2.4 Lebesgue integral

Note that we use this notation below: for $f, g:[a, b] \rightarrow \mathbb{R}$ and $s \in \mathbb{R}$,

$$
\{f>g\}=\{x \in[a, b] \mid f(x)>g(x)\}, \quad\{f>s\}=\{x \in[a, b] \mid f(x)>s\} .
$$

In preparation for the second half of the proof of Theorem 2.4.3, we show Lemma 2.4.6..
Proof of Lemma 2.4.6
Lemma 2.4.6. Let $f \in \mathcal{L}^{\infty}([a, b])$ be Lebesgue measurable, and assume that $f \geq 0$ a.e. on $[a, b]$ and that $\int_{a}^{b} f(x) \mathrm{d} x=0$. Then $f=0$ a.e. on $[a, b]$.

Since $f \geq 0$ a.e., $m(\{f<0\})=0$, so we only need to show $m(\{f>0\})=0$ for proving $f=0$ a.e. We can easily observe that $\{f>0\}=\bigcup_{k=1}^{\infty} E_{k}$, where $E_{k}=\left\{f \geq \frac{1}{k}\right\}$.
For each $\bar{k} \in \mathbb{N}, \frac{1}{k} x_{E_{k}}(x) \leq \frac{1}{k} \leq f(x)$ for all $x \in E_{k}$. (here, x is a characteristic function.) We can easily observe that for any measurable set $\Omega \subset[a, b], \int_{a}^{b} x_{\Omega}^{(a)} d x=m(\Omega)$, by considering the partition $P=\{\Omega,[a, b] \backslash \Omega\}$.
So for each $k \in \mathbb{N}, \frac{1}{k} m\left(E_{k}\right)=\int_{a}^{b} \frac{1}{k} x_{E_{k}}(x) d x \leq \int_{a}^{b} f(x)=0$, so $m\left(E_{k}\right)=0$.
By the above, $m(\{f>0\})=m\left(\bigcup_{k=1}^{\infty} E_{\bar{k}}\right) \leq \sum_{k=1}^{\infty} m\left(E_{k}\right)=0$, which was the only thing we need to show.

Proof of Theorem 2.4.3
Theorem 2.4.3. For any $f \in \mathcal{L}^{\infty}([a, b])$, f is a Lebesgue measurable function if and only if f is a Lebesgue integrable function.
We show that for any $f \in \mathcal{L}^{\infty}([a, b])$. f 's integrability implies its measurability, the proof of which was not given in the lecture.
Suppose $f \in \mathcal{L}([c, b])$ and f is L-integrable. By its integrability and a property of supremum and infimum, for each $k \in \mathbb{N}$, there exists a partition $P_{k}=\left\{E_{j}^{k}\right\}_{j=1}^{n_{k}}$ of $[a, b]$ such that (i) $\cup\left[f, P_{k}\right]-L\left[f, P_{k}\right]<\frac{1}{R}$,
(ii) for each $j \in\left\{1, \cdots, n_{k+1}\right\}, E_{j}^{k+1} \subset E_{l}^{k}$ for some $l \in\left\{1, \cdots, n_{k}\right\}\left(P_{k+1}\right.$ is a refinement of $\left.P_{k}\right)$,
(iii) $E_{j_{1}}^{k} \cap E_{j_{2}}^{k}=\phi$ if $j_{1} \neq j_{2}$, and (jv) each E_{j}^{k} is L-measurable.

Now we set $g_{k}(x)=\sum_{j=1}^{n_{B}} m_{j}^{k} x_{E_{j}^{k}(x)}$, where $m_{j}^{k}=\inf _{x \in E_{j}^{k}} f(x)$.
For any $x \in E_{j_{0}}^{k+1}, x \in E_{l_{0}^{k}}^{k}\left(\supset E_{j_{0}}^{k+1}\right)$ for some l_{0} and so

Therefore, for all $\left.x \in[a, b]\left(=\bigcup_{j=1}^{n_{k}^{\prime}} E_{j}^{k}\right), \quad\left\{g_{k}(x)\right\}\right\}_{k=1}^{\infty}$ is an increasing sequence.
Moreover, for each k and all $x, g_{k}(x)=\sum_{j=1}^{u_{k}} m_{j}^{k} x_{E_{j}^{k}(x)} \leq \max _{j} m_{j}^{k}=\max _{j}\left(\inf _{x \in E_{j}^{k}} f(x)\right) \leq \sup _{x \in[a, b]} f(x)<\infty$,

So $\left\{g_{k}(x)\right\}_{k}$ is bounded. By monotone convergence theorem, the sequences have their limits and we can consider the function $g(x):=\lim _{k \rightarrow \infty} g_{g}(a)$. Since $\left\{E_{j}^{k}\right\}_{j=1}^{n_{k}}$ are L-measurable sets for each \bar{k} and so each g_{k} is L-measurable, the pointwise limit g is also L-measurable by Theorem 2.3.11.
We can easily observe that $\int_{a}^{b} g_{k}(x) d x=L\left[f, P_{R}\right]$ and $g_{B}(x) \leq g(x) \leq f(x)$
for each simple function g_{k}. Thus, $L\left[f, P_{k}\right]=\int_{a}^{b} g_{k}(x) d x \leq \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) d x$.
On the other hand, we set $h_{k}(x):=\sum_{j=1}^{n_{k}} M_{j}^{k} X_{E_{j}^{E}}(x)$ where $M_{j}^{k}=\sup _{x \in E_{j}^{E}} f(x)$.
Then we get the pointwise limit function h, which is L-measurable and satisfies $\int_{a}^{b} f \leq \int_{a}^{b} h \leq \int_{a}^{b} h_{k}=U\left[f, P_{1}\right]$, by almost the same argument. Now we know $g \leq f \leq h$ and so $h-g \geq 0$, then $0 \leq \int_{a}^{b}(h-g)=\int_{a}^{b} h-\int_{a}^{b} g=U\left[f, P_{k}\right]-L\left[f, P_{b}\right]<\frac{1}{k}$ for any $k \in \mathbb{N}$.
Therefore, we get $\int_{a}^{b}(h-g)=0$ and so $h=g$ a.e. by Lemma 2.4.6 that we proved above. Since $g \leq f \leq h, \quad\{g \neq f\} \subset\{q \neq h\}$ and $m(\{q \neq f\}) \leq m(\{g \neq h\})=0$ so $g=f$ a.e.
By Exercise 2.3.8 (I provided the proof of it in my previous report), f is L-measurable from the measurability of g.

Reference: [Ne]

