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Theorem (Hölder inequality in n-dimensional euclidean space with counting measure). For

the n-dimensional Euclidean space, when the set S is {1, . . . , n} with the counting measure, we have

⇒
n∑

k=1

akbk ≤

(
n∑

k=1

apk

) 1
p
(

n∑
k=1

bqk

) 1
q

for all (a1, . . . , an), (b1, . . . , bn) ∈ (R+)
2n
.

We start our proof by introducing a lemma.

Lemma (Inequality of Discrete Convexity). Let f : I → R be a convex function, and let

(n1, . . . , nn) ∈ In and (λ1, . . . , λn) ∈ (R+)n such that
∑n

k=1 λk > 0. Then, f
(

1∑n
k=1 λk

(
∑n

k=1 λkxk)
)

≤

1∑n
k=1 λk

(∑n
k=1 λkf(xk)

)
We can also say that, the image of a barycenter with positive coefficients is less than or equal to the

barycenter of the images.

We now prove this lemma by recurrence on n and associativity of the barycenter.

Initialization: For n = 2, it is the definition of convexity [Definition: for any (a, b) ∈ I2 and any t ∈ [0, 1],

f

(
(1− t)a+ tb

)
≤ (1− t)f(a) + tf(b)] where t = λ2

λ1+λ2
.

Induction: Assume the proposition holds for rank n and take n+ 1 values (x1, . . . , xn+1) in I and n+ 1

positive real numbers λ1, . . . , λn+1 such that
∑n+1

k=1 λk > 0. If
∑n

k=1 λk = 0, then all λk are zero except λn+1,

and the result is immediate. Otherwise, we have:

1∑n+1
k=1 λk

(

n+1∑
k=1

λkxk) = (1− λn+1∑n+1
k=1 λk

)(
1∑n

k=1 λk

n∑
k=1

λkxk) +
λn+1∑n+1
k=1 λk

xn+1

The convexity of f gives us:

f

(
1∑n+1

k=1 λk

(
n+1∑
k=1

λkxk)

)
≤
(
1− λn+1∑n+1

k=1 λk

)
f

(
1∑n

k=1 λk

n∑
k=1

λkxk

)
+

λn+1∑n+1
k=1 λk

f(xn+1)

It remains to use the hypothesis of recurrence to bound the term f

(
1∑n

k=1 λk
(
∑n

k=1 λkxk)

)
by 1∑n

k=1 λk

(∑n
k=1 λkf(xk)

)
.

Therefore, the lemma is correct.
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Proof of Hölder inequality in n-dimensional euclidean space with counting measure:

We have now proven the inequality of discrete convexity. Now, based on the inequality of discrete

convexity, we use the convexity of the function r 7→ rp and take λkxk = akbk, λk = bqk and λkx
p
k = apk.

This gives us, when bk ̸= 0:

λk = bqk and xk =
akbk
bqk

As 1
p
+ 1

q
= 1, we thus easily verify the third relation:

λkx
p
k = bqk(

akbk
bqk

)p = bq+p−pq
k apk = apk

By substituting these items into the inequality of discrete convexity [Recall: f
(

1∑n
k=1 λk

(
∑n

k=1 λkxk)
)
≤

1∑n
k=1 λk

(∑n
k=1 λkf(xk)

)
]:

f

(
1∑n

k=1 λk

(

n∑
k=1

λkxk)

)
≤ 1∑n

k=1 λk

( n∑
k=1

λkf(xk)

)

⇒

(
1∑n

k=1 b
q
k

(
n∑

k=1

akbk)

)p

≤ 1∑n
k=1 b

q
k

( n∑
k=1

apk

)

⇒

(
n∑

k=1

bqk

)−p( n∑
k=1

akbk

)p

≤

(
n∑

k=1

bqk

)−1( n∑
k=1

apk

)

⇒

(
n∑

k=1

akbk

)p

≤

(
n∑

k=1

bqk

)p−1( n∑
k=1

apk

)

⇒
n∑

k=1

akbk ≤

(
n∑

k=1

bqk

)1− 1
p ( n∑

k=1

apk

) 1
p

As 1− 1
p
= 1

q
, we finally have:

⇒
n∑

k=1

akbk ≤

(
n∑

k=1

apk

) 1
p
(

n∑
k=1

bqk

) 1
q

This ends our proof.
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