Question and Answer

Reminder:
Definition 0.1 (The set of locally integrable functions on $\mathbb{R}^{n} ; L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$).

$$
L_{l o c}^{1}\left(\mathbb{R}^{n}\right):=\left\{h: \mathbb{R}^{n} \rightarrow \mathbb{K}\left|\int_{B_{r}(Y)}\right| h(X) \mid d X<\infty \text { for any } r>0, Y \in \mathbb{R}^{n}\right\}
$$

Question: Do the functions $\frac{1}{x}$ and $\ln (|x|)$ on \mathbb{R} belong to $L_{l o c}^{1}(\mathbb{R})$?
Answer [Professor]: Going to infinity at one point does not mean anything for $L_{l o c}^{1}(\mathbb{R})$. For example, the function $1 / x$ is not in $L_{l o c}^{1}(\mathbb{R})$. Indeed, take the improper Riemann integral

$$
\lim _{\epsilon \searrow 0} \int_{\epsilon}^{1} \frac{1}{x} d x=\left.\lim _{\epsilon \searrow 0} \ln (x)\right|_{\epsilon} ^{1}=-\lim _{\epsilon \searrow 0} \ln (\epsilon)=\infty .
$$

On the other hand, the function $\ln (|x|)$ is in $L_{l o c}^{1}(\mathbb{R})$. Indeed,

$$
\lim _{\epsilon \searrow 0} \int_{\epsilon}^{1} \ln (|x|) d x=\left.\lim _{\epsilon \searrow 0}(|x| \ln (|x|)-|x|)\right|_{\epsilon} ^{1}=-1-\lim _{\epsilon \searrow 0}(\epsilon \ln (\epsilon)-\epsilon)=-1,
$$

where we used the rule of de L'Hospital;

$$
\lim _{\epsilon \searrow 0}(\epsilon \ln (\epsilon))=\frac{\lim _{\epsilon \searrow 0} \ln (\epsilon)^{\prime}}{\lim _{\epsilon \searrow 0} 1 / \epsilon}=\lim _{\epsilon \searrow 0}(-\epsilon)=0 .
$$

Thus, $\ln (|x|)$ is locally integrable on $[0,1]$, and also on $[-1,0]$ since $\ln (|x|)$ is an even function. Hence, $\ln (|x|)$ is locally integrable on \mathbb{R}.

