

This shows $h \in L^2$. Moreover, $[(X - \lambda \cdot 1)h](x) = (x - \lambda)h(x) = g(x)$. This contradicts $g \notin \operatorname{Ran}(X - \lambda \cdot 1)$. Therefore $\operatorname{Ran}(X - \lambda \cdot 1) = L^2$.

Thus we get $\operatorname{Ker}(X - \lambda \cdot 1) = \{0\}$ and $\operatorname{Ran}(X - \lambda \cdot 1) = L^2$, i.e., $\lambda \in \rho(X)$.

We have shown that any $\lambda \in \mathbb{C} \setminus \mathbb{R}$ belongs to $\rho(X)$, and therefore $\sigma(X) \subset \mathbb{R}$.

Then we have finished the proof of $\sigma(X) \supset \mathbb{R}$ and $\sigma(X) \subset \mathbb{R}$. Eventually $\sigma(X) = \mathbb{R}$.

3.3 Exercise 6

Let (A, D(A)) is densely defined linear operator. Then,

(I) $(A^*, D(A^*))$ is closed (II) $\operatorname{Ker} A^* = (\operatorname{Ran} A)^{\perp}$

[Proof]

Note that $\langle f, Ag \rangle = \langle A^*f, g \rangle$ for $f \in D(A^*)$ and $g \in D(A)$. This is because, for $f \in D(A^*)$ and $g \in D(A)$, there is $f^* \in \mathcal{H}$ which guarantees $\langle f, Ag \rangle = \langle f^*, g \rangle = \langle A^*f, g \rangle$.

- (I) Let $\{f_n\} \subset D(A^*)$ with $f_n \to f \in \mathcal{H}$ and $\{A^*f_n\}$ is Cauchy sequence. We have to show $f \in D(A^*)$ and $\lim_{n \to \infty} A^*f_n = A^*f$.
 - (i) $f \in D(A^*)$.

Since $\{A^*f_n\}_{n=1}^{\infty}$ is Cauchy in Hilbert space \mathcal{H} , there exists $f^* \in \mathcal{H}$ s.t. $\lim_{n \to \infty} A^*f_n = f^*$. Then, for any $g \in D(A)$, we have

$$\langle f, Ag \rangle = \langle \lim_{n \to \infty} f_n, Ag \rangle = \lim_{n \to \infty} \langle f_n, Ag \rangle = \lim_{n \to \infty} \langle A^* f_n, g \rangle = \langle \lim_{n \to \infty} A^* f_n, g \rangle = \langle f^*, g \rangle,$$

and thus $f \in D(A^*)$.

(ii) $\lim_{n \to \infty} A^* f_n = A^* f.$

This follows from the definition of f^* and A^* . f^* has been defined as $\lim_{n \to \infty} A^* f_n = f^*$, and we have $A^* f = f^*$ from the definition of A^* . Thereupon $\lim_{n \to \infty} A^* f_n = f^* = A^* f$.

(II) Let $f \in \text{Ker}A^*$. Then, for all $g \in \text{Ran}A$, there exists $h \in D(A)$ s.t. g = Ah, and thus we have

$$\langle f,g\rangle = \langle f,Ah\rangle = \langle A^*f,h\rangle = \langle 0,h\rangle = 0.$$

Therefore $f \in (\operatorname{Ran} A)^{\perp}$ and we get $\operatorname{Ker} A^* \subset (\operatorname{Ran} A)^{\perp}$.

Conversely, let me show $(\operatorname{Ran} A)^{\perp} \subset \operatorname{Ker} A^*$. Assume $f \in (\operatorname{Ran} A)^{\perp}$. Set $f^* := 0 \in \mathcal{H}$. Then, for all $g \in D(A)$, we have $\langle f, Ag \rangle = 0$ from $f \in (\operatorname{Ran} A)^{\perp}$ so

$$\langle f, Ag \rangle = 0 = \langle 0, g \rangle = \langle f^*, g \rangle.$$

Thus, $A^*f = f^* = 0$ from the definition of A^* . Hereupon $f \in \text{Ker}A^*$. Therefore we get $\text{Ker}A^* \subset (\text{Ran}A)^{\perp}$ and $(\text{Ran}A)^{\perp} \subset \text{Ker}A^*$, i.e., $\text{Ker}A^* = (\text{Ran}A)^{\perp}$.

References

- [1] Erwin Kreyszig, "Introductory Functional Analysis with Applications" Wiley (1989).
- [2] S. Richard, "Operator theory on Hilbert spaces" (2019), https://www.math.nagoyau.ac.jp/~richard/teaching/s2019/Operators.pdf
- [3] 平尾淳一·牧野哲·師啓二·徳永旻·山本正樹『量子力学I』森北出版 (2008).