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Introduction

The following proofs have been inspired by the methods laid out in the textbook Hilbert Space Methods in
Quantum Mechanics1 . Below are the useful inequalities for elements of Hilbert spaces which we wish to prove.

Let H be an arbitrary Hilbert Space. For any f, g ∈ H the following inequalities hold:

| ⟨f, g⟩ | ≤ ∥f∥ ∥g∥ Schwarz inequality (1)

∥f + g∥ ≤ ∥f∥+ ∥g∥ Triangle inequality (2)

∥f + g∥2 ≤ 2 ∥f∥2 + 2 ∥g∥2 (3)∣∣ ∥f∥ − ∥g∥
∣∣ ≤ ∥f − g∥ (4)

I will also use the following properties for elements of a Hilbert space.

The following is an excerpt from Hilbert Space Methods in Quantum Mechanics1 .

With each couple {f, g} of elements of H there is associated a complex number ⟨f, g⟩, and this association
has the following properties:

⟨g, f⟩ = ⟨f, g⟩ ∀f, g ∈ H (5)

⟨f, g + αh⟩ = ⟨f, g⟩+ α ⟨f, h⟩ ∀α ∈ C,∀f, g, h ∈ H (6)

⟨f, f⟩ > 0 except for f = 0. (7)

One then defines

∥f∥ := [⟨f, f⟩] 12 . (8)

Proof of | ⟨f, g⟩ | ≤ ∥f∥ ∥g∥
Special Case of f = g

Consider:

| ⟨f, g⟩ | = | ⟨f, f⟩ |

= ∥f∥2 (by definition of the inner product.
8
)

= ∥f∥ ∥f∥
| ⟨f, g⟩ | ≤ ∥f∥ ∥g∥ when f = g.

■

General Case of ∀f, g ∈ H
Consider for any α ∈ C:

0 ≤ ∥f + αg∥2 = ⟨f + αg, f + αg⟩ (by 8.)

= ⟨f + αg, f⟩+ α ⟨f + αg, g⟩ (by 6.)

= ⟨f, f + αg⟩+ α⟨g, f + αg⟩ (by 5.)

= ⟨f, f⟩+ α ⟨f, g⟩+ α (⟨g, f⟩+ α ⟨g, g⟩) (by 6.)

= ⟨f, f⟩+ α ⟨g, f⟩+ α ⟨f, g⟩+ αα ⟨g, g⟩ (by 5 and linearity of the complement.)
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Hence one gets

∥f + αg∥2 = ∥f∥2 + α ⟨g, f⟩+ α ⟨f, g⟩+ |α|2 ∥g∥2 . (9)

Let α = − ⟨g,f⟩
∥g∥2 so the inequality becomes

0 ≤ ∥f∥2 +−⟨g, f⟩
∥g∥2

⟨g, f⟩+−⟨g, f⟩
∥g∥2

⟨f, g⟩+

∣∣∣∣∣−⟨g, f⟩
∥g∥2

∣∣∣∣∣
2

∥g∥2

≤ ∥f∥2 − ⟨f, g⟩ ⟨f, g⟩
∥g∥2

− ⟨f, g⟩ ⟨f, g⟩
∥g∥2

+
⟨f, g⟩ ⟨f, g⟩

∥g∥2

≤ ∥f∥2 − | ⟨f, g⟩ |2

∥g∥2

| ⟨f, g⟩ | ≤ ∥f∥ ∥g∥ .
■

Proof of ∥f + g∥ ≤ ∥f∥+ ∥g∥
During the proof above we obtained the result

∥f + αg∥2 = ∥f∥2 + α ⟨g, f⟩+ α ⟨f, g⟩+ |α|2 ∥g∥2 ∀f, g ∈ H

Starting from this and letting α = 1 we infer that

∥f + g∥2 = ∥f∥2 + ⟨g, f⟩+ ⟨f, g⟩+ ∥g∥2

≤ ∥f∥2 + | ⟨g, f⟩ |+ | ⟨f, g⟩ |+ ∥g∥2

≤ ∥f∥2 + ∥g∥ ∥f∥+ ∥f∥ ∥g∥+ ∥g∥2 (using the Schwartz inequality.
1
)

≤ (∥f∥+ ∥g∥)2

∥f + g∥ ≤ ∥f∥+ ∥g∥ ∀f, g ∈ H
■

Proof of ∥f + g∥2 ≤ 2 ∥f∥2 + 2 ∥g∥2

Again using (9) with α = −1

0 ≤ ∥f − g∥2 = ∥f∥2 − ⟨g, f⟩ − ⟨f, g⟩+ ∥g∥2 . ∀f, g ∈ H

We can see that

⟨g, f⟩+ ⟨f, g⟩ ≤ ∥f∥2 + ∥g∥2 .

Then substituting into (9) but with α = 1 we see that

∥f + g∥2 = ∥f∥2 + ⟨g, f⟩+ ⟨f, g⟩+ ∥g∥2

∥f + g∥2 ≤ ∥f∥2 + ∥f∥2 + ∥g∥2 + ∥g∥2

∥f + g∥2 ≤ 2 ∥f∥2 + 2 ∥g∥2 .
■

Proof of
∣∣ ∥f∥ − ∥g∥

∣∣ ≤ ∥f − g∥
Start by considering

∣∣ ∥f∥−∥g∥
∣∣ for any f, g ∈ H. Choose the larger of the two to be fL and the smaller of the

two to be fS such that ∣∣ ∥f∥ − ∥g∥
∣∣ = ∥fL∥ − ∥fS∥
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Then using (2), which we already proved, we get that

∥fL∥ − ∥fS∥ = ∥fL − fS + fS∥ − ∥fS∥
≤ (∥fL − fS∥+ ∥fS∥)− ∥fS∥
≤ ∥fL − fS∥

Additionally, it is easy to check that ∥fL − fS∥ = ∥fS − fL∥. Therefore,∣∣ ∥f∥ − ∥g∥
∣∣ ≤ ∥f − g∥ .

■

References

1. W. O. Amrein, Hilbert Space Methods in Quantum Mechanics, eng (EPFL Press [u.a.], Lausanne, 1. ed,
2009), isbn: 9781420066814.

3


