Prove a function to be Riemann integrable

Zhou Yifan

July 2023

Exercise 2.1.3. Consider the function $h:[0,10] \rightarrow \mathbb{R}$ defined by $h(x)=1$ if $x \in[\sqrt{2}, 2 \sqrt{2}]$ and $h(x)=0$ otherwise. By using regular partitions of $[0,10]$, show that the function h is Riemann integrable on $[0,10]$.

Solution

Let $n \in \mathbb{N}$ and define the regular partition $P_{n}=\left\{0,10 \frac{1}{n}, 10 \frac{2}{n}, \ldots, 10 \frac{n-1}{n}, 10\right\}$. We are tring to prove $\sup _{P} L\left(f, P_{n}\right)=\inf _{P} U\left(f, P_{n}\right)$.

When n is big enough, it is evident that $\sqrt{2}$ and $2 \sqrt{2}$ are not in the same interval $\left[\frac{10 i}{n}, \frac{10(i+1)}{n}\right]$. We can find two values of i, named respectively i_{1} and i_{2} with $0 \leq i_{1}+1 \leq i_{2} \leq n-1$, so that $h(x)=0$ for $x \in\left[0, \frac{10 i_{1}}{n}\right], \frac{10 i_{1}}{n} \leq \sqrt{2} \leq \frac{10\left(i_{1}+1\right)}{n}, h(x)=1$ for $x \in\left[\frac{10\left(i_{1}+1\right)}{n}, \frac{10 i_{2}}{n}\right], \frac{10 i_{2}}{n} \leq 2 \sqrt{2} \leq \frac{10\left(i_{2}+1\right)}{n}$ and $h(x)=0$ for $x \in\left[\frac{10\left(i_{2}+1\right)}{n}, 10\right]$.

Based on the supremum and the infimum of the values on each interval $\left[\frac{10 i}{n}, \frac{10(i+1)}{n}\right]$, we can calculate the lower and upper sums of f with respect to P_{n} :
$L\left(f, P_{n}\right)=\sum_{i=0}^{i_{1}-1} 0 \frac{10}{n}+\sum_{i=i_{1}}^{i_{1}} 0 \frac{10}{n}+\sum_{i=i_{1}+1}^{i_{2}-1} 1 \frac{10}{n}+\sum_{i=i_{2}}^{i_{2}} 0 \frac{10}{n}+\sum_{i=i_{2}+1}^{n-1} 0 \frac{10}{n}=\left(i_{2}-i_{1}-1\right) \frac{10}{n}=\frac{10\left(i_{2}-i_{1}-1\right)}{n}$
A similar calculation gives
$U\left(f, P_{n}\right)=\sum_{i=0}^{i_{1}-1} 0 \frac{10}{n}+\sum_{i=i_{1}}^{i_{1}} 1 \frac{10}{n}+\sum_{i=i_{1}+1}^{i_{2}-1} 1 \frac{10}{n}+\sum_{i=i_{2}}^{i_{2}} 1 \frac{10}{n}+\sum_{i=i_{2}+1}^{n-1} 0 \frac{10}{n}=\left(i_{2}-i_{1}+1\right) \frac{10}{n}=\frac{10\left(i_{2}-i_{1}+1\right)}{n}$
From $\frac{10 i_{1}}{n} \leq \sqrt{2} \leq \frac{10\left(i_{1}+1\right)}{n}$ and $\frac{10 i_{2}}{n} \leq 2 \sqrt{2} \leq \frac{10\left(i_{2}+1\right)}{n}$, so $\frac{10\left(i_{2}-i_{1}-1\right)}{n} \leq \sqrt{2} \leq \frac{10\left(i_{2}-i_{1}+1\right)}{n}$
This indicates that

$$
L\left(f, P_{n}\right)=\frac{10\left(i_{2}-i_{1}-1\right)}{n} \geq \sqrt{2}-\frac{20}{n}
$$

and

$$
U\left(f, P_{n}\right)=\frac{10\left(i_{2}-i_{1}+1\right)}{n} \leq \sqrt{2}+\frac{20}{n}
$$

We know that if P^{\prime} is a finer partition of $[a, b]$, meaning that $P \subset P^{\prime}\left(P^{\prime}\right.$ contains the points of
P and additional points, thus it contains more subdivisions of $[a, b]$), then one has

$$
L(f, P) \leq L\left(f, P^{\prime}\right) \leq U\left(f, P^{\prime}\right) \leq U(f, P) .
$$

As $n \rightarrow \infty$, we have $L\left(f, P_{n}\right) \rightarrow \sqrt{2}$ and $U\left(f, P_{n}\right) \rightarrow \sqrt{2}$, so $\sup _{P_{n}} L\left(f, P_{n}\right)=\inf _{P_{n}} U\left(f, P_{n}\right)=\sqrt{2}$.
From this it follows that h is Riemann integrable on $[0,10]$ and that the integral is $\sqrt{2}$.

