Exercise 2.25

 $2, m^{*}(\Omega, \cup \Omega_{3}) \leq m^{*}(\Omega_{1}) + m^{*}(\Omega_{3})$

As proven above, if $m^*(\Omega_1)$ and/or $m^*(\Omega_2)$ is infinite, then $m^*(\Omega_1, \cup \Omega_2)$ is also infinite,

so the inequation $\omega = m^*(\Omega, \cup \Omega_2) \leq m^*(\Omega_1) + m^*(\Omega_2) = \omega$ is true by convention. We assume both $m^*(\Omega_1)$ and $m^*(\Omega_2)$ are finite below. Let us take $\sqrt{\epsilon_2 \circ c}$. Since $m^*(\Omega)$ is the jatimum of the volume of Ω 's coverings, there exists sets of coverings $\{U_j\}$ and $\{V_j\}$ such that $m^*(\Omega_1) \leq \sigma(\{U_j\}) < m^*(\Omega_1) + \frac{\epsilon}{2}$, $m^*(\Omega_2) \leq \sigma(T) < m^*(\Omega_2) + \frac{\epsilon}{2}$, by a property of infimum. Since $\{U_j\} \cup \{V_j\}$ is a set of $\Omega_1 \cup \Omega_2$'s averings, $m^*(\Omega_1 \cup \Omega_2) \leq \sigma(\{U_j\} \cup \{V_j\}) \leq \sigma(\{U_j\}) + \sigma(\{V_j\}) < m^*(\Omega_1) + m^*(\Omega_2) + \epsilon$.

Due to the arbitrarity of ε , we conclude $M^*(\Omega, \cup \Omega_2) \leq m^*(\Omega_1) + m^*(\Omega_2)$

 $\frac{3}{2} \operatorname{m}^{*}(\underbrace{Q}_{\Omega_{i}}) \leq \underbrace{\sum}_{i} \operatorname{m}^{*}(\underline{Q}_{i}) \quad \text{for a finite or countable family.} \\ This can be proven with induction using the result of the previous question. \\ Indeed, if for N \in \mathbb{N}, \operatorname{m}^{*}(\underbrace{\widetilde{Q}}_{\Omega_{i}}) \leq \underbrace{\sum}_{i=1}^{n} \operatorname{m}^{*}(\underline{R}_{i}), \text{ then } \operatorname{m}^{*}(\underbrace{\widetilde{U}}_{i=1} - \underline{P}_{i}) = \operatorname{m}^{*}(\underbrace{\widetilde{U}}_{i=1} - \underline{P}_{i}) = \operatorname{m}^{*}(\underbrace{\widetilde{U}}_{i=1} - \underline{P}_{i}) = \operatorname{m}^{*}(\underline{Q}_{i}) + \operatorname{m}^{*}(\underline{Q}_{i}) = \underbrace{\sum}_{i=1}^{n} \operatorname{m}^{*}(\underline{Q}_{i}). \\ \leq \underbrace{\sum}_{i=1}^{n} \operatorname{m}^{*}(\underline{Q}_{i}) + \operatorname{m}^{*}(\underline{Q}_{i}) = \underbrace{\sum}_{i=1}^{n} \operatorname{m}^{*}(\underline{Q}_{i}). \\ \end{array}$

Exercise 2.2.4

Show that $m^{*}(I) = w(I)$ for any closed box. Since $I \in I$, $m^{*}(I) = \inf [\sigma(S)] S$ is a covering of I > $\sigma(I) = v(I)$ To show the other direction of inequality, assume $\{I_{j}\}_{j=1}^{\infty}$ is a covering of I. If $w(I) \leq \sigma(\{I_{j}\})$ for any $\{I_{j}\}$, then $w(I) \leq \inf [\sigma(S)] S$ is a covering of I is concluded. When $\sigma(\{I_{j}\}) = \infty$, the inequality $w(I) \leq \sigma(\{I_{j}\})$ obviously holds, so suppose $\tau(S) < \infty$. For any $\varepsilon > 0$, and for each j, $\stackrel{2}{\rightarrow} j \in \mathbb{R}^{n}$, open box, s.t. $I_{j} \leq S_{j}$, $w(\overline{S_{j}}) \leq (1+\varepsilon) w(I_{j})$ (If $I_{j} = \lceil x \in \mathbb{R}^{n} \mid a_{k} \leq x_{k} \leq b_{k}$ for all $k \in [I_{j}, \dots, n_{j}]$, take $S_{j} = \lceil x \in \mathbb{R}^{n} \mid a_{k} = \frac{1}{L}((1+\varepsilon)^{\frac{1}{n}-1})(b_{k} - a_{k})$ for example) Observe that since $I \subset \stackrel{\infty}{\bigcup} I_{j} \subset \stackrel{\infty}{\bigcup} S_{j}$, $\{S_{j}\}_{j=1}^{\infty}$ is an open covering, and by the compactness of I, there exists a subsequence of $[S_{j}]_{j=1}^{\infty}$, such that $I \subset \stackrel{\infty}{\bigcup} S_{k}$, and so $w(I) \leq \stackrel{\infty}{\underset{k=1}{\underset{k$

Show that $m([0,1] \cap \mathbb{Q}) = 0$. Since \mathbb{Q} is a countable set, $[0,1] \cap \mathbb{Q}$ can be written as $[0,1] \cap \mathbb{Q} = \{r_j\}_{j=1}^{\infty}$. For any $\in \neg o$, assume $\Omega_j = [r_j - \frac{\varepsilon}{2^{j_{m}}}, r_j + \frac{\varepsilon}{2^{j_{m}}}]$, j = 1, 2, ...Then $\{\Omega_j\}_{j=1}^{\infty}$ is a covering of $[0,1] \cap \mathbb{Q}$ because each point of $[0,1] \cap \mathbb{Q}$, r_j , belongs to Ω_j . Because of this, $m^*([0,1] \cap \mathbb{Q}) \leq m^*(\bigcup_{j=1}^{\infty} \Omega_j) \leq \sum_{j=1}^{\infty} m^*(\Omega_j)$ Each Ω_j is an interval (a closed box in \mathbb{R}), so $m^*(\Omega_j) = \mathcal{V}(\Omega_j) = \frac{\varepsilon}{2^j}$ (proved above), and so $m^*([0,1] \cap \mathbb{Q}) \leq \sum_{j=1}^{\infty} m^*(\Omega_j) = \sum_{j=1}^{\infty} \frac{\varepsilon}{2^j} = \varepsilon$ but to the arbitrarity of ε , $m^*([0,1] \cap \mathbb{Q}) = 0$