24 Lebesque integral

Note that we use this notation below: for f,g: [a,b] $\rightarrow \mathbb{R}$ and seR, $\{f > g\} = \{x \in [a,b] \mid f(x) > g(x)\}, \{f > s\} = \{x \in [a,b] \mid f(x) > s\}.$

In preparation for the second half of the proof of Theorem 2.4.3., we show Lemma 2.4.6.. Proof of Lemma 2.4.6

Lemma 2.4.6. Let $f \in \mathcal{L}^{\infty}([a, b])$ be Lebesgue measurable, and assume that $f \ge 0$ a.e. on [a, b] and that $\int_{a}^{b} f(x) dx = 0$. Then f = 0 a.e. on [a, b].

Since
$$f \ge 0$$
 a.e., $m([f < o]) = 0$, so we only need to show $m(\{f > o\}) = 0$ for proving
 $f = 0$ a.e.. We can easily observe that $\{f > o\} = \bigcup_{R \neq 1}^{\infty} E_R$, where $E_R = \{f \ge \frac{1}{R}\}$.
For each $R \in \mathbb{N}$, $\frac{1}{R} \mathcal{R}_{E_R}^{(\alpha)} \le \frac{1}{R} \le f(\alpha)$ for all $x \in E_R$. (here, χ is a characteristic function.)
We can easily observe that for any measurable set $\Omega = [\alpha, b]$, $\int_{\alpha}^{b} \chi_{\alpha}^{(\alpha)} dx = m(\Omega)$,
by considering the partition $P = \{\Omega, [\alpha, b] \setminus \Omega\}$.
So for each $R \in \mathbb{N}$, $\frac{1}{R} m(E_R) = \int_{\alpha}^{b} \frac{1}{R} \chi_{E_R}^{(\alpha)} dx \le \int_{\alpha}^{b} f(\alpha) = 0$, so $m(E_R) = 0$.
By the above, $m(\{f > o\}) = m(\bigcup_{R = 1}^{\infty} E_R) \le \sum_{R = 1}^{\infty} m(E_R) = 0$, which was the only thing we need to show.

Theorem 2.4.3. For any $f \in \mathcal{L}^{\infty}([a, b])$, f is a Lebesgue measurable function if and only if f is a Lebesgue integrable function.

We show that for any
$$f \in L^{\infty}([a,b])$$
, fs integrability implies its measurability,
the proof of which was not given in the lecture.
Suppose $f \in L^{\infty}([a,b])$ and f is L-integrable. By its integrability and a property
of supremum and infimum, for each $k \in \mathbb{N}$, there exists a partition $P_k = [E_j^k]_{j=1}^{n_k}$ of $[a,b]$
such that (i) $V[f, P_k] - L[f, P_k] < \frac{1}{R}$,
(ii) for each $j \in [1, ..., n_{k+1}]$, $E_j^{k+1} < E_k^R$ for some $l \in [1, ..., n_k]$ (P_{k+1} is a refinement of P_k),
(iii) E_j^k , $n \in E_j^k = \emptyset$ if $j_1 \neq j_2$, and (iv) each E_j^k is L-measurable.
Now we set $g_k(x) = \frac{j_k}{j=1} M_j^R \mathcal{A} \in E_j^{k}(x)$, where $M_j^R = \inf_{x \in F_k} for$.
For any $x \in E_j^{k+1}$, $x \in E_k^R (= E_j^{k+1})$ for some l_k and so
 $g_{k+1}(x) = \sum_{j=1}^{n_k} M_j^{n_j} \mathcal{A} \in f_{j}^{n_k}$, $[g_k^{n_k}]_{k=1}^{\infty}$ is an increasing sequence.
Moreover, for each k and all x , $g_k(x) = \sum_{j=1}^{n_k} m_j^R \mathcal{A} \in F_j^{k}(x) = max m_j^R = max [\inf_{x \in F_k} f(x) = x \in F_k^{k}$.

SO
$$\{g_{k}(x)\}_{k}$$
 is bounded. By monotone convergence theorem,
the sequences have their limits and we can consider the function $g(x) := \int_{x=0}^{x} g_{k}(x)$.
Since $\{E_{j}^{*}\}_{j=1}^{n_{k}}$ are L-measurable sets for each k and so each g_{k} is L-measurable,
the pointwise limit g is also L-measurable by Theorem 2.3.11.
We can easily observe that $\int_{a}^{b} g_{k}(x) dx = L[f, P_{k}]$ and $g_{k}(x) \leq g(x) \leq f(x)$.
for each simple function g_{k} . Thus, $L[f, P_{k}] = \int_{a}^{b} g_{k}(x) dx \leq \int_{a}^{b} g_{k}(x) dx$.
On the other hand, we set $h_{*}(x) := \int_{a}^{\infty} M_{a}^{*} M_{b}^{*} M_{b}^{*} g^{*}$ where $M_{3}^{*} = \sup_{x \in V_{a}} f_{x}$.
Then we get the pointwise limit function h_{*} which is L-measurable and satisfies $\int_{a}^{b} f \leq \int_{a}^{b} h_{*} \leq \int_{a}^{b} h_{*} = U[f, P_{k}]$.
by almost the some argument. Now we know $g \leq f \leq h$ and so $h - g \geq 0$, then
 $0 \leq \int_{a}^{b} (h - g) = \int_{a}^{b} h_{*} - \int_{a}^{b} g = U[f, P_{k}] - L[f, P_{k}] < \frac{1}{k}$ for any $k \in N$.
Therefore, we get $\int_{a}^{b} (h - \vartheta) = 0$ and so $h = \vartheta$ a.e. by Lemma 2.4.6 that we proved above.
Since $g \leq f \leq h$, $\{g \neq f\} < \{g \neq h\}$ and $m(\{g \neq f\}) = m(ig \neq k\}) = 0$ so $g = f$ a.e.
By Exercise 2.3.8 (I provided the proof of it in my previous report), f is L-measurable from
the measurability of g .

Reference: [Ne]