Equivalence Relation defined by Equality Almost Everywhere

Yam

May 27, 2023

1 Introduction

In this report, I show that $f=g \quad a . e$ is an equivalence relation, namely it is reflexive, symmetric, and transitive.

2 Proof

1. Reflexivity Trivially, $f=f$ everywhere, and so

$$
m(\{x \mid f(x) \neq f(x)\})=m(\emptyset)=0
$$

2. Symmetry We assume that $f \sim g$ which means

$$
m(\{x \mid f(x) \neq g(x)\})=0
$$

but by the symmetric property of the normal equality, we have

$$
m(\{x \mid g(x) \neq f(x)\})=0
$$

and this implies $g \sim f$.
3. Transitivity We assume that $f \sim g$ and $g \sim h$.

It is difficult to work with the inequation, so instead we use the complement.

$$
\begin{aligned}
\{x \mid f(x) \neq h(x)\} & =\{x \mid f(x)=h(x)\}^{C} \\
& \subseteq\{x \mid f(x)=g(x) \wedge g(x)=h(x)\}^{C} \\
& =\{x \mid f(x) \neq g(x) \vee g(x) \neq h(x)\} \\
& =\{x \mid f(x) \neq g(x)\} \cup\{x \mid g(x) \neq h(x)\}
\end{aligned}
$$

Then from this, we have that

$$
m(\{x \mid f(x) \neq h(x)\}) \leq m(\{x \mid f(x) \neq g(x)\})+m(\{x \mid g(x) \neq h(x)\})=0
$$

and this implies $f \sim h$.
Q E D

