G30 SML 2023 spring．ID 082350784 平松優 page $1 / 3$

Proof Lemma 2.6 .9
Lemma 2．6．9．Let $\alpha, \beta \in(0,1)$ with $\alpha+\beta=1$ ．Then for any $a, b \geq 0$ one has

$$
a b \leq \alpha a^{\frac{1}{\alpha}}+\beta b^{\frac{1}{\beta}}
$$

To proof this inequality．I will use Jensen inequality．
Jensen＇s inequality
For any $n \in \mathbb{N}$ ，with $\sum_{i=1}^{n} t_{i}=1, t_{i} \geq 0$ a convex \mathcal{L} satisfies

$$
\mathcal{I}\left(\sum_{i=1}^{n} \operatorname{ti} x_{i}\right) \leq \sum_{i=1}^{n} t_{i} \mathcal{L}\left(x_{i}\right)
$$

（＊definition of convex Junction $J:[a, b] \rightarrow \mathbb{R}$ is convex if and only if a following condition holds：
Forall $t \in[0,1]$ and all $x_{1}, x_{2} \in[a, b]$

$$
\mathcal{J}\left(t x_{2}+(1-\tau) x_{1}\right) \leq t \mathcal{L}\left(x_{1}\right)+(1-t) \mathcal{L}\left(x_{2}\right)
$$

Proof of Jensen＇s inequality
Let me proof by induction．
Bace：if $n=1$ then $t_{1}=1$ so the inequality is $f\left(x_{1}\right) \leq \mathcal{L}\left(x_{1}\right)$ ， which is obionsly true．
if $n=2$ ，the inequality is $f\left(t_{1} x_{1}+t_{2} x_{2}\right) \leq t_{1} f\left(x_{1}\right)+t_{2} f\left(x_{2}\right)$ ， which is true by the convexity of \mathcal{F} ．

Inductive: I will prove if the inequality holds for $n=\frac{k}{2} \geq 2$ then it also holds for $n=\frac{k}{k}+1$.
if $n=k+1$, the left side:

$$
f\left(\sum_{i=1}^{k+1} t_{i} x_{i}\right)=f\left(\sum_{i=1}^{k} t_{i} x_{i}+t_{k+1} x_{k+1}\right)
$$

Let me set $1-t_{t+1}=a$
If $a=0\left(t_{t+1}=1\right)$, then other $t_{i}=0$, so the inequality is $\mathcal{J}\left(x_{k+1}\right) \leq \mathcal{J}\left(x_{k-1}\right)$, which is true.
If $a \neq 0$, since $a+t_{k+1}=1$ and f is a convex Junction,

$$
\begin{align*}
\mathcal{J}\left(\sum_{i=1}^{\hbar=1} t_{i} x_{i}\right) & =\mathcal{F}\left(a \cdot \sum_{i=1}^{k} \frac{t_{i}}{a} x_{i}+t_{k+1} x_{k+1}\right) \\
& \leq a \cdot \mathcal{J}\left(\sum_{i=1}^{\hbar} \frac{t_{i}}{a} x_{i}\right)+t_{k+1} \mathcal{J}\left(x_{i+1}\right) \tag{*}
\end{align*}
$$

also, since $\sum_{i=1}^{k} \frac{t_{i}}{a}=\frac{1-t_{z+1}}{1-t_{\bar{k}+1}}=1$, by the inductive hypothesis,

$$
\begin{aligned}
(*) & \leq a\left\{\sum_{i=1}^{\bar{k}} \frac{t_{i}}{a} f\left(x_{i}\right)\right\}+t_{k+1} f\left(x_{k+1}\right) \\
& =\sum_{i=1}^{k+1} t_{t} f\left(x_{\bar{i}}\right)
\end{aligned}
$$

Now, I can apply Jensen's inequality to prove the Lemma.

Set $f(x)=e^{x} \quad f$ is convex since $\frac{d^{2}}{d x^{2}} f=e^{x}>0$
Then for $\alpha, \dot{\beta} \in(0,1)$ with $\alpha+\beta=1$ ．the following inequality holds for all x_{1}, x_{2} ：

$$
e^{\alpha x_{1}+\beta x_{2}} \leq \alpha e^{x_{1}}+\beta e^{x_{2}}
$$

Set $x_{1}=\frac{1}{\alpha} \log a, x_{2}=\frac{1}{3} \log b \quad\left(a_{1} b \geq 0\right)$ ，I can get

$$
\begin{aligned}
a b & \leq \alpha e^{\frac{1}{\alpha} \log a}+\beta e^{\frac{1}{\beta} \log b} \\
& =\alpha a^{\frac{1}{\alpha}}+\beta b^{\frac{1}{\beta}}
\end{aligned}
$$

Red．美しき不等：゙の世界 佐藤漟郎（欯）

