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Some of the following proofs have been inspired by the methods laid out in the book Quantum mechanics in
Hilbert space1 . Below are the relations we wish to prove:

Let H be an arbitrary Hilbert Space and M,N be closed sub-spaces of H. Then denote the corresponding
projections onto these sub-spaces as, PM and PN , respectively.

1. If PMPN = PNPM, then PMPN is a projection and the associated closed sub-space is M∩N ,

2. If M ⊂ N , then PMPN = PNPM = PM,

3. If M ⊥ N , then PMPN = PNPM = 0, and PM⊕N = PM + PN ,

4. If PMPN = 0, then M ⊥ N .

Proof of 1

Theorem: If PMPN = PNPM, then PMPN is a projection and the associated closed sub-space is M∩N .

Proof: In order for PMPN to be a projection it must satisfy PMPN = (PMPN )2 = (PMPN )∗.
Assuming PMPN = PNPM, we start by considering,

(PMPN )2 = PMPNPMPN (1)

= PMPMPNPN (2)

= P 2
MP 2

N (3)

= PMPN By our initial assumption. (4)

Next consider,

(PMPN )∗ = P ∗
NP ∗

M. (5)

Which we know from the fact that for two bounded linear operators, A,B ∈ B(H), (AB)∗ = B∗A∗.
Furthermore, as both PN , PM are projections we have that PN = P ∗

N , PM = P ∗
M.

Therefore,

(PMPN )∗ = PNPM (6)

= PMPN , By our initial assumption. (7)

Hence, PMPN is a projection.
Then, for an arbitrary element of Hilbert space, f ∈ H, we can decompose f into f = f1+f2 where f1 ∈ M and
f2 ∈ M⊥ such that PMf = f1. f1 can be further decomposed into f1 = f11 + f12 where f11 ∈ N and f12 ∈ N⊥

such that PNPMf = PN f1 = f11. Therefore, after applying the projection PMPN to an arbitrary element f in
Hilbert space we obtain the element f11 such that f11 ∈ M and f11 ∈ N . In other words the closed sub-space
associated with the projection PMPN is M∩N .

■

Proof of 2

Theorem: If M ⊂ N , then PMPN = PNPM = PM.

Proof: Consider PMf for any f ∈ H and observe that by assuming M ⊂ N we can deduce that PMf ∈ N .
Furthermore, an equivalent definition for the sub-space N is the set of all g ∈ H such that PN g = g. Using
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these facts we obtain that PN (PMf) = PMf for all f ∈ H. Therefore, PNPM = PM, where PM and PN are
projections so,

PNPM = PM (8)

= P ∗
M (9)

= (PNPM)∗ (10)

= P ∗
MP ∗

N (11)

= PMPN . (12)

Hence, PMPN = PNPM = PM.
■

Proof of 3

Theorem: If M ⊥ N , then PMPN = PNPM = 0, and PM⊕N = PM + PN .

Proof: PM, PN are projections so PM = P ∗
M, PN = P ∗

N . Assuming M ⊥ N , consider f, g ∈ H such that,

⟨PMf, PN g⟩ = ⟨PNPMf, g⟩ = ⟨f, PMPN g⟩ ∀f, g ∈ H. (13)

From out initial assumption that M ⊥ N and the fact (PMf) ∈ M, (PN g) ∈ N . We can deduce that the
LHS of the above equality must be 0 as the inner product between elements of orthogonal sub-spaces is 0, by
definition of the inner product. Therefore,

⟨PNPMf, g⟩ = ⟨f, PMPN g⟩ = 0 ∀f, g ∈ H, (14)

which is only true for all f, g if PMPN = PNPM = 0.

Next, define PL := PM + PN , where if PMPN = PNPM = 0, we observe that

P 2
L = (PM + PN )2 (15)

= P 2
M + PMPN + PMPN + P 2

N (16)

= PM + 0+ 0+ PN (17)

= PM + PN (18)

= PL. (19)

Also, in this case, it is easy to see that PL = P ∗
L as the adjoint distributes over addition and the components of

PL are projections. Therefore, PL := PM + PN is a projection, in the case of PMPN = PNPM = 0. Thus, for
an arbitrary f ∈ L we observe that,

f = PLf = (PMf + PN f) ∈ M⊕N , (20)

which shows that L ⊂ M⊕N .

Then given an arbitrary g ∈ M⊕N observer that,

PLg = PMg + PN g, (21)

where by our initial assumption, M ⊥ N , g can be decomposed into g = g1 + g2 where g1 ∈ M and g2 ∈ N .
Therefore,

PMg + PN g = PM(g1 + g2) + PN (g1 + g2) (22)

= PMg1 + PN g1 + PMg2 + PN g2 (23)

= PMg1 + 0+ 0+ PN g2 (24)

= PMg1 + PN g2 (25)

= g1 + g2 (26)

= g. (27)

Therefore, g ∈ L, proving that L ⊃ M⊕N . Hence, L = M⊕N and therefore PM⊕N = PM + PN .
■
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Proof of 4

Theorem: If PMPN = 0, then M ⊥ N .

Proof: Assuming PMPN = 0, start by considering an arbitrary pair f, g satisfying f ∈ M and g ∈ N such that
PMf = f and PN g = g. PM, PN are projections so PM = P ∗

M , PN = P ∗
N and it follows that,

⟨PMf, PN g⟩ = ⟨f, PMPN g⟩ (28)

= ⟨f,0g⟩ (29)

= ⟨f,0⟩ (30)

= 0. (31)

Therefore, ⟨PMf, PN g⟩ = ⟨f, g⟩ = 0 and f ⊥ g. With f and g arbitrary elements of the closed sub-spaces M
and N , respectively, we can conclude that M ⊥ N .

■
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