The Interior and Closure for a Set of Matrices of a Certain Rank

Zhou Yifan

June 2023

Here $K=\mathbb{R}$ or \mathbb{C}. We consider $M_{n}(K)$ equipped with a certain norm. We try to determine the interior and interior of:

$$
A=\left\{M \in M_{n}(K), \operatorname{rank}(M)=p\right\}, \text { where } 0 \leq p \leq n
$$

The interior

Let $M \in A$. From the Gaussian pivot algorithm, we know that M is equivalent to a diagonal matrix D with p times the number 1 on the diagonal.

$$
M=P \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] \cdot Q
$$

Let M_{ϵ} be defined by

$$
M=P \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \epsilon & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \epsilon
\end{array}\right] \cdot Q
$$

Then $\left\|M-M_{\epsilon}\right\| \leq\|P\| \times \epsilon \times\|Q\|$ and $M_{\epsilon} \in G L_{n}(\mathbb{R})$. Thus, for all $M \in A$ and all $\delta>0$, we have

$$
B O(M, \delta) \cap A^{c} \neq \emptyset
$$

Hence $M \notin A^{\circ}$. Thus, if $p \neq n$, we have $A^{\circ}=\emptyset$.
If $p=n$, then $A=\operatorname{det}^{-1}\left(\mathbb{R}^{*}\right)$, so A is open as the preimage of an open set by a continuous function.

The closure

Let M be a matrix of rank $k \leq p$. According to the Gauss elimination algorithm, we know that M is equivalent to a diagonal matrix D with k occurrences of the number 1 on the diagonal:

$$
M=P \cdot\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & \ddots & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right) \cdot Q
$$

Let $\epsilon>0$. We will add $(p-k)$ occurrences of the number ϵ on the diagonal. Let's define:

$$
M_{\epsilon}=P \cdot\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & \epsilon & \ldots & 0 \\
0 & 0 & 0 & \epsilon & 0 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right) \cdot Q
$$

Then, M_{ϵ} is of rank p and:

$$
\left\|M_{\epsilon}-M\right\| \leq\|P\| \cdot\left\|D_{\epsilon}-D\right\| \cdot\|Q\| \leq \epsilon \cdot\|P\| \cdot\|Q\|
$$

Therefore,

$$
\lim _{\epsilon \rightarrow 0} M_{\epsilon}=M
$$

and thus $M \in \bar{A}$.
Consequently, we have:

$$
\left\{M \in M_{n}(K), \operatorname{rank}(M) \leq p\right\} \subset \bar{A}
$$

Let us show that the set $\left\{M \in M_{n}(K), \operatorname{rank}(M) \leq p\right\}$ is a closed set. To do this, we will demonstrate that its complement $\left\{M \in M_{n}(K), \operatorname{rank}(M)>p\right\}$ is open.

Let M be a matrix of rank $k>p$. According to the Gauss elimination algorithm, we know that M is equivalent to a diagonal matrix D with k occurrences of the number 1 on the diagonal:

$$
M=P \cdot\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & \ddots & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right) \cdot Q
$$

Let $\epsilon>0$. We will consider the open ball $B O(M, \epsilon)$. Let $N \in B O(M, \epsilon)$, and let $D^{\prime}=P^{-1} \cdot N \cdot Q^{-1}$ so that $N=P \cdot D^{\prime} \cdot Q$. Then,

$$
\left\|D-D^{\prime}\right\|=\left\|P^{-1} \cdot(M-N) \cdot Q^{-1}\right\| \leq\left\|P^{-1}\right\| \cdot \epsilon \cdot\left\|Q^{-1}\right\|
$$

We have:

$$
D-D^{\prime}=\left(\begin{array}{ll}
D_{1} & D_{2} \\
D_{3} & D_{4}
\end{array}\right)
$$

Furthermore,

$$
\left\|D_{1}-I_{k}\right\| \leq\left\|D-D^{\prime}\right\| \leq\left\|P^{-1}\right\| \cdot \epsilon \cdot\left\|Q^{-1}\right\|
$$

By the continuity of the determinant, for sufficiently small ϵ, we have $\operatorname{det}\left(D_{1}\right)>0$. Thus, $\operatorname{Rank}(D-$ $\left.D^{\prime}\right) \geq k$, and therefore,

$$
B O(M, \epsilon) \subset\left\{M \in M_{n}(K), \operatorname{rank}(M)>p\right\}
$$

Thus, $\left\{M \in M_{n}(K), \operatorname{rank}(M)>p\right\}$ is an open set, and consequently,
$\left\{M \in M_{n}(K), \operatorname{rank}(M) \leq p\right\}$ is closed.
In conclusion, we have $\bar{A}=\left\{M \in M_{n}(K), \operatorname{rank}(M) \leq p\right\}$. In particular, this proves that $\mathrm{GL}_{n}(\mathbb{R})$ is dense in $M_{n}(\mathbb{R})$.

