The convergence of L^{p} norm to L^{∞} norm for n-dimensional arrays and continuous functions defined in $[0,1]$

Zhou Yifan

June 2023

1 For n-dimensional array

Theorem

In \mathbb{R}^{n}, we note: $\forall x \in \mathbb{R}^{n},\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}$ and $\|x\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)$. Thus, $\forall x \in \mathbb{R}^{n},\|x\|_{p} \xrightarrow[p \rightarrow+\infty]{ }\|x\|_{\infty}$.

Proof
The result is evident for $x=0$. Now we suppose $x \in \mathbb{R}^{n}$ a non-zero array. Then :

$$
\begin{equation*}
\forall p>1,\|x\|_{p}=\|x\|_{\infty}\left(\left(\frac{x_{1}}{\|x\|_{\infty}}\right)^{p}+\left(\frac{x_{2}}{\|x\|_{\infty}}\right)^{p}+\ldots+\left(\frac{x_{n}}{\|x\|_{\infty}}\right)^{p}\right)^{\frac{1}{p}} \tag{1}
\end{equation*}
$$

It is clear that there is a k in $\{1,2,3, \ldots, n\}$ such that $\left|x_{k}\right|=\|x\|_{\infty}\left(x_{k}\right.$ is seen as the "dominant" one among $\left.x_{1}, x_{2}, \ldots, x_{n}\right)$. So we have:

$$
\begin{equation*}
1 \leq\left(\left(\frac{x_{1}}{\|x\|_{\infty}}\right)^{p}+\left(\frac{x_{2}}{\|x\|_{\infty}}\right)^{p}+\ldots+\left(\frac{x_{n}}{\|x\|_{\infty}}\right)^{p}\right)^{\frac{1}{p}} \leq n^{\frac{1}{p}} \tag{2}
\end{equation*}
$$

As $p \rightarrow \infty$, by using the squeeze theorem in the inequality, we obtain:

$$
\begin{equation*}
\left(\left(\frac{x_{1}}{\|x\|_{\infty}}\right)^{p}+\left(\frac{x_{2}}{\|x\|_{\infty}}\right)^{p}+\ldots+\left(\frac{x_{n}}{\|x\|_{\infty}}\right)^{p}\right)^{\frac{1}{p}} \xrightarrow[p \rightarrow+\infty]{ } 1 \tag{3}
\end{equation*}
$$

Using (1) and (3), we finally get:

$$
\begin{equation*}
\|x\|_{p} \xrightarrow[p \rightarrow+\infty]{ }\|x\|_{\infty} \tag{4}
\end{equation*}
$$

2 For continuous functions defined in [0,1]

Theorem

In $E=C^{0}([0,1], \mathbb{R})$, we note: $\forall f \in E,\|f\|_{p}=\left(\int_{0}^{1}|f(t)|^{p} d t\right)^{\frac{1}{p}}$ and $\|f\|_{\infty}=\sup _{t \in[0,1]}|f(t)|$. Thus, $\forall f \in E, \lim _{p \rightarrow+\infty}\|f\|_{p}=\|f\|_{\infty}$.

Proof

The result is evident for $f=0$. Now we assume that f is a function that is not constantly zero. We have:

$$
\begin{equation*}
\forall p>1,\|f\|_{p}=\|f\|_{\infty}\left(\int_{0}^{1}\left(\frac{|f(t)|}{\|f\|_{\infty}}\right)^{p} d t\right)^{\frac{1}{p}} \tag{5}
\end{equation*}
$$

Suppose $\epsilon>0$. A continuous function on a closed and bounded interval attains its bounds, so there exists $t_{0} \in[0,1]$ such that $f\left(t_{0}\right)=\|f\|_{\infty}$.

Firstly we study the general case, which means $t_{0} \in(0,1)$. As $|f|$ is continue at t_{0}, there thus exists $\eta>0$ small enough such that $\left|t-t_{0}\right|<\eta \Rightarrow| | f(t)\left|-\left|f\left(t_{0}\right)\right|\right|<\epsilon$.

So we have:

$$
\begin{equation*}
\left|t-t_{0}\right|<\eta \Rightarrow|f(t)|>\left|f\left(t_{0}\right)\right|-\epsilon \tag{6}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\left(\int_{t_{0}-\eta}^{t_{0}+\eta}\left(\left|f\left(t_{0}\right)\right|-\epsilon\right)^{p} d t\right)^{\frac{1}{p}} \leq\left(\int_{0}^{1}(|f(t)|)^{p} d t\right)^{\frac{1}{p}} \tag{7}
\end{equation*}
$$

Here, $\left(\int_{t_{0}-\eta}^{t_{0}+\eta}\left(\left|f\left(t_{0}\right)\right|-\epsilon\right)^{p} d t\right)^{\frac{1}{p}}=(2 \eta)^{\frac{1}{p}}\left[\left(\left|f\left(t_{0}\right)\right|-\epsilon\right)^{p}\right]^{\frac{1}{p}}=(2 \eta)^{\frac{1}{p}}\left(\left|f\left(t_{0}\right)\right|-\epsilon\right)$. By dividing two sides by $\left|f\left(t_{0}\right)\right|$, we have:

$$
\begin{equation*}
(2 \eta)^{\frac{1}{p}}\left(1-\frac{\epsilon}{\|f\|_{\infty}}\right) \leq\left(\int_{0}^{1}\left(\frac{|f(t)|}{\|f\|_{\infty}}\right)^{p} d t\right)^{\frac{1}{p}} \leq 1 \tag{8}
\end{equation*}
$$

When $t_{0}=0$ or $t_{0}=1$, things are being slightly different. We try to reach the same inequality (8). For $t_{0}=0$, we still set $\eta>0$ small enough (at least less than $\frac{1}{2}$) so we have $\left(\int_{t_{0}}^{t_{0}+\eta} 2\left[\left(\left|f\left(t_{0}\right)\right|-\epsilon\right)^{p}\right] d t\right)^{\frac{1}{p}} \leq$ $\left(\int_{0}^{1}(|f(t)|)^{p} d t\right)^{\frac{1}{p}}$. Here, $\left(\int_{t_{0}}^{t_{0}+\eta} 2\left[\left(\left|f\left(t_{0}\right)\right|-\epsilon\right)^{p}\right] d t\right)^{\frac{1}{p}}=(2 \eta)^{\frac{1}{p}}\left[\left(\left|f\left(t_{0}\right)\right|-\epsilon\right)^{p}\right]^{\frac{1}{p}}=(2 \eta)^{\frac{1}{p}}\left(\left|f\left(t_{0}\right)\right|-\epsilon\right)$ and we get the inequality (8) again. The proof is similar for $t_{0}=1$. Therefore, the inequality (8) holds for all possible values of t_{0}.

It is clear that $(2 \eta)^{\frac{1}{p}} \rightarrow 1$ when $p \rightarrow \infty$, so there exists $P \in \mathbb{N}$ such that $p \geq P \Rightarrow\left|(2 \eta)^{\frac{1}{p}}-1\right|<\epsilon$. Substituting this into the inequality (8), we have:

$$
\begin{equation*}
\forall p \geq P,(1-\epsilon)\left(1-\frac{\epsilon}{\|f\|_{\infty}}\right) \leq\left(\int_{0}^{1}\left(\frac{|f(t)|}{\|f\|_{\infty}}\right)^{p} d t\right)^{\frac{1}{p}} \leq 1 \tag{9}
\end{equation*}
$$

This shows that:

$$
\begin{equation*}
\forall p \geq P, 1-\epsilon\left(1+\frac{1}{\|f\|_{\infty}}\right) \leq\left(\int_{0}^{1}\left(\frac{|f(t)|}{\|f\|_{\infty}}\right)^{p} d t\right)^{\frac{1}{p}} \leq 1 \tag{10}
\end{equation*}
$$

Finally, we get:

$$
\begin{equation*}
\left(\int_{0}^{1}\left(\frac{|f(t)|}{\|f\|_{\infty}}\right)^{p} d t\right)^{\frac{1}{p}} \xrightarrow[p \rightarrow+\infty]{ } 1 \tag{11}
\end{equation*}
$$

We conclude that:

$$
\begin{equation*}
\|f\|_{p} \xrightarrow[p \rightarrow+\infty]{ }\|f\|_{\infty} \tag{12}
\end{equation*}
$$

