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This document will show the method of proving the convergence of a sequence of distributions (Tj)j∈N ⊂ D′(Rn)
to a certain distribution T∞ ∈ D′(Rn). To this end, the proofs of Exercise 1.3.8. will be provided, and a
result essential to Exercise 1.3.9 will be given. First, the definition of convergence in D′(Rn):

Definition 1.3.4 (Convergence in D′(Rn))

A sequence (Tj)j∈N ⊂ D′(Rn) of distributions converges to T∞ ∈ D′(Rn) if limj→∞ Tj(f) = T∞(f) for
all f ∈ D(Rn). In this case, we write Tj → T∞ in D′(Rn) as j → ∞.

1 Proof of Exercise 1.3.8

Exercise 1.3.8

Consider h : Rn → K satisfying
∫
Rn |h(X)| dX < ∞, and assume that

∫
Rn h(X) dX = 1. For j ∈ N,

set hj(X) := jnh(jX). then, prove that Thj
→ δ0 in D′(Rn) as j → ∞. Equivalently, for ε > 0 one

often sets hε(X) := 1
εn h

(
X
ε

)
in D′(Rn) as ε ↘ 0.

While the two statements are generally equivalent, both can be proven independently.

1.1 Proof of convergence of Thj
to δ0 in D′(Rn) as j → ∞

Let ε > 0 (for the purposes of proving convergence) be arbitrarily given.

Observe that:
1 =

∫
h(X) dX ≤

∫
|h(X)| dX < ∞.

As such, for any f ∈ D(Rn), fix r > 0
(
and set Kr := Rn\Br(0)

)
such that

∥f∥∞

∫
Kr

|h(X)| dX <
ε

4 . (r)

f is a test function, so it is continuous. Therefore, there exists J such that for any j ≥ J and r fixed in (r):

sup
U∈Br (0)

∣∣∣∣f (
U

j

)
− f(0)

∣∣∣∣ ≤ ε

2
∫

Br (0) |h(X)| dX
. (rr)

By definition of Th and hj(X), and setting U := jX one has:

Thj
(f) =

∫
Rn

jnh(jX)f(X) dX =
∫
Rn

h(U)f
(

U

j

)
dU.

For r and J fixed in (r) and (rr), respectively, one has:

∣∣Thj (f) − f(0)
∣∣ =

∣∣∣∣∫
Rn

f

(
U

j

)
h(U) dU −

∫
Rn

f(0)h(U) dU

∣∣∣∣
=

∣∣∣∣∣
∫

Br (0)
h(U)

[
f

(
U

j

)
− f(0)

]
dU −

∫
Kr

h(U)
[
f

(
U

j

)
− f(0)

]
dU

∣∣∣∣∣
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≤

∣∣∣∣∣
∫

Br (0)
h(U)

[
f

(
U

j

)
− f(0)

]
dU

∣∣∣∣∣ +
∣∣∣∣∫

Kr

h(U)
[
f

(
U

j

)
− f(0)

]
dU

∣∣∣∣
≤ sup

U∈Br (0)

∣∣∣∣f (
U

j

)
− f(0)

∣∣∣∣ ·
∫

Br (0)
|h(X)| dX + 2 ∥f∥∞

∫
Kr

|h(X)| dX.

By the choice of r and J above, one has for j ≥ J :∣∣Thj
(f) − f(0)

∣∣ ≤ ε

2
∫

Br (0) |h(X)| dX
·
∫

Br (0)
|h(X)| dX + 2 · ε

4 = ε.

This is exactly the definition of convergence of Thj
(f) → f(0) in K as j → ∞ and for any f ∈ D(Rn). As

such, by the definition of convergence of distributions, one concludes that Thj
→ δ0 in D′(Rn) as j → ∞. □

1.2 Proof of convergence of Thε to δ0 in D′(Rn) as ε ↘ 0
The proof of this statement is nearly identical to the previous statement, with minimal differ-
ences. Therefore, this subsection can be skipped if deemed to be not necessary.

Let ε′ > 0 (for the purposes of proving convergence) be arbitrarily given.

Observe that:
1 =

∫
h(X) dX ≤

∫
|h(X)| dX < ∞.

As such, for any f ∈ D(Rn), fix r > 0
(
and set Kr := Rn\Br(0)

)
such that

∥f∥∞

∫
Kr

|h(X)| dX <
ε′

4 . (r)

f is a test function, so it is continuous. Therefore, there exists ε0 such that for the fixed r and any ε ≤ ε0,

sup
U∈Br (0)

|f (Uε) − f(0)| ≤ ε′

2
∫

Br (0) |h(X)| dX
. (rr)

By definition of Th and hε(X), and setting U := X
ε one has:

Thε(f) =
∫
Rn

1
εn

h

(
X

ε

)
f(X) dX =

∫
Rn

h(U)f (Uε) dU.

For r and ε0 fixed in (r) and (rr), respectively, one has:

|Thε
(f) − f(0)| =

∣∣∣∣∫
Rn

f (Uε) h(U) dU −
∫
Rn

f(0)h(U) dU

∣∣∣∣
=

∣∣∣∣∣
∫

Br (0)
h(U) [f (Uε) − f(0)] dU −

∫
Kr

h(U) [f (Uε) − f(0)] dU

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Br (0)
h(U) [f (Uε) − f(0)] dU

∣∣∣∣∣ +
∣∣∣∣∫

Kr

h(U) [f (Uε) − f(0)] dU

∣∣∣∣
≤ sup

U∈Br (0)
|f (Uε) − f(0)| ·

∫
Br (0)

|h(X)| dX + 2 ∥f∥∞

∫
Kr

|h(X)| dX.

By the choice of r and ε0 above, one has for ε ≤ ε0:

|Thε(f) − f(0)| ≤ ε′

2
∫

Br (0) |h(X)| dX
·
∫

Br (0)
|h(X)| dX + 2 · ε′

4 = ε′.

This is exactly the definition of convergence of Thε
(f) → f(0) in K as ε ↘ 0 and for any f ∈ D(Rn). As such,

by the definition of convergence of distributions, one concludes that Thε
→ δ0 in D′(Rn) as ε ↘ 0. □
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2 Evaluating the Improper Integral
∫ ∞

−∞

sin(x)
x

dx

This result is essential to Exercise 1.3.9. (although, the proof of said exercise is not included in this document).

This proof uses elements of complex analysis. For those not familiar with complex analysis,
please look up the required terms and/or results if necessary.

Consider a contour C in the complex plane formed by a semicircle of radius R, albeit with a smaller semicircle
of radius ε taken out from it, as illustrated in the picture below:

Mathematically, it can be written as the union of four paths, defined by:

Lε =
{

Reit | 0 ≤ t ≤ π
}

,

L1 = {t | −R ≤ t ≤ −ε} ,

LR =
{

εe−it | π ≤ t ≤ 2π
}

,

L2 = {t | ε ≤ t ≤ R} .

As such, one writes
C = Lε ∪ L2 ∪ LR ∪ L1.

One important result in Complex Analysis is:

Cauchy’s Theorem (also called Cauchy’s Integral Theorem)

For any function f that is holomorphic in a simply connected domain Ω ⊆ C and any closed contour
C in Ω, the contour integral of f along C is zero. In mathematical terms,∮

C

f(z) dz = 0

Set Ω to be the closed subset of C that is bounded by (and including) the (closed) contour C. As Ω can be
compressed to a single point, it is simply connected. Then, consider a function C→ C defined by

f(z) = eiz

z
.
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This function has a singularity at z = 0 (i.e. has a pole at z = 0, so is not well-defined), but is well-defined
and continuous elsewhere. By construction, Ω does not contain the point z = 0, so f is holomorphic on Ω.

Therefore, by Cauchy’s Theorem,∮
C

f(z) dz =
∫

Lε

f(z) dz +
∫

L2

f(z) dz +
∫

LR

f(z) dz +
∫

L1

f(z) dz = 0 (Ca)

Note that the entire real line R can be viewed as the limit of the union of L1 and L2 as ε ↘ 0 and R → ∞.

First, consider the modulus of the integral of f(z) along LR (use substitution z = Reit along LR):∣∣∣∣∫
LR

f(z)
z

dz

∣∣∣∣ =

∣∣∣∣∣
∫ π

0

exp
(
iReit

)
Reit

dz

dt
dt

∣∣∣∣∣
=

∣∣∣∣∫ π

0

exp (i · (R cos t + i sin t))
Reit

· iReit dt

∣∣∣∣
=

∣∣∣∣i ∫ π

0
exp (iR cos t) exp (−R sin t) dt

∣∣∣∣ .

Since any number of the form exp(ix) has modulus 1 (and that i is also of modulus 1), one has:∣∣∣∣∫
LR

f(z)
z

dz

∣∣∣∣ =
∫ π

0
exp (−R sin t) dt = 2

∫ π/2

0
exp (−R sin t) dt.

The modulus value can be removed since this is now simply an integral of one (real) variable, and is always
positive over the values of t (exp is a strictly positive function). The second equality is due to the trigonometric
identity sin(t) = sin

(
π
2 − t

)
. By observing that for 0 ≤ t ≤ π

2 , sin(t) ≥ 2t
π and setting u = −2Rt

π , one obtains:∣∣∣∣∫
LR

f(z)
z

dz

∣∣∣∣ ≤
∫ π/2

0
exp

(
−2Rt

π

)
dt = 2

∫ −R

0

−π

2R
exp(u) du

= π

R

∫ 0

−R

exp(u) du = π

R

(
1 − e−R

)
.

Taking the limit as R → ∞ one observes that:

lim
R→∞

∣∣∣∣∫
LR

f(z)
z

dz

∣∣∣∣ ≤ lim
R→∞

π

R

(
1 − e−R

)
= 0.

The only number in C with modulus 0 is 0, so one concludes that the integral along LR goes to 0 as R → ∞.
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Next, consider the integral of f(z) along Lε (make the substitution z = εeit):∫
Lε

f(z)
z

dz =
∫ 2π

π

exp
(
iεe−it

)
εe−it

· −iεe−it dt = −i

∫ 2π

π

exp
(
iεe−it

)
dt.

Taking the limit as ε ↘ 0 and by an application of the dominated convergence theorem, one obtains:

lim
ε↘0

∫
Lε

f(z)
z

dz = −i

∫ 2π

π

lim
ε↘0

exp
(
−εeit

)
dt = −i

∫ 2π

π

1 dt = −iπ.

Taking the limit as ε ↘ 0 and R → ∞ of Equation (Ca) one obtains:

lim
ε↘0

R→∞

[∫
L2

f(z) dz +
∫

L1

f(z) dz

]
− iπ = 0.

For z in the real line R, one can write the above equation as:

lim
ε↘0

R→∞

[∫ −ε

−R

cos(z) + i sin(z)
z

dz +
∫ R

ε

cos(z) + i sin(z)
z

dz

]
= iπ.

Separating the real and imaginary parts one obtains the following two equations:

lim
ε↘0

R→∞

[∫ −ε

−R

cos(z)
z

dz +
∫ R

ε

cos(z)
z

dz

]
= 0.

lim
ε↘0

R→∞

[∫ −ε

−R

sin(z)
z

dz +
∫ R

ε

sin(z)
z

dz

]
= π.

The first equality is clear, since an odd function is integrated over a symmetric domain.

From the second one, one obtains the desired result:∫
R

sin(x)
x

dx = π. □

Here, this integral can be understood in the sense of an improper Riemann integral.
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