Introduction to Functional Analysis - Proofs of Some Relations for Orthogonal Projections

Zachary Kokot

June 2023

Some of the following proofs have been inspired by the methods laid out in the book Quantum mechanics in Hilbert space ${ }^{1}$. Below are the relations we wish to prove:
Let \mathcal{H} be an arbitrary Hilbert Space and \mathcal{M}, \mathcal{N} be closed sub-spaces of \mathcal{H}. Then denote the corresponding projections onto these sub-spaces as, $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$, respectively.

1. If $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}$, then $P_{\mathcal{M}} P_{\mathcal{N}}$ is a projection and the associated closed sub-space is $\mathcal{M} \cap \mathcal{N}$,
2. If $\mathcal{M} \subset \mathcal{N}$, then $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}=P_{\mathcal{M}}$,
3. If $\mathcal{M} \perp \mathcal{N}$, then $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}=\mathbf{0}$, and $P_{\mathcal{M} \oplus \mathcal{N}}=P_{\mathcal{M}}+P_{\mathcal{N}}$,
4. If $P_{\mathcal{M}} P_{\mathcal{N}}=\mathbf{0}$, then $\mathcal{M} \perp \mathcal{N}$.

Proof of 1

Theorem: If $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}$, then $P_{\mathcal{M}} P_{\mathcal{N}}$ is a projection and the associated closed sub-space is $\mathcal{M} \cap \mathcal{N}$.
Proof: In order for $P_{\mathcal{M}} P_{\mathcal{N}}$ to be a projection it must satisfy $P_{\mathcal{M}} P_{\mathcal{N}}=\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{2}=\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{*}$.
Assuming $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}$, we start by considering,

$$
\begin{align*}
\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{2} & =P_{\mathcal{M}} P_{\mathcal{N}} P_{\mathcal{M}} P_{\mathcal{N}} \tag{1}\\
& =P_{\mathcal{M}} P_{\mathcal{M}} P_{\mathcal{N}} P_{\mathcal{N}} \tag{2}\\
& =P_{\mathcal{M}}^{2} P_{\mathcal{N}}^{2} \tag{3}\\
& =P_{\mathcal{M}} P_{\mathcal{N}}
\end{align*}
$$

By our initial assumption. (4)
Next consider,

$$
\begin{equation*}
\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{*}=P_{\mathcal{N}}^{*} P_{\mathcal{M}}^{*} . \tag{5}
\end{equation*}
$$

Which we know from the fact that for two bounded linear operators, $A, B \in \mathcal{B}(\mathcal{H}),(A B)^{*}=B^{*} A^{*}$.
Furthermore, as both $P_{\mathcal{N}}, P_{\mathcal{M}}$ are projections we have that $P_{\mathcal{N}}=P_{\mathcal{N}}^{*}, P_{\mathcal{M}}=P_{\mathcal{M}}^{*}$.
Therefore,

$$
\begin{align*}
\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{*} & =P_{\mathcal{N}} P_{\mathcal{M}} \tag{6}\\
& =P_{\mathcal{M}} P_{\mathcal{N}}
\end{align*}
$$

By our initial assumption. (7)
Hence, $P_{\mathcal{M}} P_{\mathcal{N}}$ is a projection.
Then, for an arbitrary element of Hilbert space, $f \in \mathcal{H}$, we can decompose f into $f=f_{1}+f_{2}$ where $f_{1} \in \mathcal{M}$ and $f_{2} \in \mathcal{M}^{\perp}$ such that $P_{\mathcal{M}} f=f_{1} . f_{1}$ can be further decomposed into $f_{1}=f_{11}+f_{12}$ where $f_{11} \in \mathcal{N}$ and $f_{12} \in \mathcal{N}^{\perp}$ such that $P_{\mathcal{N}} P_{\mathcal{M}} f=P_{\mathcal{N}} f_{1}=f_{11}$. Therefore, after applying the projection $P_{\mathcal{M}} P_{\mathcal{N}}$ to an arbitrary element f in Hilbert space we obtain the element f_{11} such that $f_{11} \in \mathcal{M}$ and $f_{11} \in \mathcal{N}$. In other words the closed sub-space associated with the projection $P_{\mathcal{M}} P_{\mathcal{N}}$ is $\mathcal{M} \cap \mathcal{N}$.

Proof of 2

Theorem: If $\mathcal{M} \subset \mathcal{N}$, then $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}=P_{\mathcal{M}}$.
Proof: Consider $P_{\mathcal{M}} f$ for any $f \in \mathcal{H}$ and observe that by assuming $\mathcal{M} \subset \mathcal{N}$ we can deduce that $P_{\mathcal{M}} f \in \mathcal{N}$. Furthermore, an equivalent definition for the sub-space \mathcal{N} is the set of all $g \in \mathcal{H}$ such that $P_{\mathcal{N}} g=g$. Using
these facts we obtain that $P_{\mathcal{N}}\left(P_{\mathcal{M}} f\right)=P_{\mathcal{M}} f$ for all $f \in \mathcal{H}$. Therefore, $P_{\mathcal{N}} P_{\mathcal{M}}=P_{\mathcal{M}}$, where $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ are projections so,

$$
\begin{align*}
P_{\mathcal{N}} P_{\mathcal{M}} & =P_{\mathcal{M}} \tag{8}\\
& =P_{\mathcal{M}}^{*} \tag{9}\\
& =\left(P_{\mathcal{N}} P_{\mathcal{M}}\right)^{*} \tag{10}\\
& =P_{\mathcal{M}}^{*} P_{\mathcal{N}}^{*} \tag{11}\\
& =P_{\mathcal{M}} P_{\mathcal{N}} . \tag{12}
\end{align*}
$$

Hence, $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}=P_{\mathcal{M}}$.

Proof of 3

Theorem: If $\mathcal{M} \perp \mathcal{N}$, then $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}=\mathbf{0}$, and $P_{\mathcal{M} \oplus \mathcal{N}}=P_{\mathcal{M}}+P_{\mathcal{N}}$.
Proof: $P_{\mathcal{M}}, P_{\mathcal{N}}$ are projections so $P_{\mathcal{M}}=P_{\mathcal{M}}^{*}, P_{\mathcal{N}}=P_{\mathcal{N}}^{*}$. Assuming $\mathcal{M} \perp \mathcal{N}$, consider $f, g \in \mathcal{H}$ such that,

$$
\begin{equation*}
\left\langle P_{\mathcal{M}} f, P_{\mathcal{N}} g\right\rangle=\left\langle P_{\mathcal{N}} P_{\mathcal{M}} f, g\right\rangle=\left\langle f, P_{\mathcal{M}} P_{\mathcal{N}} g\right\rangle \quad \forall f, g \in \mathcal{H} \tag{13}
\end{equation*}
$$

From out initial assumption that $\mathcal{M} \perp \mathcal{N}$ and the fact $\left(P_{\mathcal{M}} f\right) \in \mathcal{M},\left(P_{\mathcal{N}} g\right) \in \mathcal{N}$. We can deduce that the LHS of the above equality must be 0 as the inner product between elements of orthogonal sub-spaces is 0 , by definition of the inner product. Therefore,

$$
\begin{equation*}
\left\langle P_{\mathcal{N}} P_{\mathcal{M}} f, g\right\rangle=\left\langle f, P_{\mathcal{M}} P_{\mathcal{N}} g\right\rangle=0 \tag{14}
\end{equation*}
$$

$\forall f, g \in \mathcal{H}$,
which is only true for all f, g if $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}=\mathbf{0}$.
Next, define $P_{\mathcal{L}}:=P_{\mathcal{M}}+P_{\mathcal{N}}$, where if $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}=\mathbf{0}$, we observe that

$$
\begin{align*}
P_{\mathcal{L}}^{2} & =\left(P_{\mathcal{M}}+P_{\mathcal{N}}\right)^{2} \tag{15}\\
& =P_{\mathcal{M}}^{2}+P_{\mathcal{M}} P_{\mathcal{N}}+P_{\mathcal{M}} P_{\mathcal{N}}+P_{\mathcal{N}}^{2} \tag{16}\\
& =P_{\mathcal{M}}+\mathbf{0}+\mathbf{0}+P_{\mathcal{N}} \tag{17}\\
& =P_{\mathcal{M}}+P_{\mathcal{N}} \tag{18}\\
& =P_{\mathcal{L}} \tag{19}
\end{align*}
$$

Also, in this case, it is easy to see that $P_{\mathcal{L}}=P_{\mathcal{L}}^{*}$ as the adjoint distributes over addition and the components of $P_{\mathcal{L}}$ are projections. Therefore, $P_{\mathcal{L}}:=P_{\mathcal{M}}+P_{\mathcal{N}}$ is a projection, in the case of $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}=\mathbf{0}$. Thus, for an arbitrary $f \in \mathcal{L}$ we observe that,

$$
\begin{equation*}
f=P_{\mathcal{L}} f=\left(P_{\mathcal{M}} f+P_{\mathcal{N}} f\right) \in \mathcal{M} \oplus \mathcal{N} \tag{20}
\end{equation*}
$$

which shows that $\mathcal{L} \subset \mathcal{M} \oplus \mathcal{N}$.
Then given an arbitrary $g \in \mathcal{M} \oplus \mathcal{N}$ observer that,

$$
\begin{equation*}
P_{\mathcal{L}} g=P_{\mathcal{M}} g+P_{\mathcal{N}} g \tag{21}
\end{equation*}
$$

where by our initial assumption, $\mathcal{M} \perp \mathcal{N}, g$ can be decomposed into $g=g_{1}+g_{2}$ where $g_{1} \in \mathcal{M}$ and $g_{2} \in \mathcal{N}$. Therefore,

$$
\begin{align*}
P_{\mathcal{M} g}+P_{\mathcal{N}} g & =P_{\mathcal{M}}\left(g_{1}+g_{2}\right)+P_{\mathcal{N}}\left(g_{1}+g_{2}\right) \tag{22}\\
& =P_{\mathcal{M}} g_{1}+P_{\mathcal{N}} g_{1}+P_{\mathcal{M}} g_{2}+P_{\mathcal{N}} g_{2} \tag{23}\\
& =P_{\mathcal{M}} g_{1}+\mathbf{0}+\mathbf{0}+P_{\mathcal{N}} g_{2} \tag{24}\\
& =P_{\mathcal{M}} g_{1}+P_{\mathcal{N}} g_{2} \tag{25}\\
& =g_{1}+g_{2} \tag{26}\\
& =g . \tag{27}
\end{align*}
$$

Therefore, $g \in \mathcal{L}$, proving that $\mathcal{L} \supset \mathcal{M} \oplus \mathcal{N}$. Hence, $\mathcal{L}=\mathcal{M} \oplus \mathcal{N}$ and therefore $P_{\mathcal{M} \oplus \mathcal{N}}=P_{\mathcal{M}}+P_{\mathcal{N}}$.

Proof of 4

Theorem: If $P_{\mathcal{M}} P_{\mathcal{N}}=\mathbf{0}$, then $\mathcal{M} \perp \mathcal{N}$.
Proof: Assuming $P_{\mathcal{M}} P_{\mathcal{N}}=\mathbf{0}$, start by considering an arbitrary pair f, g satisfying $f \in \mathcal{M}$ and $g \in \mathcal{N}$ such that $P_{\mathcal{M}} f=f$ and $P_{\mathcal{N}} g=g . P_{\mathcal{M}}, P_{\mathcal{N}}$ are projections so $P_{\mathcal{M}}=P_{\mathcal{M}}^{*}, P_{\mathcal{N}}=P_{\mathcal{N}}^{*}$ and it follows that,

$$
\begin{align*}
\left\langle P_{\mathcal{M}} f, P_{\mathcal{N}} g\right\rangle & =\left\langle f, P_{\mathcal{M}} P_{\mathcal{N}} g\right\rangle \tag{28}\\
& =\langle f, \mathbf{0} g\rangle \tag{29}\\
& =\langle f, \mathbf{0}\rangle \tag{30}\\
& =0 . \tag{31}
\end{align*}
$$

Therefore, $\left\langle P_{\mathcal{M}} f, P_{\mathcal{N}} g\right\rangle=\langle f, g\rangle=0$ and $f \perp g$. With f and g arbitrary elements of the closed sub-spaces \mathcal{M} and \mathcal{N}, respectively, we can conclude that $\mathcal{M} \perp \mathcal{N}$.

References

1. E. Prugovečki, Quantum mechanics in Hilbert space, eng (Acad. Press, New York, 1971), ISBN: 9780125660501.
