Exercise 2.3.8 Show that if $f:[a,b] \rightarrow \mathbb{R}$ is Lebesgue measurable and f=g a.e., then g is also lobegue measurable. Let us use the following notations; $\{f\neq g\} = \{x \in [a,b] \mid f(x) \neq g(x)\}, \{f < s\} = \{x \in [a,b] \mid f(x) < g(x)\}, f(x) = g(x) = g(x) = x \in \{f > s\}, f(x) = g(x) = g(x) = x \in \{f > s\}, s \in \{g > s\} = \{\{g > s\} = \{\{g > s\}\}, x \notin \{f \neq g\} \iff f(x) = g(x) \Rightarrow x \in \{f > s\}, s \in \{g > s\} = \{\{g > s\}, x \in \{f > s\}, x \notin \{f \neq g\} \iff f(x) = g(x) \Rightarrow x \in \{f > s\}, s \in \{g > s\} = \{\{g > s\}, x \notin \{f \neq g\} \iff f(x) = g(x) \Rightarrow x \in \{f > s\}, s \in \{g > s\} = \{\{g > s\}, x \notin \{f \neq g\}, x \notin \{f \neq g\} \iff f(x) = g(x) \Rightarrow x \in \{f > s\}, s \in \{g > s\}, x \notin \{f \neq g\} \iff f(x) = g(x) \Rightarrow x \in \{f > s\}, s \in \{g > s\}, x \notin \{g > s\}, x \notin \{f \neq g\} \iff f(x) = g(x) \Rightarrow x \in \{f > s\}, s \in \{g > s\}, x \notin \{g > s\}, x \notin \{f \neq g\} \implies f(x) = g(x) \Rightarrow x \in \{f > s\}, s \in \{g > s\}, x \notin \{g > s\}, x \notin \{g > s\}, x \notin \{f \neq g\}, x \in \{g > g(x), y \in \{g > g$

Exercise 2,3,10

(i) Show that $\lim_{x \to \infty} \sup_{j \in U} and \lim_{x \to \infty} \inf_{j \in U} a \operatorname{log}_{j \in U} \operatorname{diags exist.}$ Recall $f_{(x)}^{*} = \lim_{j \to \infty} \sup_{j \in U} \int_{\mathbb{R}} \sup_{j \in U} f_{k(x)} \int_{\mathbb{R}} \sup_{j \in U} f_{k(x)} \int_{\mathbb{R}} \int_{\mathbb{R}}$

(ii) Show that $f_*(x) \leq f^*(x)$

For any $j \in \mathbb{N}$, $\inf_{p \ge j} f_{\mathbb{R}^{(2)}} \le \sup_{p \ge j} f_{\mathbb{R}^{(2)}}$ from the definition of supremum and infimum. The inequality (with the equal sign) remains true as j goes to ∞ .

(iii) Show that
$$f_{\star}(\alpha) = f_{\star}^{\star}(\alpha) = f_{\star}^{\star}(\alpha)$$
 if and only if $\lim_{t \to \infty} f_{t}(\alpha) = \exp(1)$. We observe that
Firstly, we suppose $f_{\star}(\alpha) = f_{\star}^{\star}(\alpha)$. Let $\alpha := f_{\star}^{\star}(=f_{\star}(\alpha))$. We observe that
inf $f_{\star}(\alpha) \leq f_{j}(\alpha) \leq \sup_{t \neq 1} f_{\star}(\alpha)$. for any $j \in \mathbb{N}$, Since $\sup_{t \neq 1} f_{\star}(\alpha)$ and $\inf_{\star}^{\inf} f_{\star}(\alpha)$ converge to α .
for any $\varepsilon > 0$, $\alpha - \varepsilon \leq \inf_{t \neq 1} f_{\star}(\alpha) \leq f_{\star}(\alpha) \leq \alpha + \varepsilon$, for any $j > \frac{3}{N}$.
This indicates $\lim_{t \to \infty} f_{j}(\alpha)$ exists with its value α .
Conversely, if we suppose $\lim_{t \to \infty} f_{j}(\alpha)$ exists and $\beta := \lim_{t \to \infty} f_{j}(\alpha)$, then for any $\varepsilon > 0$,
there exists $N \in \mathbb{N}$ such that for any $j > N$, $|\beta - f_{j}(\alpha)| < \varepsilon$, namely $\beta - \varepsilon < f_{j}(\alpha) < \beta + \varepsilon$.
So we observe $\beta - \varepsilon \leq \inf_{\star} f_{\star}(\alpha) = f_{j}(\alpha) = \xi_{\star}$, which indicates both $\{\inf_{t \neq 1} f_{\star}(\alpha)\}_{j=1}^{\infty}$ and $\{\sup_{\star} f_{\star}(\alpha)\}_{j=1}^{\infty}$
Thus we get $|\beta - \inf_{\star} f_{\star}(\alpha)| = \beta + \varepsilon$, which indicates both $\{\inf_{t \neq 1} f_{\star}(\alpha)\}_{j=1}^{\infty}$ and $\{\sup_{\star} f_{\star}(\alpha)\}_{j=1}^{\infty}$

Proof of theorem 2.3.11

Theorem 2.3.11. Let $f_j : [a, b] \to \mathbb{R}$ be Lebesgue measurable functions, and assume that $(f_j)_{j \in \mathbb{N}}$ is a pointwise bounded sequence. Then the two functions f^* and f_* are also Lebesgue measurable on [a, b].

For each $j \in \mathbb{N}$, we set functions $\sup_{f_j} and \inf_{f_j} as \sup_{g_i} (x) := \sup_{k \ge j} f_k(x)$ and $\inf_{f_j}(x) := \inf_{k \ge j} f_k(x)$, $x \in [a, b]$. If we observe that $\sup_{f_j} and \inf_{f_j} are Lebesgue measurable functions, then it can be concluded that$ $<math>f_{(x)}^* = \lim_{j \ge \infty} \{\sup_{k \ge j} f_k(x)\} = \inf_{f_j} \{\sup_{k \ge j} f_{k(x)}\} = \inf_{g_i} \{\inf_{k \ge j} f_k(x)\} = \sup_{j \ge \infty} \{\inf_{k \ge j} f_k(x)\} = \sup_{g_i} \{\inf_{g_i} f_k(x)\} = \sup_{g_i} \{\inf_{k \ge j} f_k(x)\} = \sup_{g_i} \{\inf_{g_i} f_k(x)\}$

are Lebesque measurable functions.

(Note that the second steps of the two equalities come from the property of supremum and infimum that $\{\sup_{k \in J} f_{k}(x)\}_{j=1}^{\infty}$ and $\{\inf_{k \in J} f_{k}(x)\}_{j=1}^{\infty}$ are a monotonically decreasing and increasing sequence respectively.) So we only need to show the Lebesgue measurability of supris and $\inf_{f_{j}}$.

Let us use the same notations we used in Exercise 2.3.5. For any $s \in \mathbb{R}$, $x \in \{sup_{f_j} > s\} \Leftrightarrow \sup_{k \ge j} f_{k(k)} > s \Leftrightarrow^{3} k_{\ge j} s.t. (\sup_{k \ge j} f_{k(x) \ge j}) f_{k(x)} > s \Leftrightarrow^{3} k_{\ge j} s.t. a \in [f_{k} > s] \Leftrightarrow x \in \bigcup_{k \ge j} \{f_{k} > s\},$ so $\{sup_{f_j} > s\} = \bigcup_{k \ge j} \{f_{k} > s\}$. Since each f_{k} is a Lebesgue measurable function, $\{f_{k} > s\}_{k \ge i}$ are Lebesgue measurable sets. From a property of Lebesgue measurable sets (in particular, the property that the class of Lebesgue measurable sets is a σ -algebra or a completely additive class), the union of Lebesgue measurable sets $\{sup_{f_j} > s\} = \bigcup_{k \ge j} \{f_{k} > s\}$ is a Lebesgue measurable set. Therefore, sup_{f_j} is a Lebesgue measurable function.

We can now easily observe that \inf_{f_j} is also a Lebesgue measurable function since $\inf_{f_j}(a) = \inf_{k \ge j} f_k(a) = -\sup_{k \ge j} \{-f_k(a)\}$ and it can be applied to the above.

Proof of corollary 2.3.12

Corollary 2.3.12. Let $f_j : [a,b] \to \mathbb{R}$ be Lebesgue measurable functions, and assume that $(f_j)_{j\in\mathbb{N}}$ is a pointwise bounded sequence. Assume that for each $x \in [a,b]$, the functions f_j have a limit as $j \to \infty$, namely $\exists f : [a,b] \to \mathbb{R}$ such that $\lim_{j\to\infty} f_j(x) = f(x)$ for all $x \in [a,b]$. Then the function f is a Lebesgue measurable function on [a,b].

From the result of Exercise 2.3. [O. (iii) that we showed above, $\int_{\infty}^{\infty} f_{j}^{(\alpha)} = f^{*}_{(\alpha)}$ for all $x \in [a,b]$ if it exists (and it really does here). Since f^{*} is Lebesgue measurable from Theorem 2.3. II., $f(x) = \int_{\infty}^{\infty} f_{j}^{(\alpha)}$ is also Lebesgue measurable. Extra

Lebesque measurability of composite functions

$Lef f : \mathbb{R} \to \mathbb{R}$	te a Lebesgue	measurable fui	nction, and g	$\mathbb{R} \to \mathbb{R}$ be a	continuous
function. Then	the composite fu	nction gof is	also a Lebesgu	e measurable t	unction.

Let us take any s > 0. Since g is continuous, $\{3>s\}$ is an open set on R. Indeed, for any $k \in \{9>s\}$, there exists $\delta > 0$ such that $|x-a| < \delta \Rightarrow |g(a) - g(a)| < \frac{3(a)-s}{2}$, namely $s < \frac{3(a)+s}{2} < g(a) < \frac{3(a)-s}{2}$ for any $x \in [a-\delta, a+\delta]$, which means an open ball $B_{\delta}(a) < \{3>s\}$. We now set $I_{j} := (j-1, j+1) \land \{g>s\}$ for each $j \in \mathbb{Z}$, where we can take intervals $\{I_{j}\}$ by dividing them if necessary and reordering $\{I_{j}\}$ while stipping empty sets. Then $\{I_{j}\}_{j=-\infty}^{\infty}$ is a countable group of open intervals $0 \land \{g>s\} = \bigcup_{j=-\infty}^{\infty} I_{j}$. So $\{g \cdot f>s\} = \{x \in \mathbb{R} \mid f(x) \in \{g>s\}\} = \bigcup_{j=1}^{\infty} \{x \in \mathbb{R} \mid f(x) \in I_{j}\} = \bigcup_{j=1}^{\infty} f'(I_{j})$. For each j, if we write $I_{j} = (a_{j}, b_{j})$, $f'(I_{j}) = \{x \in \mathbb{R} \mid f(x) \in (a_{j}, b_{j})\} = \{f>a_{j}\} \land ff < b_{j}\}$. Since f is a Lebesque measurable function, both $\{f>a_{j}\}$, $f'(I_{j})$. Therefore, $J \circ f$ is a Lebesque measurable function.