\boldsymbol{L}^{p}

This report shows some properties and theorems on L^{1} and L^{p}. The main point of this report is to provide the proof of Hölder's inequality and Minkowski's inequality. Those statements are indicated below:

Hölder's inequality and Minkowski's inequality

Hölder's inequality

Let $p, q>1$ satisfy $\frac{1}{p}+\frac{1}{q}=1$, and consider $f \in L^{p}(\Omega)$ and $g \in L^{q}(\Omega)$. Then the product $f g$ belongs to $L^{1}(\Omega)$ and the following inequality holds:

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

Minkowski's inequality
For $p \geq 1$ and for any $f, g \in L^{p}(\Omega)$ one has

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Hölder's inequality

We were discussing about L^{1}-spaces in the previous section. In this section, we will see L^{p}-spaces, more precisely, we will see two theorems and their proofs, named 'Hölder's inequality' and 'Minkowski's inequality'. Both of those theorems show us the strong connection among L^{p}-spaces ($p \in \mathbb{R}_{\geq 1}$).
Let's begin with 'Hölder's inequality'. The statement of this theorem is below:
Hölder's inequality
Let $p, q>1$ satisfy $\frac{1}{p}+\frac{1}{q}=1$, and consider $f \in L^{p}(\Omega)$ and $g \in L^{q}(\Omega)$. Then the product $f g$ belongs to $L^{1}(\Omega)$ and the following inequality holds:

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

Before going on this proof, we have to accept one fact(Lemma 2.6.9. in the lecture note):

$$
\text { for any } a, b \geq 0, a b \leq p^{-1} a^{p}+q^{-1} b^{q}
$$

This inequality is natural if you consider the function $\log t$ which is convex downward. More accurately, as $p^{-1}, q^{-1}>0, p^{-1}+q^{-1}=1$,

$$
\begin{equation*}
\log \left(p^{-1} a^{p}+q^{-1} b^{q}\right) \geq p^{-1} \log \left(a^{p}\right)+q^{-1} \log \left(b^{q}\right)=\log (a b) \tag{ட}
\end{equation*}
$$

Proof.

If $\|f\|_{p}=0$ or $\|g\|_{q}=0$, then $f g=0$ a.e. so we will consider $\|f\|_{p} \neq 0$ and $\|g\|_{q} \neq 0$. Set $a=\frac{|f(x)|}{\|f\|_{p}}$,
$b=\frac{|g(x)|}{\|g\|_{q}}$, then we can employ (\nvdash) for this a, b and get

$$
\begin{aligned}
\frac{1}{\|f\|_{p}\|g\|_{q}}\left|\int_{\Omega} f(x) g(x) d x\right| & \leq \int_{\Omega} \frac{|f(x)|}{\|f\|_{p}} \frac{|g(x)|}{\|g\|_{q}} d x \\
& \leq \int_{\Omega}\left\{\frac{|f(x)|^{p}}{p\|f\|_{p}^{p}}+\frac{|g(x)|^{q}}{q\|g\|_{q}^{q}}\right\} d x \\
& =\frac{1}{p\|f\|_{p}^{p}} \int_{\Omega}^{|f(x)|^{p} d x+\frac{1}{q\|g\|_{q}^{q}} \int_{\Omega}|g(x)|^{q} d x} \\
& =\frac{1}{p}+\frac{1}{q}=1
\end{aligned}
$$

To put it simply,

$$
\int_{\Omega}|f(x) g(x)| d x \leq\|f(x)\|_{p}\|g(x)\|_{q}
$$

The right side of this equation is exactly what we examined in the last section: $L^{1}(\Omega)$ norm. That's why Hölder's inequality holds.

In the special case: $p=q=2$, this inequality is called Schwarz's inequality.

556555555655555655556

Schwarz's inequality: $\|f g\|_{1} \leq\|f\|_{2}\|g\|_{2}$

Minkowski's inequality

Secondly, let's move froward to next theorem called Minkowski's inequality whose statement is here:

- Minkowski's inequality

For $p \geq 1$ and for any $f, g \in L^{p}(\Omega)$ one has

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Same as the former proof, we have to use one fact here for proving this statement:

$$
\text { For any } a, b \geq 0,(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)
$$

This inequality is true because the function $\frac{(1+t)^{p}}{1+t^{p}}(t \geq 0)$ reaches max point $\left(2^{p-1}\right)$ when $t=1$.

Proof.

If $p=1$, then the statement is equivalent to the triangle inequality which is true in $L^{1}(\Omega)\left(\because L^{1}(\Omega)\right.$ is Banach space). From now on, we assume $p>1$. When we utilize (()),

$$
|f(x)+g(x)|^{p} \leq\left(|f(x)|+\left.|g(x)|\right|^{p} \leq 2^{p-1}\left(|f(x)|^{p}+|g(x)|^{p}\right)\right.
$$

and this inequality implies that $f+g \in L^{p}(\Omega)$. As $p^{-1}+q^{-1}=1 \Longrightarrow q=\frac{p}{p-1},|f+g|^{p-1} \in L^{q}(\Omega)(\because$ Hölder's inequality). Therefore,

$$
\begin{aligned}
\int_{\Omega}|f(x)+g(x)|^{p} d x & \leq \int_{\Omega}|f(x)+g(x)|^{p-1}|f(x)| d x+\int_{\Omega}|f(x)+g(x)|^{p-1}|g(x)| d x \\
& \leq\left(\int_{\Omega}|f(x)+g(x)|^{p} d x\right)^{\frac{1}{q}}\left\{\left(\int_{\Omega}|f(x)|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{\Omega}|g(x)|^{p} d x\right)^{\frac{1}{p}}\right\}
\end{aligned}
$$

(Remark: the second inequality is from Hölder's inequality)
By dividing the previous inequality by $\left(\int_{\Omega}|f(x)+g(x)|^{p} d x\right)^{\frac{1}{4}}$, one gets

$$
\begin{aligned}
\left(\int_{\Omega}|f(x)+g(x)|^{p} d x\right)^{\frac{1}{p}} & =\left(\int_{\Omega}|f(x)+g(x)|^{p} d x\right)^{1-\frac{1}{q}} \\
& \leq\left(\int_{\Omega}|f(x)|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{\Omega}|g(x)|^{p} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

,which implies the statement of Minkowski's inequality.
In the end of this chapter, we will look at one interesting fact:
Proposition 1
Whenever $|\Omega|<\infty$, if $p_{1}<p_{2}$, then $L^{p_{2}}(\Omega) \subset L^{p_{1}}(\Omega)$ and $\|f\|_{p_{1}} \leq|\Omega|^{\frac{p_{2}-p_{1}}{p_{1} p_{2}}}\|f\|_{p_{2}}$

Proof. By applying the Hölder's inequality to the function f with $p=\frac{p_{2}}{p_{1}}>1$ and $q=\frac{p_{2}}{p_{2}-p_{1}}$, we get

$$
\int_{\Omega}|f(x)|^{p_{1}} d x \leq\left(\int_{\Omega}|f(x)|^{p_{2}}\right)^{\frac{p_{1}}{p_{2}}}\left(\int_{\Omega} d x\right)^{\frac{p_{2}-p_{1}}{p_{2}}}=\|f\|_{p_{2}}^{p_{1}|\Omega|^{\frac{p_{2}-p_{1}}{p_{2}}} ~}
$$

