On Distributions

2023.04.20

This report will first prove Theorem 1.1.10 as a prerequisite to discuss the order and support of the three distributions in Examples 1.1.8. In this report, we assert (without proof) that the three maps given in Examples 1.1.8 are indeed distributions.

1 Proof of Theorem 1.1.10

Theorem 1.1.10

A map $T: \mathcal{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{K}$ belongs to $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ if and only if T is linear and if for any $Y \in \mathbb{R}^{n}$ and any $r>0$ there exists $c>0$ and $m \in \mathbb{N}$ such that

$$
\begin{equation*}
|T(f)| \leq c \sum_{|\alpha| \leq m}\left\|\partial^{\alpha} f\right\|_{\infty} \tag{1.1.7}
\end{equation*}
$$

for all $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp}(f) \subset \overline{\mathcal{B}_{r}(Y)}$.
This statement is an "if and only if" statement, so both the forward and backward statements must be proven.
As a reminder, the definition of a distribution in \mathbb{R}^{n} is:

Definition 1.1.7 (Distribution on \mathbb{R}^{n})
A map $T: \mathcal{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{K}$ is a distribution on \mathbb{R}^{n} if it satisfies:

1. T is linear.
2. $\left(f_{j}\right)_{j \in \mathbb{N}} \xrightarrow{j \rightarrow \infty} f_{\infty}$ in $\mathcal{D}\left(\mathbb{R}^{n}\right) \Longrightarrow\left(T\left(f_{j}\right)\right) \xrightarrow{j \rightarrow \infty} T\left(f_{\infty}\right)$ in \mathbb{K}

Forward Statement

This proof will be a proof by contradiction.
Suppose that there exists a $Y \in \mathbb{R}^{n}$ and $r>0$ such that for any $m \in \mathbb{N} \backslash\{0\}, \exists f_{m} \in \mathcal{D}\left(\overline{\mathcal{B}_{r}(Y)}\right)$ such that

$$
\left|T\left(f_{m}\right)\right|>m \sum_{|\alpha| \leq m}\left\|\partial^{\alpha} f_{m}\right\|_{\infty}
$$

Note that if $f_{m}=0$, then this inequality is impossible, since in that case, both the left-hand side and right-hand side will be 0 , and the equation will be $0>0$, which is obviously false. Thus, for at least one $X \in \mathbb{R}^{n}$,

$$
0<\left|f_{m}(X)\right| \leq\left\|f_{m}\right\|_{\infty} \leq \sum_{|\alpha| \leq m}\left\|\partial^{a} f_{m}\right\|_{\infty}
$$

Let us define a function $g_{m}: \mathcal{D}\left(\overline{\mathcal{B}_{r}(Y)}\right) \rightarrow \mathbb{K}$, which satisfies:

$$
g_{m}=\frac{f_{m}}{m \sum_{|\alpha| \leq m}\left\|\partial^{a} f_{m}\right\|_{\infty}}
$$

Observe that g_{m} is simply f_{m} divided by a nonzero constant. Since $\mathcal{D}\left(\overline{\mathcal{B}_{r}(Y)}\right)$ is a vector space, it is closed under addition and scalar multiplication, so $g_{m} \in \mathcal{D}\left(\overline{\mathcal{B}_{r}(Y)}\right)$. Then, one makes two observations :

The first observation is that for any $X \in \mathbb{R}^{n}$, one has:

$$
\left|g_{m}(X)\right|=\frac{\left|f_{m}(X)\right|}{m \sum_{|\alpha| \leq m}\left\|\partial^{a} f_{m}\right\|_{\infty}} \leq \frac{\left\|f_{m}\right\|_{\infty}}{m \sum_{|\alpha| \leq m}\left\|\partial^{a} f_{m}\right\|_{\infty}} \leq \frac{\sum_{|\alpha| \leq m}\left\|\partial^{a} f_{m}\right\|_{\infty}}{m \sum_{|\alpha| \leq m}\left\|\partial^{a} f_{m}\right\|_{\infty}}=\frac{1}{m}
$$

As $\frac{1}{m} \rightarrow 0$ as $m \rightarrow \infty$, then $g_{m}(X)$ goes to 0 for all $X \in \mathbb{R}^{n}$ as $m \rightarrow \infty$. Therefore, one concludes that

$$
g_{m} \xrightarrow{m \rightarrow \infty} 0 \text { in } \mathcal{D}\left(\mathbb{R}^{n}\right) .
$$

The second observation is that since T is linear, we have $T(\lambda f)=\lambda T(f)$ for any $\lambda \in \mathbb{K}$. As such,

$$
\left|T\left(g_{m}\right)\right|=\frac{\left|T\left(f_{m}\right)\right|}{m \sum_{|\alpha| \leq m}\left\|\partial^{a} f_{m}\right\|_{\infty}}>1
$$

The equality to the left is permitted since $m \geq 1$ and the sum is strictly positive, and the inequality to the right is obtained by the construction of $\left|T\left(f_{m}\right)\right|$. One observes that for any linear map $T: \mathcal{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{K}$,

$$
T(0)=T(0+0) \Longleftrightarrow T(0)+T(0)=T(0) \Longrightarrow T(0)=0
$$

where $T(0)$ is understood to be the functional T acting on the constant zero function $0 \in \mathcal{D}\left(\mathbb{R}^{n}\right)$. On Putting the results of the two observations together, one has:

$$
g_{m} \xrightarrow{m \rightarrow \infty} 0 \text { but }\left|T\left(g_{m}\right)\right|>1 \neq 0 \forall m \in \mathbb{N} \backslash\{0\},
$$

which presents a contradiction, completing the proof.
However, there remains one apparent problems with this proof: what if $m=0$? In truth, this is not a problem at all. In the case of $m=0$: let there be a distribution $T: \mathcal{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{K}$ and $Y \in \mathbb{R}^{n}$ and $r>0$, such that some $c>0$ and $m=0$ satisfies (1.1.7). In this case, the inequality reads

$$
|T(f)| \leq c \sum_{|\alpha| \leq 0}\left\|\partial^{\alpha} f\right\|_{\infty}
$$

However, observe that the L^{∞} norm $\|\cdot\|_{\infty}$ of any function is always positive, so one has:

$$
|T(f)| \leq c \sum_{|\alpha| \leq 0}\left\|\partial^{\alpha} f\right\|_{\infty} \leq c \sum_{|\alpha| \leq 1}\left\|\partial^{\alpha} f\right\|_{\infty}
$$

Therefore, for any value of m that satisfies (1.1.7), any number $m^{\prime} \in \mathbb{N}$ that is greater than m (i.e., $n \geq m$) will also satisfy the inequality.

Backward Statement

Define two new sequences $\left(g_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{D}\left(\mathbb{R}^{n}\right)$ by $g_{j}=f_{j}-f_{\infty} \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ and $\left(S_{j}\right)_{j \in \mathbb{N}} \subset \mathbb{K}$ defined by $S_{j}=$ $T\left(f_{j}\right)-T\left(f_{\infty}\right) \in \mathbb{K}$. One can then rename g_{j} to f_{j} and S_{j} to $T\left(f_{j}\right)$ to write a statement equivalent to the second condition of Definition 1.1.7:

$$
\left(f_{j}\right)_{j \in \mathbb{N}} \xrightarrow{j \rightarrow \infty} 0 \text { in } \mathcal{D}\left(\mathbb{R}^{n}\right) \Longrightarrow\left(T\left(f_{j}\right)\right) \xrightarrow{j \rightarrow \infty} 0 \text { in } \mathbb{K}
$$

Again, it is important to not confuse the zero function $0 \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ with the number zero $0 \in \mathbb{K}$. The 0 in the antecedent is the zero function, while the 0 in the consequent is the number zero.

Returning to the theorem. By assumption, T is linear, so condition 1 is fulfilled. Let $\left(f_{j}\right)_{j \in \mathbb{N}} \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ be a sequence of functions that converges to 0 in $\mathcal{D}\left(\mathbb{R}^{n}\right)$ as $j \rightarrow \infty$, with $\operatorname{supp}\left(f_{j}\right) \subset \overline{\mathcal{B}_{r}(Y)}$ for the given $Y \in \mathbb{R}^{n}$ and $r>0$. Choose $c>0$ and $m \in \mathbb{N}$ such that it satisfies (1.1.7). Then,

$$
0 \leq\left|T\left(f_{j}\right)\right| \leq c \sum_{|\alpha| \leq m}\left\|\partial^{\alpha} f_{j}\right\|_{\infty}
$$

Taking the limit as $j \rightarrow \infty$, and observing that $\left\|\partial^{\alpha} f_{j}\right\|_{\infty} \xrightarrow{j \rightarrow \infty}\left\|\partial^{\alpha} 0\right\|_{\infty}=0$, one has:

$$
0 \leq \lim _{j \rightarrow \infty}\left|T\left(f_{j}\right)\right| \leq c \sum_{|\alpha| \leq m} \lim _{j \rightarrow \infty}\left\|\partial^{\alpha} f_{j}\right\|_{\infty}=0 \Longrightarrow \lim _{j \rightarrow \infty}\left|T\left(f_{j}\right)\right|=0
$$

As such, the second condition of Definition 1.1.7 is fulfilled, and one concludes that $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$.

2 Order and Support of a Distribution

In this section, to illustrate the concepts of order and support of distributions more clearly, three examples of distributions in Examples 1.1.8 are used, namely:

1. The regular distribution T_{h} defined by

$$
T_{h}(f):=\int_{\mathbb{R}^{n}} h(X) f(X) \mathrm{d} X
$$

where h is a locally integrable function on \mathbb{R}^{n} (i.e. $h \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$).
2. The Dirac delta distribution for any $Y \in \mathbb{R}^{n}$, denoted by δ_{Y}, defined by

$$
\delta_{Y}(f)=f(Y)
$$

3. The α-derivative of the Dirac delta distribution for any $Y \in \mathbb{R}^{n}$, denoted by δ_{Y}^{α}, defined by

$$
\delta_{Y}^{\alpha}(f):=(-1)^{|\alpha|}\left[\partial^{\alpha} f\right](Y)
$$

The proofs that these maps are indeed distributions are not included in this document.

2.1 Order of Distribution

In the framework of Theorem 1.1.10, the smallest possible value for m such that m can be made independent from Y and r is set to be the order of the distribution T. To illustrate this concept, the orders of the three distributions above are to be determined.

1. $T_{h}: \forall Y \in \mathbb{R}^{n}, r>0$ and f satisfying the conditions of Theorem 1.1.10, set $K:=\overline{\mathcal{B}_{r}(Y)}$. one has:

$$
\left|T_{h}(f)\right|=\int_{K}|h(X) f(X)| \mathrm{d} X=\int_{K}|h(X)||f(X)| \mathrm{d} X
$$

By definition, $\|f\|_{\infty}=\sup _{X \in K}|f(X)|$, so:

$$
\left|T_{h}(f)\right| \leq \int_{K}|h(X)| \mathrm{d} X \cdot\|f\|_{\infty}
$$

Since $h \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, the integral will simply evaluate to a constant. Setting this to be c, one obtains:

$$
\left|T_{h}(f)\right| \leq c\|f\|_{\infty}=c \sum_{|\alpha| \leq 0}\|f\|_{\infty}
$$

Therefore, the distribution T_{h} is of order 0 .
2. δ_{Y} : for any $Y \in \mathbb{R}^{n}$, one has:

$$
\left|\delta_{Y}(f)\right|=|f(Y)| \leq\|f\|_{\infty}=1 \sum_{|\alpha| \leq 0}\|f\|_{\infty} .
$$

As such, the Dirac delta distribution δ_{Y} is of order 0 .
3. δ_{Y}^{α} : for any $Y \in \mathbb{R}^{n}$, one has:

$$
\left.\left|\delta_{Y}^{\alpha}(f)\right|=| | \partial^{\alpha} f\right](Y) \mid \leq\left\|\partial^{\alpha} f\right\|_{\infty} \leq 1 \sum_{|\beta| \leq|\alpha|}\left\|\partial^{\beta} f\right\|_{\infty} .
$$

As such, the distribution δ_{Y}^{α} is of order $|\alpha|$.

2.2 Support of Distribution

In contrast to the support of functions, which are defined as the subset of their domain where they take a nonzero value, support of distributions are instead found by first looking at the subsets of their domain where they vanish. To understand the concept of the support of a distribution well, one must first study the notion of vanishing distributions.

Definition (Support of a Distribution)

A distribution $T: U \rightarrow \mathbb{K}$ is said to vanish in an open subset V of U if $T(f)$ for all $f \in \mathcal{D}(U)$ where $\operatorname{supp}(f) \subseteq V$. The union of all such open subsets is an open set. The support of a distribution is defined to be the complement of said union of open subsets. By this definition, the support of a distribution is always a closed subset, similar to the support of functions. Mathematically, it is written as:

$$
\operatorname{supp}(T)=U \backslash \bigcup\{V|\forall f| \operatorname{supp}(f) \subseteq V \Longrightarrow T(f)=0\}
$$

Now, the support of the three distributions in Example 1.1.8 are to be found.

1. T_{h} : From the expression of $T_{h}(f)$, with $\operatorname{supp}(f)=\overline{\mathcal{B}_{r}(Y)}=K$ arbitrary,

$$
T_{h}(f)=\int_{K} h(X) f(X) \mathrm{d} X
$$

one observes that for this expression to vanish, either $h(X)=0$ or $f(X)=0$. Since $f(X)=0$ depends solely on the test function, that condition can not be used to define the support of the distribution. As such, $T_{h}(f)$ will vanish if $K \in \mathbb{R}^{n} \backslash \operatorname{supp}(h)$. Then, by the definition of the support of a distribution:

$$
\operatorname{supp}\left(T_{h}\right)=\mathbb{R}^{n} \backslash\left\{\mathbb{R}^{n} \backslash \operatorname{supp}(h)\right\}=\operatorname{supp}(h) .
$$

Therefore, the support of the distribution T_{h} is simply the support of the function h.
2. δ_{Y} : Observe that for arbitrary $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ such that $Y \notin \operatorname{supp}(f)$, one has:

$$
\delta_{Y}(f)=f(Y)=0
$$

The union of all such open subsets is:

$$
\bigcup_{f \in \mathcal{D}\left(\mathbb{R}^{n}\right)}\{\operatorname{supp}(f) \mid Y \notin \operatorname{supp}(f)\}=\mathbb{R}^{n} \backslash\{Y\} .
$$

Therefore, by the definition of the support of a distribution,

$$
\operatorname{supp}\left(\delta_{Y}\right)=\mathbb{R}^{n} \backslash\left\{\mathbb{R}^{n} \backslash\{Y\}\right\}=\{Y\}
$$

The support of the Dirac delta distribution around point Y is simply the point Y itself.
3. δ_{Y}^{α} : very similarly to δ_{Y}, observe that for arbitrary $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ such that $Y \notin \operatorname{supp}(f)$, we have that $Y \notin \operatorname{supp}\left(\partial^{\alpha} f\right)$, so for these $f, \delta_{Y}^{\alpha}(f)=0$. The union of all such open subsets are exactly the same as the case of δ_{Y}, namely:

$$
\bigcup_{f \in \mathcal{D}\left(\mathbb{R}^{n}\right)}\{\operatorname{supp}(f) \mid Y \notin \operatorname{supp}(f)\}=\mathbb{R}^{n} \backslash\{Y\} .
$$

And as such, the support of δ_{Y}^{α} is exactly the same as δ_{Y} : the point Y.

