Exercises on the orthocomplement of a subspace

Zhang Zhiyang

July 24, 2023

Exercise 3.1.10

Check that \mathcal{M}^{\perp} is a closed subspace of \mathcal{H} . The subspace \mathcal{M}^{\perp} is called the orthocomplement of \mathcal{M} in \mathcal{H} .

 $\mathcal{M}^{\perp} := \{ f \in \mathcal{H} | \langle f, g \rangle = 0, \forall g \in \mathcal{M} \}$

Solution:

 $\forall f_1, f_2 \in \mathcal{M}^{\perp}, \forall \lambda \in \mathbb{C}, \forall g \in \mathcal{M}, \langle f_1 + \lambda f_2, g \rangle = \langle f_1, g \rangle + \lambda \langle f_2, g \rangle = 0$, so \mathcal{M}^{\perp} is a subspace of \mathcal{H} .

If $(f_j)_{j\in\mathbb{N}} \subset \mathcal{M}$, then $s - \lim_{j\to\infty} f_j = f_\infty \in \mathcal{H}$. According to Lemma 3.1.7, we derive $w - \lim_{j\to\infty} f_j = f_\infty$, namely $\forall h \in \mathcal{H}$,

$$\lim_{j \to \infty} \langle h, f_j - f_{\infty} \rangle = \lim_{j \to \infty} \langle h, f_j \rangle - \langle h, f_{\infty} \rangle = 0.$$

Thus, $\forall h \in \mathcal{H}, \langle h, f_{\infty} \rangle = \lim_{j \to \infty} \langle h, f_j \rangle$. No doubt that $\forall g \in \mathcal{M}, \langle g, f_{\infty} \rangle = \lim_{j \to \infty} \langle g, f_j \rangle$.

From the definition of \mathcal{M}^{\perp} , we can say that $\forall j \in \mathbb{N}, \langle f_j, g \rangle = 0$, and thus $\langle f_{\infty}, g \rangle = 0$, satisfying $f_{\infty} \in \mathcal{M}^{\perp}$.

In conlusion, \mathcal{M}^{\perp} is a closed subspace of \mathcal{H} .

Exercise 3.1.11

Check that a subspace $\mathcal{M} \subset \mathcal{H}$ is dense in \mathcal{H} if and only if $\mathcal{M}^{\perp} = \{0\}$.

Solution:

1. $\mathcal{M} \subset \mathcal{H}$ is dense in $\mathcal{H} \Rightarrow \mathcal{M}^{\perp} = \{0\}$

 $\forall f \in \mathcal{H}, \forall \epsilon > 0, \exists g \in \mathcal{M} \text{ with } ||f - g|| \leq \epsilon.$ Meanwhile, for any $h \in \mathcal{M}^{\perp}$, since $\langle h, g \rangle = 0$, we have

$$\langle h, f \rangle = \langle h, f - g + g \rangle = \langle h, f - g \rangle + \langle h, g \rangle = \langle h, f - g \rangle.$$

From Schwartz inequality, one gets

$$|\langle h, f - g \rangle| \le ||h|| ||f - g|| \le \epsilon ||h||$$

Since ϵ is arbitrary, one infers that

$$|\langle h, f - g \rangle| = 0,$$

namely

$$\langle h, f \rangle = 0.$$

This applies to any $f \in \mathcal{H}$ and $h \in \mathcal{M}^{\perp}$, so for each $h \in \mathcal{M}^{\perp}$ there must be

$$\langle h, h \rangle = 0$$

when f = h, leading to the fact that h = 0. $\mathcal{M}^{\perp} = \{0\}$ is therefore proved.

2. $\mathcal{M} \subset \mathcal{H}$ is dense in $\mathcal{H} \Leftarrow \mathcal{M}^{\perp} = \{0\}$

 $\overline{\mathcal{M}} \subset \mathcal{H}$ is a closed subspace of \mathcal{H} . According to Projection Theorem, $\forall f \in \mathcal{H}$, there exist a unique $f_1 \in \overline{\mathcal{M}}$ and a unique $f_2 \in \overline{\mathcal{M}}^{\perp}$ such that $f = f_1 + f_2$.

Since $\mathcal{M}^{\perp} = \{0\}, \overline{\mathcal{M}}^{\perp} = \{0\}$ is easily deduced, and so $f_2 = 0, f = f_1$, which leads to $\overline{\mathcal{M}} = \mathcal{H}$. Then \mathcal{M} is dense in \mathcal{H} .

Reference

Amrein, W 2009, *Hilbert Space Methods in Quantum Mechanics*, EPFL Press, Laussane.