This document will discuss two theorems on linear operators, which are called '*Riesz Lemma*' and '*Neumann Series*'.

I Riesz Lemma

Riesz Lemma

In this section, we will see the proof of 'Riesz Lemma' whose argument is here:

For any $\varphi \in \mathcal{H}$, there exists a unique $g \in \mathcal{H}$ such that for any $f \in \mathcal{H}$

 $\varphi(f) = \langle g, f \rangle$

In addition, g satisfies $||\varphi||_{\mathcal{H}} = ||g||$.

I will provide the proof of this theorem by three steps.

On the uniqueness

Let's take an element $g' \in \mathcal{H}$ which satisfies $\varphi(f) = \langle g', f \rangle$. As $\varphi(f)$ is equal to $\langle g, f \rangle$, we can get $\langle g, f \rangle = \langle g', f \rangle$. By the property of inner product: linearity in the second argument, $\langle g - g', f \rangle = 0$. You can get g - g' = 0 i.e., g = g' since the element $f \in \mathcal{H}$ is arbitrary, which implies that you can take f as g - g'.

On the existence of the above \boldsymbol{g}

When you define a set $\mathcal{M} = \{f \in \mathcal{H} | \varphi(f) = 0\}, \ \mathcal{M} \subsetneq \mathcal{H}$ (this means that \mathcal{M} is included in \mathcal{H} but is not equal to \mathcal{H}). Note that this set \mathcal{M} is closed. Therefore, we can apply '*Projection Theorem*' to \mathcal{M} , and we can conclude that ,for any $h \in \mathcal{H}$ such that $\varphi(h)$ is not equal to 0, we can decompose $h = h_1 + h_2$ with $h_1 \in \mathcal{M}$ and $h_2 \in \mathcal{M}^{\perp}$. Since $\varphi(f - \frac{\varphi(f)}{\varphi(h_2)}h_2) = 0$ (: the linearity of function φ), which implies $f - \frac{\varphi(f)}{\varphi(h_2)}h_2 \in \mathcal{M}$. As $h_2 \in \mathcal{M}^{\perp}$, $\langle h_2, f - \frac{\varphi(f)}{\varphi(h_2)}h_2 \rangle = 0$. This equation is equivalent to

$$\langle h_2, f \rangle = \frac{\varphi(f)}{\varphi(h_2)} ||h_2||^2 \iff \varphi(f) = \frac{\varphi(h_2)}{||h_2||^2} \langle h_2, f \rangle$$

When you set $g = \frac{\overline{\varphi(h_2)}}{||h_2||^2} h_2$, you can get the equation: $\varphi(f) = \langle g, f \rangle$. In conclusion, there is at least one g which satisfies the statement. (Even though we know this g is unique from the above argument)

On the equation $||\varphi||_{\mathcal{H}} = ||g||$

When you take f such that the norm of f is equal to 1, using Schwarz inequality,

$$|\varphi(f)|=|\left\langle g,f\right\rangle |\leq ||f||\,||g||=||g||$$

When you set $f = \frac{g}{||g||}$,

$$||g|| = \frac{\varphi(g)}{||g||} = \varphi(f) \le \sup \varphi(f) = ||\varphi||$$

Therefore the equation holds.

II Neumann Series

Let's begin with the definition of *Neunmann Series*.

Neumann Series If $B \in \mathcal{B}(\mathcal{H})$ and ||B|| < 1, then the operator 1-B is invertible in B(H), with $(1-B)^{-1} = \sum_{n=0}^{\infty} B^n$

and with $||(1-B)^{-1}|| \leq (1-||B||)^{-1}$. The series converges in the uniform norm of $\mathcal{B}(\mathcal{H})$.

Before proving this, we will provide a part of solutions of Exercise 3.2.4 in the lecture note. For any $\mathbf{A}, \mathbf{B} \in \mathcal{B}(\mathcal{H}), ||\mathbf{A}\mathbf{B}|| \leq ||\mathbf{A}|| ||\mathbf{B}||$.

proof.

By the definition of the norm: $||C|| = \sup \frac{||Cf||}{||f||}$, we can conclude that $||C|| \ge \frac{||Cf||}{||f||} \iff ||Cf|| \le ||C|| ||f|| \ (\forall C \in \mathcal{B}(\mathcal{H}))$. From the above arguments, we obtain

 $||\mathbf{A}\mathbf{B}f|| \leq ||\mathbf{A}|| \, ||\mathbf{B}f|| \leq ||\mathbf{A}|| \, ||\mathbf{B}|| \, ||f||$

Extending this argument, we can easily get $||\mathbf{B}^n|| \leq ||\mathbf{B}||^n$. Now, we will see the proof of *Neumann Series*.

Since $||\mathbf{B}|| < 1$, $\sum_{n=0}^{\infty} ||B||^n$ converges. Also, as we discussed before, $||\mathbf{B}^n|| \le ||\mathbf{B}||^n$ Combining the above two properties with the following inequation, one has, for any $m \ge n+1$,

$$||\sum_{k=0}^{m} \mathbf{B}^{k} - \sum_{k=0}^{n} \mathbf{B}^{k}|| = ||\sum_{k=n+1}^{m} \mathbf{B}^{k}|| \le \sum_{k=n+1}^{\infty} ||\mathbf{B}^{k}|| \le \sum_{k=n+1}^{\infty} ||\mathbf{B}||^{k} \longrightarrow 0 \ (n \to \infty)$$

We can say that $\sum_{k=0}^{m} \mathbf{B}^{k}$ is Cauchy sequence. As we can see in the page 31 on the lecture note, $\mathcal{B}(\mathcal{H})$ is complete so there exists the limit: **B**' of this sequence in $\mathcal{B}(\mathcal{H})$. Using this **B**',

$$\mathbf{BB'} = \mathbf{B'B} = \sum_{k=0}^{\infty} \mathbf{B}^{k+1} = \sum_{k=0}^{\infty} \mathbf{B}^k - \mathbf{1} = \mathbf{B'} - \mathbf{1}$$
$$\iff (\mathbf{1} - \mathbf{B})\mathbf{B'} = \mathbf{B'}(\mathbf{1} - \mathbf{B}) = \mathbf{1}$$

This equation shows that the inverse of 1 - B is **B**'. In addition,

$$||(\mathbf{1} - \mathbf{B})^{-1}|| = ||\mathbf{B'}|| = ||\sum_{k=0}^{\infty} \mathbf{B}^k|| \le \sum_{k=0}^{\infty} ||\mathbf{B}||^k = \frac{1}{1 - ||\mathbf{B}||}.$$