This report shows the proof of the property on ordering the partial derivatives in any convenient order.:

If $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and for any $j, k \in 1,2, \ldots, n$ one has

$$
\partial_{j}\left[\partial_{k} f\right]=\partial_{k}\left[\partial_{j} f\right]
$$

To prove this statement, we have to accept one result: the mean value theorem. This theorem's statement is here:

Suppose f is a function which satisfies both of the following.

1. f is continuous on the closed interval $[a, b]$
2. f is differentiable on the open interval (a, b)

Then there is a number $c \in(a, b)$ such that $f(b)-f(a)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}(b-a)$
This theorem is rewritten as
For any $n \in \mathbb{N}$, when $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$, and for any $\mathrm{X} \in \mathbb{R}^{n}$, the following equation is true with given closed set $\left[\left[a_{1}, b_{1}\right] \ldots,\left[a_{j}, b_{j}\right], \ldots,\left[a_{n}, b_{n}\right]\right]$:

$$
f\left(X+h E_{j}\right)-f(X)=\partial_{j} f(P)\left(b_{j}-a_{j}\right) \text { with } \operatorname{Pr}_{j}(P) \in\left(a_{j}, b_{j}\right)
$$

Remark: $P r_{j}$ is a function $\mathbb{R}^{n} \rightarrow \mathbb{R},\left(x_{1}, x_{2}, \ldots, x_{j}, \ldots, x_{n}\right)^{t} \mapsto x_{j}$.
It's time to go back to topic.
Obviously, to prove the property, all we have to do is prove the following statement (this statement is equal to the case: $n=2$):

If $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and we have

$$
\partial_{x}\left[\partial_{y} f(x, y)\right]=\partial_{y}\left[\partial_{x} f(x, y)\right]
$$

Therefore, we will see why the above statement is true.
We set $\varphi(x)=f(x, y+\Delta y)-f(x, y)$. As $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and $C^{\infty}\left(\mathbb{R}^{2}\right) \subset C^{0}\left(\mathbb{R}^{2}\right)$, we can use mean value theorem for this φ, which implies
there exists $\theta_{1} \in(0,1)$ s.t.

$$
\varphi(x+\Delta x)-\varphi(x)=\varphi^{\prime}\left(x+\theta_{1} \Delta x\right) \Delta x=\left[\partial_{x} f\left(x+\theta_{1} \Delta x, y+\Delta y\right)-\partial_{x} f\left(x+\theta_{1} \Delta x, y\right)\right] \Delta x
$$

Note the function in the above bracket is a function of y. Then we can use mean value theorem again on this function:

$$
\left[\partial_{x} f\left(x+\theta_{1} \Delta x, y+\Delta y\right)-\partial_{x} f\left(x+\theta_{1} \Delta x, y\right)\right] \Delta x=\partial_{y} \partial_{x} f\left(x+\theta_{1} \Delta x, y+\theta_{2} \Delta y\right) \Delta x \Delta y
$$

with $\theta_{2} \in(0,1)$.
On the other hand, if we set

$$
\partial_{y} \partial_{x} f\left(x+\theta_{1} \Delta x, y+\theta_{2} \Delta y\right)=\partial_{y} \partial_{x} f(x, y)+\varepsilon(\Delta x, \Delta y)
$$

,because $\partial_{y} \partial_{x} f$ is continuous $\left(\because f \in C^{\infty}\left(\mathbb{R}^{2}\right)\right)$, when $\Delta x, \Delta y \rightarrow 0, \varepsilon(\Delta x, \Delta y) \rightarrow 0$. Also, we can conclude

$$
\varphi(x+\Delta x)-\varphi(x)=\left\{\partial_{y} \partial_{x} f(x, y)+\varepsilon(\Delta x, \Delta y)\right\} \Delta x \Delta y
$$

Dividing this equation by Δy, and, after that, if $\Delta y \rightarrow 0$, we can get this equation:

$$
\left\{\partial_{y} \partial_{x} f(x, y)+\lim _{\Delta y \rightarrow 0} \varepsilon(\Delta x, \Delta y)\right\} \Delta x=\lim _{\Delta y \rightarrow 0}\left\{\frac{\varphi(x+\Delta x)}{\Delta y}-\frac{\varphi(x)}{\Delta y}\right\}=\partial_{y} f(x+\Delta x)-\partial_{y} f(x)
$$

Therefore, we can conclude

$$
\partial_{y} \partial_{x} f(x, y)=\frac{\partial_{y} f(x+\Delta x)-\partial_{y} f(x)}{\Delta x}-\lim _{\Delta y \rightarrow 0} \varepsilon(\Delta x, \Delta y)
$$

Considering $\Delta x \rightarrow 0$, we finally get

$$
\partial_{y} \partial_{x} f(x, y)=\partial_{x} \partial_{y} f(x, y)
$$

