Introduction to Functional Analysis - Proofs of Some Useful Inequalities Valid in Hilbert Spaces

Zachary Kokot

June 2023

Introduction

The following proofs have been inspired by the methods laid out in the textbook Hilbert Space Methods in Quantum Mechanics ${ }^{1}$. Below are the useful inequalities for elements of Hilbert spaces which we wish to prove. Let \mathcal{H} be an arbitrary Hilbert Space. For any $f, g \in \mathcal{H}$ the following inequalities hold:

$$
\begin{align*}
|\langle f, g\rangle| & \leq\|f\|\|g\| \\
\|f+g\| & \leq\|f\|+\|g\| \\
\|f+g\|^{2} & \leq 2\|f\|^{2}+2\|g\|^{2} \tag{3}\\
|\|f\|-\|g\|| & \leq\|f-g\| \tag{4}
\end{align*}
$$

Schwarz inequality (1)
Triangle inequality (2)

I will also use the following properties for elements of a Hilbert space.
The following is an excerpt from Hilbert Space Methods in Quantum Mechanics
With each couple $\{f, g\}$ of elements of \mathcal{H} there is associated a complex number $\langle f, g\rangle$, and this association has the following properties:

$$
\begin{align*}
\langle g, f\rangle & =\overline{\langle f, g\rangle} & & \forall f, g \in \mathcal{H} \tag{5}\\
\langle f, g+\alpha h\rangle & =\langle f, g\rangle+\alpha\langle f, h\rangle & & \forall \alpha \in \mathbb{C}, \forall f, g, h \in \mathcal{H} \tag{6}\\
\langle f, f\rangle & >0 & & \text { except for } f=0 . \tag{7}
\end{align*}
$$

One then defines

$$
\begin{equation*}
\|f\|:=[\langle f, f\rangle]^{\frac{1}{2}} . \tag{8}
\end{equation*}
$$

Proof of $|\langle f, g\rangle| \leq\|f\|\|g\|$
Special Case of $f=g$
Consider:

$$
\begin{array}{rlrl}
|\langle f, g\rangle| & =|\langle f, f\rangle| & & \\
& =\|f\|^{2} & \text { (by definition of the inner product. }{ }^{8} \text {) } \\
& =\|f\|\|f\| & & \\
|\langle f, g\rangle| & \leq\|f\|\|g\| & \text { when } f=g .
\end{array}
$$

General Case of $\forall f, g \in \mathcal{H}$

Consider for any $\alpha \in \mathbb{C}$:

$$
\begin{aligned}
0 \leq\|f+\alpha g\|^{2} & =\langle f+\alpha g, f+\alpha g\rangle & & \text { (by 8.) } \\
& =\langle f+\alpha g, f\rangle+\alpha\langle f+\alpha g, g\rangle & & \text { (by 6.) } \\
& =\overline{\langle f, f+\alpha g\rangle}+\alpha \overline{\langle g, f+\alpha g\rangle} & & \text { (by 5.) } \\
& =\overline{\langle f, f\rangle+\alpha\langle f, g\rangle}+\alpha \overline{(\langle g, f\rangle+\alpha\langle g, g\rangle)} & & \text { (by 6.) } \\
& =\langle f, f\rangle+\bar{\alpha}\langle g, f\rangle+\alpha\langle f, g\rangle+\alpha \bar{\alpha}\langle g, g\rangle & & \text { (by } 5 \text { and linearity of the complement.) }
\end{aligned}
$$

Hence one gets

$$
\begin{equation*}
\|f+\alpha g\|^{2}=\|f\|^{2}+\bar{\alpha}\langle g, f\rangle+\alpha\langle f, g\rangle+|\alpha|^{2}\|g\|^{2} \tag{9}
\end{equation*}
$$

Let $\alpha=-\frac{\langle g, f\rangle}{\|g\|^{2}}$ so the inequality becomes

$$
\begin{aligned}
0 & \leq\|f\|^{2}+\overline{\overline{\langle g, f\rangle}} \frac{\|g\|^{2}}{\langle g, f\rangle+-\frac{\langle g, f\rangle}{\|g\|^{2}}\langle f, g\rangle+\left|-\frac{\langle g, f\rangle}{\|g\|^{2}}\right|^{2}\|g\|^{2}} \\
& \leq\|f\|^{2}-\frac{\langle f, g\rangle \overline{\langle f, g\rangle}}{\|g\|^{2}}-\frac{\langle f, g\rangle \overline{\langle f, g\rangle}}{\|g\|^{2}}+\frac{\langle f, g\rangle \overline{\langle f, g\rangle}}{\|g\|^{2}} \\
& \leq\|f\|^{2}-\frac{|\langle f, g\rangle|^{2}}{\|g\|^{2}} \\
|\langle f, g\rangle| & \leq\|f\|\|g\| .
\end{aligned}
$$

Proof of $\|f+g\| \leq\|f\|+\|g\|$

During the proof above we obtained the result

$$
\|f+\alpha g\|^{2}=\|f\|^{2}+\bar{\alpha}\langle g, f\rangle+\alpha\langle f, g\rangle+|\alpha|^{2}\|g\|^{2} \quad \forall f, g \in \mathcal{H}
$$

Starting from this and letting $\alpha=1$ we infer that

$$
\begin{array}{rlr}
\|f+g\|^{2} & =\|f\|^{2}+\langle g, f\rangle+\langle f, g\rangle+\|g\|^{2} & \\
& \leq\|f\|^{2}+|\langle g, f\rangle|+|\langle f, g\rangle|+\|g\|^{2} & \\
& \leq\|f\|^{2}+\|g\|\|f\|+\|f\|\|g\|+\|g\|^{2} & \\
& \leq(\|f\|+\|g\|)^{2} & \\
\|f+g\| & \leq\|f\|+\|g\| & \forall f, g \in \mathcal{H}
\end{array}
$$

Proof of $\|f+g\|^{2} \leq 2\|f\|^{2}+2\|g\|^{2}$
Again using (9) with $\alpha=-1$

$$
0 \leq\|f-g\|^{2}=\|f\|^{2}-\langle g, f\rangle-\langle f, g\rangle+\|g\|^{2} . \quad \forall f, g \in \mathcal{H}
$$

We can see that

$$
\langle g, f\rangle+\langle f, g\rangle \leq\|f\|^{2}+\|g\|^{2}
$$

Then substituting into (9) but with $\alpha=1$ we see that

$$
\begin{aligned}
\|f+g\|^{2} & =\|f\|^{2}+\langle g, f\rangle+\langle f, g\rangle+\|g\|^{2} \\
\|f+g\|^{2} & \leq\|f\|^{2}+\|f\|^{2}+\|g\|^{2}+\|g\|^{2} \\
\|f+g\|^{2} & \leq 2\|f\|^{2}+2\|g\|^{2} .
\end{aligned}
$$

Proof of $\mid\|f\|-\|g\| \leq\|f-g\|$

Start by considering $|\|f\|-\|g\||$ for any $f, g \in \mathcal{H}$. Choose the larger of the two to be f_{L} and the smaller of the two to be f_{S} such that

$$
|\|f\|-\|g\||=\left\|f_{L}\right\|-\left\|f_{S}\right\|
$$

Then using (2), which we already proved, we get that

$$
\begin{aligned}
\left\|f_{L}\right\|-\left\|f_{S}\right\| & =\left\|f_{L}-f_{S}+f_{S}\right\|-\left\|f_{S}\right\| \\
& \leq\left(\left\|f_{L}-f_{S}\right\|+\left\|f_{S}\right\|\right)-\left\|f_{S}\right\| \\
& \leq\left\|f_{L}-f_{S}\right\|
\end{aligned}
$$

Additionally, it is easy to check that $\left\|f_{L}-f_{S}\right\|=\left\|f_{S}-f_{L}\right\|$. Therefore,

$$
|\|f\|-\|g\|| \leq\|f-g\|
$$

References

1. W. O. Amrein, Hilbert Space Methods in Quantum Mechanics, eng (EPFL Press [u.a.], Lausanne, 1. ed, 2009), ISBN: 9781420066814.
