The diameter of a bounded set is equal to its boundary in a normed space

Zhou Yifan

July 2023

Let $(E,\|\cdot\|)$ be a normed vector space, and let A be a non-empty bounded subset of E. The diameter of A is defined as the quantity

$$
\operatorname{diam}(A)=\sup _{(x, y) \in A^{2}} d(x, y)=\sup _{(x, y) \in A^{2}}\|x-y\| \in \mathbb{R}^{+} \cup\{+\infty\}
$$

We try to prove that $\operatorname{diam}(\partial A)=\operatorname{diam}(A)$.

Solution

We start by proving that \bar{A} and ∂A are bounded.
Since A is bounded, there exists $M>0$ such that $\forall x \in A,\|x\| \leq M$.
Let $x \in \bar{A}$. There exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ such that $x_{n} \rightarrow x$ when $n \rightarrow \infty$. We then have, for all $n \in \mathbb{N}$:

$$
\|x\| \leq\left\|x_{n}-x\right\|+\left\|x_{n}\right\| \quad \text { where } \quad\left\|x_{n}-x\right\| \rightarrow 0 \quad \text { when } \quad n \rightarrow \infty
$$

Thus $\|x\| \leq M$. Hence \bar{A} is bounded.
Since ∂A is included in \bar{A}, then ∂A is bounded.

Then we are going to show that $\operatorname{diam}(A)=\operatorname{diam}(\bar{A})$.
Since $A \subset \bar{A}$, we have $\operatorname{diam}(A) \leq \operatorname{diam}(\bar{A})$. Let $(x, y) \in(\bar{A})^{2}$. There exist sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ of elements of A such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. We then have, for all $n \in N$,

$$
d(x, y) \leq d\left(x, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y\right)
$$

Here, when $n \rightarrow \infty$, we have $d\left(x, x_{n}\right) \rightarrow 0, d\left(x_{n}, y_{n}\right) \leq \operatorname{diam}(A)$ and $d\left(y_{n}, y\right) \rightarrow 0$. Thus $d(x, y) \leq \operatorname{diam}(A)$. Finally, $\operatorname{diam}(\bar{A}) \leq \operatorname{diam}(A)$ and $\operatorname{diam}(\bar{A})=\operatorname{diam}(A)$.

Since $\partial A \subset \bar{A}$ and $\operatorname{diam}(A)=\operatorname{diam}(\bar{A})$, we have $\operatorname{diam}(\partial A) \leq \operatorname{diam}(A)$. Now the only thing left is to prove that $\operatorname{diam}(A) \leq \operatorname{diam}(\partial A)$.

We start our last step by setting $x \in A$ and $u \in E \backslash\{0\}$. Consider the set $X_{u}=\{t \geq 0, x+t . u \in A\}$. Since A is bounded, there exists $M>0$ such that $\forall y \in A,\|y\| \leq M$.

Let $t \in X_{u}$. We have

$$
|t|\|u\|=\|t . u\| \leq\|x+t . u\|+\|x\| \leq M+\|x\| .
$$

Thus $t \leq \frac{M+\|x\|}{\|u\|}$. Hence, X_{u} is a bounded subset of \mathbb{R}.
Moreover, X_{u} is non-empty because $0 \in X_{u}$. Thus $t_{x, u}=\sup X_{u} \in \mathbb{R}$ is well-defined.

How to show that $x+t_{x, u} \cdot u \in \partial A$?
For $n \in \mathbb{N}$, let $y_{n}=x+\left(t_{x, u}+\frac{1}{n}\right) u$. By definition of $t_{x, u}, y_{n} \notin A$. We also have $y_{n} \rightarrow x+t_{x, u}$.u, so $x+t_{x, u} \cdot u \in \overline{E \backslash A}$.

By definition of $t_{x, u}$, there exists a sequence $\left(t_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}_{+}$such that $t_{n} \rightarrow t_{x, u}$ and $x+t_{n} . u \in A$ for all $n \in \mathbb{N}$. We then have $x+t_{n} . u \rightarrow x+t_{x, u} . u$, so $x+t_{x, u} \cdot u \in A . x+t_{x, u} . u \in \partial A$.

Let $(x, y) \in A^{2}$. We try to prove that there exist x^{\prime} and y^{\prime} related with x and y such that $x^{\prime} \in \partial A$, $y^{\prime} \in \partial A$, and $\left\|x^{\prime}-y^{\prime}\right\| \geq\|x-y\|$.

Let $u=y-x$. We then have $1 \in X_{u}$, so $t_{x, y-x} \geq 1$. We set $x^{\prime}=x+t_{x, y-x}(y-x) \in \partial A$.
Similarly, for y and $u=x-y$, we have $t_{y, x-y} \geq 1$ and we set $y^{\prime}=y+t_{y, x-y}(x-y) \in \partial A$.
We then have

$$
\left\|y^{\prime}-x^{\prime}\right\|=\left\|y+t_{y, x-y}(x-y)-x-t_{x, y-x}(y-x)\right\|=\left|t_{y, x-y}+t_{x, y-x}-1\right|\|x-y\| \geq\|x-y\|
$$

Finally, we have almost arrived, We finished the proof by proving that $\operatorname{diam}(\partial A)=\operatorname{diam}(A)$.
By definition of the diameter, there exist sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ of elements of A such that $d\left(x_{n}, y_{n}\right) \rightarrow \operatorname{diam}(A)$ when $n \rightarrow \infty$.

According to the previous process, there also exist sequences $\left(x_{n}^{\prime}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}^{\prime}\right)_{n \in \mathbb{N}}$ of elements of ∂A such that for all $n \in \mathbb{N}, d\left(x_{n}^{\prime}, y_{n}^{\prime}\right) \geq d\left(x_{n}, y_{n}\right)$.

For all $n \in \mathbb{N}$, we therefore have $d\left(x_{n}, y_{n}\right) \leq \operatorname{diam}(\partial A)$. By taking the limit, we obtain $\operatorname{diam}(A) \leq$ $\operatorname{diam}(\partial A)$.

As $\operatorname{diam}(\partial A) \leq \operatorname{diam}(A)$, we finally obtain that $\operatorname{diam}(\partial A)=\operatorname{diam}(A)$.

