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1 For n-dimensional array

Theorem

In Rn, we note: ∀x ∈ Rn, ∥x∥p = (|x1|p + |x2|p + . . .+ |xn|p)
1
p and ∥x∥∞ = max(|x1|, |x2|, . . . , |xn|). Thus,

∀x ∈ Rn, ∥x∥p −−−−→
p→+∞

∥x∥∞.

Proof

The result is evident for x = 0. Now we suppose x ∈ Rn a non-zero array. Then :

∀p > 1, ∥x∥p = ∥x∥∞
((

x1

∥x∥∞

)p

+

(
x2

∥x∥∞

)p

+ . . .+

(
xn

∥x∥∞

)p) 1
p

(1)

It is clear that there is a k in {1, 2, 3, ..., n} such that |xk| = ∥x∥∞ (xk is seen as the “dominant” one

among x1, x2, ..., xn). So we have:

1 ≤
((

x1

∥x∥∞

)p

+

(
x2

∥x∥∞

)p

+ . . .+

(
xn

∥x∥∞

)p) 1
p

≤ n
1
p (2)

As p → ∞, by using the squeeze theorem in the inequality, we obtain:

((
x1

∥x∥∞

)p

+

(
x2

∥x∥∞

)p

+ . . .+

(
xn

∥x∥∞

)p) 1
p

−−−−→
p→+∞

1 (3)

Using (1) and (3), we finally get:

∥x∥p −−−−→
p→+∞

∥x∥∞ (4)

2 For continuous functions defined in [0,1]

Theorem

In E = C0([0, 1],R), we note: ∀f ∈ E, ∥f∥p =
(∫ 1

0
|f(t)|pdt

) 1
p

and ∥f∥∞ = supt∈[0,1] |f(t)|. Thus,

∀f ∈ E, limp→+∞∥f∥p = ∥f∥∞.
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Proof

The result is evident for f = 0. Now we assume that f is a function that is not constantly zero. We have:

∀p > 1, ∥f∥p = ∥f∥∞
(∫ 1

0

(
|f(t)|
∥f∥∞

)p

dt

) 1
p

(5)

Suppose ϵ > 0. A continuous function on a closed and bounded interval attains its bounds, so there exists

t0 ∈ [0, 1] such that f(t0) = ∥f∥∞.

Firstly we study the general case, which means t0 ∈ (0, 1). As |f | is continue at t0, there thus exists η > 0

small enough such that |t− t0| < η ⇒
∣∣∣∣|f(t)| − |f(t0)|

∣∣∣∣ < ϵ.

So we have:

|t− t0| < η ⇒ |f(t)| > |f(t0)| − ϵ (6)

Then: (∫ t0+η

t0−η

(|f(t0)| − ϵ)
p
dt

) 1
p

≤
(∫ 1

0

(|f(t)|)p dt
) 1

p

(7)

Here,
(∫ t0+η

t0−η
(|f(t0)| − ϵ)

p
dt
) 1

p

= (2η)
1
p [(|f(t0)| − ϵ)

p
]
1
p = (2η)

1
p (|f(t0)| − ϵ). By dividing two sides by

|f(t0)|, we have:

(2η)
1
p

(
1− ϵ

∥f∥∞

)
≤

(∫ 1

0

(
|f(t)|
∥f∥∞

)p

dt

) 1
p

≤ 1 (8)

When t0 = 0 or t0 = 1, things are being slightly different. We try to reach the same inequality (8).

For t0 = 0, we still set η > 0 small enough (at least less than 1
2
) so we have

(∫ t0+η

t0
2[(|f(t0)| − ϵ)

p
]dt

) 1
p

≤(∫ 1

0
(|f(t)|)p dt

) 1
p

. Here,
(∫ t0+η

t0
2[(|f(t0)| − ϵ)

p
]dt

) 1
p

= (2η)
1
p [(|f(t0)| − ϵ)

p
]
1
p = (2η)

1
p (|f(t0)| − ϵ) and we get

the inequality (8) again. The proof is similar for t0 = 1. Therefore, the inequality (8) holds for all possible

values of t0.

It is clear that (2η)
1
p → 1 when p → ∞, so there exists P ∈ N such that p ≥ P ⇒

∣∣∣(2η) 1
p − 1

∣∣∣ < ϵ.

Substituting this into the inequality (8), we have:

∀p ≥ P, (1− ϵ)

(
1− ϵ

∥f∥∞

)
≤

(∫ 1

0

(
|f(t)|
∥f∥∞

)p

dt

) 1
p

≤ 1 (9)

This shows that:

∀p ≥ P, 1− ϵ

(
1 +

1

∥f∥∞

)
≤

(∫ 1

0

(
|f(t)|
∥f∥∞

)p

dt

) 1
p

≤ 1 (10)

Finally, we get: (∫ 1

0

(
|f(t)|
∥f∥∞

)p

dt

) 1
p

−−−−→
p→+∞

1 (11)

We conclude that:

∥f∥p −−−−→
p→+∞

∥f∥∞ (12)
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