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This document will discuss two theorems on linear operators, which are called ‘Riesz Lemma’
and ‘Neumann Series ’.

I Riesz Lemma

In this section, we will see the proof of ‘Riesz Lemma’ whose argument is here:

Riesz Lemma� �
For any φ ∈ H, there exists a unique g ∈ H such that for any f ∈ H

φ(f) = ⟨g, f⟩

In addition, g satisfies ||φ||H = ||g||.� �
I will provide the proof of this theorem by three steps.
On the uniqueness
Let’s take an element g′ ∈ H which satisfies φ(f) = ⟨g′, f⟩. As φ(f) is equal to ⟨g, f⟩, we
can get ⟨g, f⟩ = ⟨g′, f⟩. By the property of inner product: linearity in the second argument,
⟨g − g′, f⟩ = 0. You can get g − g′ = 0 i.e., g = g′ since the element f ∈ H is arbitrary, which
implies that you can take f as g − g′.
On the existence of the above g
When you define a set M = {f ∈ H|φ(f) = 0}, M ⊊ H (this means that M is included in
H but is not equal to H). Note that this set M is closed. Therefore, we can apply ‘Projection
Theorem’ to M, and we can conclude that ,for any h ∈ H such that φ(h) is not equal to 0,

we can decompose h = h1 + h2 with h1 ∈ M and h2 ∈ M⊥. Since φ(f − φ(f)
φ(h2)

h2) = 0 (∵ the

linearity of function φ), which implies f − φ(f)
φ(h2)

h2 ∈ M. As h2 ∈ M⊥,
⟨
h2, f − φ(f)

φ(h2)
h2

⟩
= 0.

This equation is equivalent to

⟨h2, f⟩ =
φ(f)

φ(h2)
||h2||2 ⇐⇒ φ(f) =

φ(h2)

||h2||2
⟨h2, f⟩

When you set g = φ(h2)
||h2||2h2, you can get the equation: φ(f) = ⟨g, f⟩.

In conclusion, there is at least one g which satisfies the statement. (Even though we know this
g is unique from the above argument)
On the equation ||φ||H = ||g||
When you take f such that the norm of f is equal to 1, using Schwarz inequality,

|φ(f)| = | ⟨g, f⟩ | ≤ ||f || ||g|| = ||g||

When you set f = g
||g|| ,

||g|| = φ(g)

||g||
= φ(f) ≤ supφ(f) = ||φ||

Therefore the equation holds.



SML(Introduction to functional analysis)
Page 2

July 14, 2023
By Haruki Tsunekawa

II Neumann Series

Let’s begin with the definition of Neunmann Series.

Neumann Series� �
If B ∈ B(H) and ||B|| < 1, then the operator 1-B is invertible in B(H), with

(1-B)−1 =
∞∑
n=0

Bn

and with ||(1-B)−1|| ≤ (1− ||B||)−1. The series converges in the uniform norm of B(H).� �
Before proving this, we will provide a part of solutions of Exercise 3.2.4 in the lecture note.
For any A,B∈ B(H), ||AB|| ≤ ||A|| ||B||.
proof.
By the definition of the norm: ||C|| = sup ||Cf ||

||f || , we can conclude that

||C|| ≥ ||Cf ||
||f || ⇐⇒ ||Cf || ≤ ||C|| ||f || (∀C ∈ B(H)). From the above arguments, we obtain

||ABf || ≤ ||A|| ||Bf || ≤ ||A|| ||B|| ||f ||

Extending this argument, we can easily get ||Bn|| ≤ ||B||n.
Now, we will see the proof of Neumann Series.

Since ||B|| < 1,
∞∑
n=0

||B||n converges. Also, as we discussed before, ||Bn|| ≤ ||B||n

Combining the above two properties with the following inequation, one has, for any m ≥ n+ 1,

||
m∑
k=0

Bk −
n∑

k=0

Bk|| = ||
m∑

k=n+1

Bk|| ≤
∞∑

k=n+1

||Bk|| ≤
∞∑

k=n+1

||B||k −→ 0 (n → ∞)

We can say that
m∑
k=0

Bk is Cauchy sequence. As we can see in the page 31 on the lecture note,

B(H) is complete so there exists the limit: B’ of this sequence in B(H). Using this B’,

BB’ = B’B =
∞∑
k=0

Bk+1 =
∞∑
k=0

Bk − 1 = B’− 1

⇐⇒ (1−B)B’ = B’(1−B) = 1

This equation shows that the inverse of 1−B is B’.
In addition,

||(1−B)−1|| = ||B’|| = ||
∞∑
k=0

Bk|| ≤
∞∑
k=0

||B||k =
1

1− ||B||
.


