The convergence of L^p norm to L^∞ norm for n-dimensional arrays and continuous functions defined in [0,1]

Zhou Yifan

June 2023

1 For n-dimensional array

Theorem

In \mathbb{R}^n , we note: $\forall x \in \mathbb{R}^n$, $\|x\|_p = (|x_1|^p + |x_2|^p + \ldots + |x_n|^p)^{\frac{1}{p}}$ and $\|x\|_{\infty} = \max(|x_1|, |x_2|, \ldots, |x_n|)$. Thus, $\forall x \in \mathbb{R}^n, \|x\|_p \xrightarrow[p \to +\infty]{} \|x\|_{\infty}$.

Proof

The result is evident for x = 0. Now we suppose $x \in \mathbb{R}^n$ a non-zero array. Then :

$$\forall p > 1, \|x\|_p = \|x\|_{\infty} \left(\left(\frac{x_1}{\|x\|_{\infty}} \right)^p + \left(\frac{x_2}{\|x\|_{\infty}} \right)^p + \dots + \left(\frac{x_n}{\|x\|_{\infty}} \right)^p \right)^{\frac{1}{p}}$$
(1)

It is clear that there is a k in $\{1, 2, 3, ..., n\}$ such that $|x_k| = ||x||_{\infty}$ (x_k is seen as the "dominant" one among $x_1, x_2, ..., x_n$). So we have:

$$1 \le \left(\left(\frac{x_1}{\|x\|_{\infty}} \right)^p + \left(\frac{x_2}{\|x\|_{\infty}} \right)^p + \ldots + \left(\frac{x_n}{\|x\|_{\infty}} \right)^p \right)^{\frac{1}{p}} \le n^{\frac{1}{p}}$$
(2)

As $p \to \infty$, by using the squeeze theorem in the inequality, we obtain:

$$\left(\left(\frac{x_1}{\|x\|_{\infty}}\right)^p + \left(\frac{x_2}{\|x\|_{\infty}}\right)^p + \ldots + \left(\frac{x_n}{\|x\|_{\infty}}\right)^p\right)^{\frac{1}{p}} \xrightarrow[p \to +\infty]{} 1$$
(3)

Using (1) and (3), we finally get:

$$\|x\|_p \xrightarrow[p \to +\infty]{} \|x\|_{\infty} \tag{4}$$

2 For continuous functions defined in [0,1]

Theorem

In $E = C^0([0,1],\mathbb{R})$, we note: $\forall f \in E, \|f\|_p = \left(\int_0^1 |f(t)|^p dt\right)^{\frac{1}{p}}$ and $\|f\|_{\infty} = \sup_{t \in [0,1]} |f(t)|$. Thus, $\forall f \in E, \lim_{p \to +\infty} \|f\|_p = \|f\|_{\infty}$.

Proof

The result is evident for f = 0. Now we assume that f is a function that is not constantly zero. We have:

$$\forall p > 1, \|f\|_p = \|f\|_{\infty} \left(\int_0^1 \left(\frac{|f(t)|}{\|f\|_{\infty}} \right)^p dt \right)^{\frac{1}{p}}$$
(5)

Suppose $\epsilon > 0$. A continuous function on a closed and bounded interval attains its bounds, so there exists $t_0 \in [0, 1]$ such that $f(t_0) = ||f||_{\infty}$.

Firstly we study the general case, which means $t_0 \in (0, 1)$. As |f| is continue at t_0 , there thus exists $\eta > 0$ small enough such that $|t - t_0| < \eta \Rightarrow ||f(t)| - |f(t_0)|| < \epsilon$.

So we have:

$$|t - t_0| < \eta \Rightarrow |f(t)| > |f(t_0)| - \epsilon \tag{6}$$

Then:

$$\left(\int_{t_0-\eta}^{t_0+\eta} \left(|f(t_0)| - \epsilon\right)^p dt\right)^{\frac{1}{p}} \le \left(\int_0^1 \left(|f(t)|\right)^p dt\right)^{\frac{1}{p}}$$
(7)

Here, $\left(\int_{t_0-\eta}^{t_0+\eta} (|f(t_0)|-\epsilon)^p dt\right)^{\frac{1}{p}} = (2\eta)^{\frac{1}{p}} [(|f(t_0)|-\epsilon)^p]^{\frac{1}{p}} = (2\eta)^{\frac{1}{p}} (|f(t_0)|-\epsilon)$. By dividing two sides by $|f(t_0)|$, we have:

$$(2\eta)^{\frac{1}{p}} \left(1 - \frac{\epsilon}{\|f\|_{\infty}}\right) \le \left(\int_0^1 \left(\frac{|f(t)|}{\|f\|_{\infty}}\right)^p dt\right)^{\frac{1}{p}} \le 1$$
(8)

When $t_0 = 0$ or $t_0 = 1$, things are being slightly different. We try to reach the same inequality (8). For $t_0 = 0$, we still set $\eta > 0$ small enough (at least less than $\frac{1}{2}$) so we have $\left(\int_{t_0}^{t_0+\eta} 2[(|f(t_0)|-\epsilon)^p]dt\right)^{\frac{1}{p}} \leq \left(\int_0^1 (|f(t)|)^p dt\right)^{\frac{1}{p}}$. Here, $\left(\int_{t_0}^{t_0+\eta} 2[(|f(t_0)|-\epsilon)^p]dt\right)^{\frac{1}{p}} = (2\eta)^{\frac{1}{p}}[(|f(t_0)|-\epsilon)^p]^{\frac{1}{p}} = (2\eta)^{\frac{1}{p}}(|f(t_0)|-\epsilon)$ and we get the inequality (8) again. The proof is similar for $t_0 = 1$. Therefore, the inequality (8) holds for all possible values of t_0 .

It is clear that $(2\eta)^{\frac{1}{p}} \to 1$ when $p \to \infty$, so there exists $P \in \mathbb{N}$ such that $p \ge P \Rightarrow \left| (2\eta)^{\frac{1}{p}} - 1 \right| < \epsilon$. Substituting this into the inequality (8), we have:

$$\forall p \ge P, (1-\epsilon) \left(1 - \frac{\epsilon}{\|f\|_{\infty}}\right) \le \left(\int_0^1 \left(\frac{|f(t)|}{\|f\|_{\infty}}\right)^p dt\right)^{\frac{1}{p}} \le 1$$
(9)

This shows that:

$$\forall p \ge P, 1 - \epsilon \left(1 + \frac{1}{\|f\|_{\infty}}\right) \le \left(\int_0^1 \left(\frac{|f(t)|}{\|f\|_{\infty}}\right)^p dt\right)^{\frac{1}{p}} \le 1 \tag{10}$$

Finally, we get:

$$\left(\int_{0}^{1} \left(\frac{|f(t)|}{\|f\|_{\infty}}\right)^{p} dt\right)^{\frac{1}{p}} \xrightarrow[p \to +\infty]{} 1$$
(11)

We conclude that:

$$\|f\|_p \xrightarrow[p \to +\infty]{} \|f\|_{\infty} \tag{12}$$