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1 Orthogonal systems
In this report, we will consider separable Hilbert space H , which means that there exists a
countable dense subset D of H . We will refer to separable Hilbert spaces as simply Hilbert
spaces unless specified. The following discussion is mostly inspired by [1] (some of proofs are
also from [2], [3], [7]).

Definition 1. Let H be a Hilbert space. A sequence (en) in H is an orthonormal system if,
for any pair of indices m and n,

⟨em, en⟩ = δmn =
{

1, if m = n

0, if m ̸= n
. (1)

If f ∈ H , then ⟨en, f⟩ is called the Fourier coefficient or the nth coefficient of f relative to the
system (en).

In the above definition, we just define orthonormal systems as countable (finite or countably
infinite) sets of orthonormal vectors because of the following statement.

Theorem 2. In a separable Hilbert space H , every orthonormal set is finite or countably
infinite.

Proof. Let D be any dense subset in H and N be any set of orthonomal vectors. Then, any
two distinct vectors f, g ∈ N have the distance

√
2 since

∥f − g∥2 = ⟨f − g, f − g⟩ = ⟨f, f⟩ + ⟨g, g⟩ − ⟨f, g⟩ − ⟨g, f⟩ = 1 + 1 + 0 + 0 = 2. (2)

Hence, there exist the two disjoint open balls

Br(f) = {h ∈ H | ∥f − h∥ < r}, Br(g) = {h ∈ H | ∥g − h∥ < r} (3)

for r =
√

2/3. Since D is dense in H , then every open ball in H contains at least one element
of D. Hence, the exist f1 ∈ Br(f) ∩D and g1 ∈ Br(g) ∩D. Since Br(f) ∩ Br(g) = ∅, we have
f1 ̸= g1. If N is uncountable, then we would have uncountably many such pairs f and g along
with f1 and g1 in D. Thus, D would be uncountable in that case. Since D can be any dense
subset, this means H would not contain any countable dense subsets, which is a contradiction
to the separability of H . Therefore, N is countable.

From the system (en), we have a sequence of scalars (real or complex) (⟨en, f⟩) for every f ∈ H .
This sequence is square-summable as stated in the following theorem.

Theorem 3 (Bessel’s inequality). In a Hilbert space H , let (en) be an orthonormal system,
then for any f ∈ H , ∑

n

|⟨en, f⟩|2 ≤ ∥f∥2
. (4)
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Proof. Consider I ⊂ N be a finite set of indices. Then,M = Vect ((ei)i∈I) is a closed subspace
of H . Let f1 be a vector of M such that

f1 =
∑
i∈I

⟨ei, f⟩ei. (5)

Then, let f2 = f − f1 and we have for any j ∈ I,

⟨ej , f2⟩ = ⟨ej , f − f1⟩ =
〈
ej , f −

∑
i∈I

⟨ei, f⟩ei

〉
(6)

= ⟨ej , f⟩ −
∑
i∈I

⟨ei, f⟩⟨ej , ei⟩ (7)

= ⟨ej , f⟩ − ⟨ej , f⟩ = 0. (8)

Hence, ⟨g, f2⟩ = 0 for any g ∈M, which implies that f2 ∈M⊥. Then, we have

∥f∥2 = ∥f1 + f2∥2 = ⟨f1 + f2, f1 + f2⟩ (9)
= ⟨f1, f1⟩ + ⟨f2, f2⟩ + ⟨f1, f2⟩ + ⟨f2, f1⟩ (10)
= ∥f1∥2 + ∥f2∥2

. (11)

Because ∥f2∥2 ≥ 0, we have

∥f∥2 ≥ ∥f1∥2 =
〈∑

i∈I

⟨ei, f⟩ei,
∑
j∈I

⟨ej , f⟩ej

〉
(12)

=
∑

i,j∈I

⟨ei, f⟩⟨ej , f⟩⟨ei, ej⟩ (13)

=
∑
i∈I

⟨ei, f⟩⟨ei, f⟩ (14)

=
∑
i∈I

|⟨ei, f⟩|2. (15)

Because the sum on the right-hand side is bounded for any I, the series
∑

n |⟨en, f⟩|2 converges
and we get the inequality (4).

A natural question: for which orthonormal system (en) the equality occurs in the Bessel’s
inequality. To answer that, we come to the following definition.

Definition 4. An orthonormal system (en) in a Hilbert space H is said to be complete or
total if the set of all finite linear combinations of vectors of (en) is dense in H . A complete
orthonormal system is also called a Hilbert basis.

If (en) is a complete orthonormal system, this means that for any f ∈ H and any ε > 0, there
exists a finite linear combination

∑
i∈I λiei such that∥∥∥∥∥f −

∑
i∈I

λiei

∥∥∥∥∥ ≤ ε. (16)

Theorem 5 (Parseval’s identity). Let (en) be an orthonormal system in a Hilbert space H .
This system is complete if and only if for any f ∈ H , we have

∥f∥2 =
∑

n

|⟨en, f⟩|2. (17)

Proof. If (en) is complete, then for any f ∈ H and any ε > 0, there exists a finite linear
combination

∑
i∈I λiei such that ∥∥∥∥∥f −

∑
i∈I

λiei

∥∥∥∥∥
2

≤ ε. (18)
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From the proof of Theorem 3, we hadM = Vect ((ei)i∈I) as a closed subspace of H and found
f1 ∈M, f2 ∈M⊥ such that f = f1 + f2. From the Orthogonal Projection Theorem (Theorem
10), we have f1 = PM(f) and

∥f2∥ = ∥f − f1∥ = inf
g∈M

∥f − g∥, (19)

where

∥f2∥2 = ∥f∥2 − ∥f1∥2 = ∥f∥2 −
∑
i∈I

|⟨ei, f⟩|2. (20)

Because
∑

i∈I λiei ∈M, we have

∥f∥2 −
∑
i∈I

|⟨ei, f⟩|2 = ∥f2∥2 = inf
g∈M

∥f − g∥2 ≤

∥∥∥∥∥f −
∑
i∈I

λiei

∥∥∥∥∥
2

≤ ε. (21)

Hence,

∥f∥2 ≤
∑
i∈I

|⟨ei, f⟩|2 + ε ≤
∑

n

|⟨en, f⟩|2 + ε. (22)

Since this inequality is true for any ε > 0, we have

∥f∥2 ≤
∑

n

|⟨en, f⟩|2 (23)

and taking into account Bessel’s inequality, we get Parseval’s identity.

Conversely, if any f ∈ H satisfies Parseval’s identity, then for any ε > 0, there exists a finite
set of indices I such that

∥f∥2 −
∑
i∈I

|⟨ei, f⟩|2 ≤ ε2. (24)

Again, from the proof of Theorem 3, we have

∥f∥2 −
∑
i∈I

|⟨ei, f⟩|2 = ∥f∥2 − ∥f1∥2 = ∥f2∥2 = ∥f − f1∥2 =

∥∥∥∥∥f −
∑
i∈I

⟨ei, f⟩ei

∥∥∥∥∥
2

. (25)

Hence, ∥∥∥∥∥f −
∑
i∈I

⟨ei, f⟩ei

∥∥∥∥∥ ≤ ε, (26)

which implies that (en) is complete.

Corollary 6. An orthonormal system (en) in a Hilbert space H is complete if and only if the
relation ⟨en, f⟩ = 0 for every n, implies f = 0.

Proof. The forward statement comes directly from Parseval’s identity.

Conversely, assume that ⟨en, f⟩ = 0 for every n, implies f = 0. Let M be the set of all linear
combinations of (en). Then, we have M⊥ = {0}, which implies that M is dense in H . Hence,
(en) is complete.

Corollary 7. Let (en) be a complete orthonormal system in a Hilbert space H . For any f and
g in H ,

⟨f, g⟩ =
∑

n

⟨en, f⟩⟨en, g⟩ =
∑

n

⟨f, en⟩⟨en, g⟩ (27)
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Proof. Using the polarisation identity and Parseval’s identity, we have

4⟨f, g⟩ = ∥f + g∥2 − ∥f − g∥2 − i∥f + ig∥2 + i∥f − ig∥2 (28)

=
∑

n

|⟨en, f + g⟩|2 −
∑

n

|⟨en, f − g⟩|2 − i
∑

n

|⟨en, f + ig⟩|2 + i
∑

n

|⟨en, f − ig⟩|2

(29)

=
∑

n

(
|⟨en, f + g⟩|2 − |⟨en, f − g⟩|2 − i|⟨en, f + ig⟩|2 + i|⟨en, f − ig⟩|2

)
, (30)

where

|⟨en, f + g⟩|2 − |⟨en, f − g⟩|2 = ⟨f + g, en⟩⟨en, f + g⟩ − ⟨f − g, en⟩⟨en, f − g⟩ (31)
= 2⟨f, en⟩⟨en, g⟩ + 2⟨g, en⟩⟨en, f⟩, (32)

−i|⟨en, f + ig⟩|2 + i|⟨en, f − ig⟩|2 = i⟨f − ig, en⟩⟨en, f − ig⟩ − i⟨f + ig, en⟩⟨en, f + ig⟩ (33)
= 2⟨f, en⟩⟨en, g⟩ − 2⟨g, en⟩⟨en, f⟩. (34)

Hence,

4⟨f, g⟩ =
∑

n

4⟨f, en⟩⟨en, g⟩ (35)

⇔ ⟨f, g⟩ =
∑

n

⟨f, en⟩⟨en, g⟩. (36)

Corollary 8. A orthonormal system (en) is complete in a Hilbert space H if and only if for
any f ∈ H , the sequence (

∑n
i=1⟨ei, f⟩ei)n

strongly converges to f .

Proof. If (en) is a complete orthonormal system, then Parseval’s identity is satisfied for any
f ∈ H , which implies that for every ε > 0, there exists N ∈ N such that for all n ≥ N ,

∥f∥2 −
n∑

i=1
|⟨ei, f⟩|2 ≤ ε. (37)

From the proof of Theorem 5, we have∥∥∥∥∥f −
n∑

i=1
⟨ei, f⟩ei

∥∥∥∥∥
2

= ∥f∥2 −
n∑

i=1
|⟨ei, f⟩|2. (38)

Hence, for any ε > 0, there exists N ∈ N such that for all n ≥ N ,∥∥∥∥∥f −
n∑

i=1
⟨ei, f⟩ei

∥∥∥∥∥
2

≤ ε. (39)

As a result, we write

f = s− lim
n→∞

n∑
i=1

⟨ei, f⟩ei =
∞∑

n=1
⟨en, f⟩en. (40)

The converse statement is evident by checking the definition of complete orthonormal systems.

We see that complete orthonormal systems have many useful properties for us to study sep-
arable Hilbert spaces. Furthermore, the existence of a complete orthonormal system and the
separability of Hilbert spaces are equivalent.

Theorem 9. A non-trivial Hilbert space H (H ̸= {0}) is separable if and only if there exists
a complete orthonormal system (en) in H .
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Proof. We divide the proof into two parts.

i) If a non-trivial Hilbert space H is separable, then there exists a complete orthonormal
system (en) in H .

Assume that H is separable. Then, there exists a dense subset D = {fn}n∈N of H with
∥f1∥ ≠ 0. We will use the Gram-Schmidt process to construct inductively an orthonormal
system (ek) from D.

For the base case n = 1, we can take e1 = f1/∥f1∥ which satisfies that Vect(e1) = Vect(f1),
denoted byM1. Now for the inductive step, suppose that for n ≥ 1, there exists m(n) ∈ N
and an orthonormal set {e1, . . . , em(n)} such that Vect

(
e1, . . . , em(n)

)
= Vect (f1, . . . , fn),

denoted by Mn. If fn+1 is a linear combination of e1, . . . , em(n) and hence, fn+1 ∈ Mn,
then we can set m(n + 1) = m(n), which means Mn+1 = Mn. Otherwise, if fn+1 is not
in Mn, then we define

wm(n+1) = fn+1 − PMn(fn+1) = fn+1 −
m(n)∑
k=1

⟨ek, fn+1⟩ek, (41)

where we got the second equality from the proof of Theorem 5. Hence, wm+1 ∈M⊥
n and

we define the normalized vector em(n+1) = wm(n+1)/
∥∥wm(n+1)

∥∥. Then we have

Vect
(
e1, . . . , em(n), em(n+1)

)
= Vect

(
e1, . . . , em(n), fn+1

)
= Vect (f1, . . . , fn, fn+1) . (42)

Therefore, we have constructed an orthonormal system (ek) such that for any n ∈ N,
Vect

(
e1, . . . , em(n)

)
= Vect (f1, . . . , fn). Because D is dense, for any f ∈ H and any

ε > 0, there exists N ∈ N such that ∥f − fN ∥ ≤ ε. Because fN ∈ Vect
(
e1, . . . , em(N)

)
,

there exist λ1, . . . , λm(N) ∈ K such that fN =
∑m(N)

k=1 λkek. As a result,∥∥∥∥∥∥f −
m(N)∑
k=1

λkek

∥∥∥∥∥∥ ≤ ε. (43)

Hence, the set of all linear combinations of (ek) is also dense in H , which implies that (ek)
is complete.

ii) If there exists a complete orthonormal system (en) in a Hilbert space H , then H is sepa-
rable.

Consider a subset D of H defined by

D =
⋃
n

{
n∑

i=1
γiei

∣∣∣∣∣ γi ∈ K with Re(γi), Im(γi) ∈ Q for 1 ≤ i ≤ n

}
:=

⋃
n

Dn (44)

(
if K = R then Im(γi) = 0

)
. For each n, there exists a bijection between the subset Dn

and Q2n when K = C or Qn when K = R. Hence, Dn is countable for all n. Then, D is a
countable union of countable sets, which implies that D is countable. Next, we will prove
that D is also dense in H .

Let (en) be a complete orthonormal system in H . From Corollary 8, for every f ∈ H and
ε > 0, there exists N ∈ N such that for all n ≥ N ,∥∥∥∥∥f −

n∑
i=1

⟨ei, f⟩ei

∥∥∥∥∥ ≤ ε

2 . (45)

Because Q is dense in R, there exists γ(n)
i ∈ K such that Re(γ(n)

i ), Im(γ(n)
i ) ∈ Q and∣∣∣⟨ei, f⟩ − γ

(n)
i

∣∣∣ ≤ ε/2n for each 1 ≤ i ≤ n. Then, we have∥∥∥∥∥
n∑

i=1

[
⟨ei, f⟩ − γ

(n)
i

]
ei

∥∥∥∥∥ ≤
n∑

i=1

∣∣∣⟨ei, f⟩ − γ
(n)
i

∣∣∣ ∥ei∥ ≤
n∑

i=1

ε

2n = ε

2 . (46)
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Therefore, for every f ∈ H and ε > 0, there exists N ∈ N such that for all n ≥ N ,∥∥∥∥∥f −
n∑

i=1
γ

(n)
i ei

∥∥∥∥∥ ≤

∥∥∥∥∥f −
n∑

i=1
⟨ei, f⟩ei

∥∥∥∥∥ +

∥∥∥∥∥
n∑

i=1

[
⟨ei, f⟩ − γ

(n)
i

]
ei

∥∥∥∥∥ ≤ ε

2 + ε

2 = ε. (47)

As a result, for every f ∈ H and ε > 0, we can find an element fn =
∑n

i=1 γ
(n)
i ei ∈ D

such that ∥f − fn∥ ≤ ε. Therefore, D is dense in H , which implies that H is separable.

2 Some examples
In this section, given Ω ⊂ R and an appropriate bounded measurable function w : Ω → R+,
we consider the Hilbert space

H = L2
w(Ω) :=

{
f : Ω → K

∣∣∣∣ ∫
Ω

|f(x)|2w(x) dx < ∞
}

=
{
f : Ω → K

∣∣ √
wf ∈ L2(Ω)

}
(48)

with an inner product ⟨·, ·⟩ defined for f, g ∈ H by

⟨f, g⟩ =
∫

Ω
f(x)g(x)w(x) dx . (49)

The function w is called the weight function.

2.1 Fourier series
Consider Ω = (−π, π) and w(x) = 1. Define the orthonormal system (ek)k∈Z by

ek(x) = 1√
2π
eikx. (50)

The Riesz-Fischer theorem states that Fourier series of any f ∈ L2(−π, π),∑
k∈Z

⟨ek, f⟩ek = 1√
2π

∑
k∈Z

ck(f)eikx (51)

with

ck(f) = ⟨ek, f⟩ = 1√
2π

π∫
−π

f(x)e−ikx dx , (52)

strongly converges or converges in the norm ∥·∥L2 to f , i.e.

lim
n→∞

π∫
−π

∣∣∣∣∣∣f(x) − 1√
2π

∑
|k|≤n

ck(f)eikx

∣∣∣∣∣∣
2

dx = 0. (53)

Hence, the sequence (ek) is a complete orthonormal system in L2(−π, π). Furthermore, the
Carleson’s theorem states that Fourier series of any function f ∈ L2(−π, π) converges to f
almost everywhere, i.e.

f(x) = lim
n→∞

1√
2π

∑
|k|≤n

ck(f)eikx (54)

for almost every x ∈ (−π, π). The Fourier series has greatly many applications in physics and
engineering.
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2.2 Classical orthogonal polynomials
In this section, we consider orthogonal systems with polynomials as their elements, which is
called orthogonal polynomials. Those polynomials (pn) in each system satisfy the following
relation:

⟨pm, pn⟩ =
∫

Ω
pm(t)pn(t)w(t) dt = δmnhn. (55)

Then, (pn/hn) is an orthonormal system. Here, we just consider classical orthogonal polyno-
mials, which can be defined by a Rodrigues formula of the form:

pn(t) = 1
Cnw(t)

dn

dtn (w(t)g(t)n) . (56)

The information about the three classical orthogonal polynomials taken from [1] is summarized
in the two tables as below.

Polynomials Symbol Cn w(t) g(t) Ω

Jacobi P (α,β)
n (−1)n2nn! (1 − t)α(1 + t)β 1 − t2 (−1, 1)

Laguerre L
(α)
n n! e−ttα t (0,∞)

Hermite Hn (−1)n e−t2 1 (−∞,∞)

Polynomials hn

P
(α,β)
n

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)
(2n+ α+ β + 1)n!Γ(n+ α+ β + 1)

L
(α)
n

Γ(n+ α+ 1)
n!

Hn
√
π2nn!

Note that Γ is the Gamma function, which is defined by

Γ(x) =
∞∫

0

tx−1e−t dt , for x > 0. (57)

In addition, the Jacobi polynomials have the following special cases (Cn and hn can be different,
as indicated in the below table from [1]):

(i) Gegenbauer polynomials G(p)
n , corresponding to α = β = p− 1

2 ;

(ii) Chebyshev polynomials of the first kind Tn, corresponding to α = β = − 1
2 ;

(iii) Chebyshev polynomials of the second kind Un, corresponding to α = β = 1
2 ;

(iv) Legendre polynomials Pn, corresponding to α = β = 0.

7



Polynomials α = β Cn hn

G
(p)
n p− 1

2
(−1)n2nn!Γ(2p)Γ(n+ p+ 1/2)

Γ(p+ 1/2)Γ(n+ 2p)
π21−2pΓ(n+ 2p)
n!(n+ p)!Γ(p)2 if p ̸= 0

2π
n2 if p = 0

Tn −1
2

(−1)n2nΓ(n+ 1/2)√
π

π

2 if n ̸= 0

π if n = 0

Un
1
2

(−1)n2n+1Γ(n+ 3/2)
(n+ 1)

√
π

π

2

Pn 0 (−1)n2nn! 2
2n+ 1

All those systems of orthogonal polynomials that we introduced are complete in their corre-
sponding Hilbert space. Most of them come from the theory of differential equations. We shall
not go into the detail of their theory but we just list out a few physical examples where they
are used.

2.2.1 Multipole expansion

Both the Coulomb and Newtonian potential are proportional to 1/r. Suppose that we have
two points P and P ′ as in the following diagram.

O
r

P
r′

P ′
r

ϕ

We can expand 1/r into the following series (from [4])

1
r = 1√

r2 + (r′)2 − 2rr′ cosϕ
= 1
r

∞∑
n=0

(
r′

r

)n

Pn(cosϕ). (58)

This expansion is called multipole expansion. When r is significantly large compared to r′, we
can keep a few of the first terms: the first term is the monopole contribution (∼ 1/r); the
second is dipole (∼ 1/r2); the third is quadrupole (∼ 1/r3); the forth is octopole (∼ 1/r4) and
so on. This expansion is useful when we want to approximate the potential generated by a
distribution of charges or masses.

2.2.2 Quantum harmonic oscillation

The time-independent Schrödinger equation for a harmonic oscillator is

− ℏ2

2m
d2ψ

dx2 + 1
2mω

2x2ψ(x) = Eψ(x). (59)

Solving this equation gives us normalized eigenfunctions as follows (taken from [5]):

ψn(x) =
(

mω

πℏ(2nn!)2

)1/4
exp

(
−mωx2

2ℏ

)
Hn

((mω
ℏ

)1/2
x

)
(60)

with corresponding energies

En =
(
n+ 1

2

)
ℏω, for n = 0, 1, 2, 3, . . . (61)
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2.2.3 Hydrogen atom

The time-independent Schrödinger equation for Hydrogen atom is

− ℏ2

2µ

(
1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1
r2 sin(θ)

∂

∂θ

(
sin θ∂ψ

∂θ

)
+ 1
r2 sin2 θ

∂2ψ

∂φ2

)
− e2

4πϵ0r
ψ(r, θ, φ) = Eψ(r, θ, φ)

(62)

where

µ = mpme

mp +me
(63)

is the reduced mass with me, the mass of the electron, and mp, the mass of the proton.
Solving that equation, we get the eigenfunctions (taken from [6]) for n ∈ N, 0 ≤ ℓ ≤ n − 1,
and −ℓ ≤ m ≤ ℓ,

ψnℓm(r, θ, φ) = Rnℓ(r)Y m
ℓ (θ, φ), (64)

where

Rnℓ(r) =

√(
2
na′

0

)3 (n− ℓ− 1)!
2n(n+ ℓ)! e

−r/na′
0

(
2r
na′

0

)ℓ

L
(2ℓ+1)
n−ℓ−1

(
2r
na′

0

)
, (65)

with the "reduced" Bohr radius

a′
0 = 4πϵ0ℏ2

µe2 , (66)

and Y m
ℓ are spherical harmonics. The associated energies of these wavefunctions are

En = −Ry
n2 , Ry = µe4

32π2ϵ20ℏ2 . (67)

9

https://en.wikipedia.org/wiki/Spherical_harmonics


Appendices

A Orthogonal projection theorem
Theorem 10 (Orthogonal projection theorem). Let H be a Hilbert space and M a closed
subspace of H . For any f ∈ H , there is a unique vector g ∈M such that

∥f − g∥ = inf
h∈M

∥f − h∥ =: d(f,M). (68)

In addition, the vector g, called the orthogonal projection of f on M and denoted PM(f), is
the only vector of M such that f − g ∈M⊥.

Proof. Consider a sequence (gn) of vectors in M such that

lim
n→∞

∥f − gn∥ = d(f,M). (69)

We want to prove that (gn) is a Cauchy sequence. Using the identity

∥h1 − h2∥2 + ∥h1 + h2∥2 = 2∥h1∥2 + 2∥h2∥2 (70)

and plugging h1 = f − gn and h2 = f − gm in for any n,m ∈ N, we have

∥gm − gn∥2 = 2∥f − gn∥2 + 2∥f − gm∥2 − 4
∥∥∥∥f − 1

2(gn + gm)
∥∥∥∥2
. (71)

Since 1
2 (gn + gm) ∈M, ∥∥∥∥f − 1

2(gn + gm)
∥∥∥∥2

≥ d(f,M)2. (72)

Furthermore, for any ε > 0, there exists N(ε) ∈ N such that for any n ≥ N(ε),

∥f − gn∥2 ≤ d(f,M)2 + ε2

4 . (73)

Therefore, for any n,m ≥ N(ε), we have

∥gm − gn∥2 ≤ ε2 ⇔ ∥gm − gn∥ ≤ ε, (74)

which proves that (gn) is a Cauchy sequence inM. SinceM is closed (or complete), gn strongly
converges to a limit g ∈M such that ∥f − g∥ = d(f,M).

Suppose there is another g′ ∈M such that ∥f − g′∥ = d(f,M). Then, we have

∥g′ − g∥2 = 2∥f − g∥2 + 2∥f − g′∥2 − 4
∥∥∥∥f − 1

2(g + g′)
∥∥∥∥2
. (75)

Since 1
2 (g + g′) ∈M, ∥∥∥∥f − 1

2(g + g′)
∥∥∥∥2

≥ d(f,M)2 (76)

and we have

∥g′ − g∥2 ≤ 2∥f − g∥2 + 2∥f − g′∥2 − 4d(f,M)2 = 0, (77)

which implies that g = g′. Hence, g is the unique vector in M such that ∥f − g∥ = d(f,M).
Finally, to prove that g is the only vector of M such that f − g ∈M⊥, let h ̸= 0 be a vector
of M and we have for λ ∈ R \ {0},

∥f − (g + λh)∥2
> d(f,M)2, (78)
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where

∥f − (g + λh)∥2 = ⟨f − g − λh, f − g − λh⟩ (79)
= ⟨f − g, f − g⟩ − λ⟨f − g, h⟩ − λ⟨h, f − g⟩ + λ2⟨h, h⟩ (80)

= ∥f − g∥2 − λ
(

⟨f − g, h⟩ + ⟨f − g, h⟩
)

+ λ2∥h∥2 (81)

= d(f,M)2 − 2λRe(⟨f − g, h⟩) + λ2∥h∥2
. (82)

Hence,

−2λRe(⟨f − g, h⟩) + λ2∥h∥2
> 0, (83)

which leads to a contradiction with a suitable value of λ if Re(⟨f − g, h⟩) ̸= 0. Hence, Re(⟨f −
g, h⟩) = 0. Doing the same calculation when replacing h with ih, we get

2λ Im(⟨f − g, h⟩) + λ2∥h∥2
> 0. (84)

With the same argument, we get Im(⟨f − g, h⟩) = 0. Thus, ⟨f − g, h⟩ = 0. Because h was
chosen arbitrarily, f − g ∈ M⊥. If there exist f1 ∈ M and f2 ∈ M⊥ such that f = f1 + f2,
then

0 = ∥f1 + f2 − (g + f − g)∥2 = ∥(f1 − g) + (f2 − (f − g))∥2 (85)
= ∥f1 − g∥2 + ∥f2 − (f − g)∥2

, (86)

because ⟨f1 − g, f2 − (f − g)⟩ = 0, where f1 − g ∈ M and f2 − (f − g) ∈ M⊥. Therefore,
f1 = g = PM(f) and f2 = f − g = f − PM(f).
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