The diameter of a bounded set is equal to its boundary in a normed space

Zhou Yifan

July 2023

Let $(E, \|\cdot\|)$ be a normed vector space, and let A be a non-empty bounded subset of E. The diameter of A is defined as the quantity

diam(A) = $\sup_{(x,y)\in A^2} d(x,y) = \sup_{(x,y)\in A^2} ||x-y|| \in \mathbb{R}^+ \cup \{+\infty\}$

We try to prove that $\operatorname{diam}(\partial A) = \operatorname{diam}(A)$.

Solution

We start by proving that \overline{A} and ∂A are bounded.

Since A is bounded, there exists M > 0 such that $\forall x \in A, ||x|| \leq M$.

Let $x \in \overline{A}$. There exists a sequence $(x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ such that $x_n \to x$ when $n \to \infty$. We then have, for all $n \in \mathbb{N}$:

 $||x|| \le ||x_n - x|| + ||x_n||$ where $||x_n - x|| \to 0$ when $n \to \infty$

Thus $||x|| \leq M$. Hence \overline{A} is bounded.

Since ∂A is included in \overline{A} , then ∂A is bounded.

Then we are going to show that $\operatorname{diam}(A) = \operatorname{diam}(\overline{A})$.

Since $A \subset \overline{A}$, we have diam $(A) \leq \text{diam}(\overline{A})$. Let $(x, y) \in (\overline{A})^2$. There exist sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ of elements of A such that $x_n \to x$ and $y_n \to y$. We then have, for all $n \in N$,

$$d(x, y) \le d(x, x_n) + d(x_n, y_n) + d(y_n, y).$$

Here, when $n \to \infty$, we have $d(x, x_n) \to 0$, $d(x_n, y_n) \leq \operatorname{diam}(A)$ and $d(y_n, y) \to 0$. Thus $d(x, y) \leq \operatorname{diam}(A)$. Finally, $\operatorname{diam}(\overline{A}) \leq \operatorname{diam}(A)$ and $\operatorname{diam}(\overline{A}) = \operatorname{diam}(A)$.

Since $\partial A \subset \overline{A}$ and diam $(A) = \text{diam}(\overline{A})$, we have diam $(\partial A) \leq \text{diam}(A)$. Now the only thing left is to prove that diam $(A) \leq \text{diam}(\partial A)$.

We start our last step by setting $x \in A$ and $u \in E \setminus \{0\}$. Consider the set $X_u = \{t \ge 0, x + t.u \in A\}$. Since A is bounded, there exists M > 0 such that $\forall y \in A, ||y|| \le M$. Let $t \in X_u$. We have

$$|t|||u|| = ||t.u|| \le ||x + t.u|| + ||x|| \le M + ||x||.$$

Thus $t \leq \frac{M + \|x\|}{\|u\|}$. Hence, X_u is a bounded subset of \mathbb{R} .

Moreover, X_u is non-empty because $0 \in X_u$. Thus $t_{x,u} = \sup X_u \in \mathbb{R}$ is well-defined.

How to show that $x + t_{x,u} \cdot u \in \partial A$?

For $n \in \mathbb{N}$, let $y_n = x + (t_{x,u} + \frac{1}{n})u$. By definition of $t_{x,u}, y_n \notin A$. We also have $y_n \to x + t_{x,u}.u$, so $x + t_{x,u}.u \in \overline{E \setminus A}$.

By definition of $t_{x,u}$, there exists a sequence $(t_n)_{n\in\mathbb{N}}\subset\mathbb{R}_+$ such that $t_n\to t_{x,u}$ and $x+t_n.u\in A$ for all $n\in\mathbb{N}$. We then have $x+t_n.u\to x+t_{x,u}.u$, so $x+t_{x,u}.u\in A$. $x+t_{x,u}.u\in\partial A$.

Let $(x, y) \in A^2$. We try to prove that there exist x' and y' related with x and y such that $x' \in \partial A$, $y' \in \partial A$, and $||x' - y'|| \ge ||x - y||$.

Let u = y - x. We then have $1 \in X_u$, so $t_{x,y-x} \ge 1$. We set $x' = x + t_{x,y-x}(y-x) \in \partial A$. Similarly, for y and u = x - y, we have $t_{y,x-y} \ge 1$ and we set $y' = y + t_{y,x-y}(x-y) \in \partial A$. We then have

$$||y' - x'|| = ||y + t_{y,x-y}(x-y) - x - t_{x,y-x}(y-x)|| = |t_{y,x-y} + t_{x,y-x} - 1|||x-y|| \ge ||x-y||.$$

Finally, we have almost arrived, We finished the proof by proving that $\operatorname{diam}(\partial A) = \operatorname{diam}(A)$.

By definition of the diameter, there exist sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ of elements of A such that $d(x_n, y_n) \to \operatorname{diam}(A)$ when $n \to \infty$.

According to the previous process, there also exist sequences $(x'_n)_{n\in\mathbb{N}}$ and $(y'_n)_{n\in\mathbb{N}}$ of elements of ∂A such that for all $n\in\mathbb{N}$, $d(x'_n,y'_n)\geq d(x_n,y_n)$.

For all $n \in \mathbb{N}$, we therefore have $d(x_n, y_n) \leq \operatorname{diam}(\partial A)$. By taking the limit, we obtain $\operatorname{diam}(A) \leq \operatorname{diam}(\partial A)$.

As diam $(\partial A) \leq \text{diam}(A)$, we finally obtain that diam $(\partial A) = \text{diam}(A)$.