This report shows the proof of the property on ordering the partial derivatives in any convenient order.:

If $f \in C^{\infty}(\mathbb{R}^n)$ and for any $j, k \in 1, 2, ..., n$ one has

 $\partial_j[\partial_k f] = \partial_k[\partial_j f]$

To prove this statement, we have to accept one result: the mean value theorem. This theorem's statement is here:

Suppose f is a function which satisfies both of the following.

1. f is continuous on the closed interval [a, b]

2. f is differentiable on the open interval (a, b)

Then there is a number $c \in (a, b)$ such that $f(b) - f(a) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} (b-a)$

This theorem is rewritten as

For any $n \in \mathbb{N}$, when $f \in C^{\infty}(\mathbb{R}^n)$, and for any $X \in \mathbb{R}^n$, the following equation is true with given closed set $[[a_1, b_1]..., [a_j, b_j], ..., [a_n, b_n]]$:

$$f(X + hE_j) - f(X) = \partial_j f(P) (b_j - a_j) \text{ with } Pr_j(P) \in (a_j, b_j)$$

Remark: Pr_j is a function $\mathbb{R}^n \to \mathbb{R}$, $(x_1, x_2, ..., x_j, ..., x_n)^t \mapsto x_j$. It's time to go back to topic.

Obviously, to prove the property, all we have to do is prove the following statement (this statement is equal to the case: n = 2):

If $f \in C^{\infty}(\mathbb{R}^2)$ and we have

$$\partial_x [\partial_y f(x, y)] = \partial_y [\partial_x f(x, y)]$$

Therefore, we will see why the above statement is true.

We set $\varphi(x) = f(x, y + \Delta y) - f(x, y)$. As $f \in C^{\infty}(\mathbb{R}^2)$ and $C^{\infty}(\mathbb{R}^2) \subset C^0(\mathbb{R}^2)$, we can use mean value theorem for this φ , which implies there exists $\theta_1 \in (0, 1)$ s.t.

$$\varphi(x + \Delta x) - \varphi(x) = \varphi'(x + \theta_1 \Delta x) \Delta x = [\partial_x f(x + \theta_1 \Delta x, y + \Delta y) - \partial_x f(x + \theta_1 \Delta x, y)] \Delta x.$$

Note the function in the above bracket is a function of y. Then we can use mean value theorem again on this function:

$$[\partial_x f(x+\theta_1 \Delta x, y+\Delta y) - \partial_x f(x+\theta_1 \Delta x, y)] \Delta x = \partial_y \partial_x f(x+\theta_1 \Delta x, y+\theta_2 \Delta y) \Delta x \Delta y$$

with $\theta_2 \in (0, 1)$. On the other hand, if we set

$$\partial_y \partial_x f(x + \theta_1 \Delta x, y + \theta_2 \Delta y) = \partial_y \partial_x f(x, y) + \varepsilon(\Delta x, \Delta y)$$

, because $\partial_y \partial_x f$ is continuous ($:f \in C^{\infty}(\mathbb{R}^2)$), when $\Delta x, \Delta y \to 0$, $\varepsilon(\Delta x, \Delta y) \to 0$. Also, we can conclude

$$\varphi(x + \Delta x) - \varphi(x) = \{\partial_y \partial_x f(x, y) + \varepsilon(\Delta x, \Delta y)\} \Delta x \Delta y$$

SML (Introduction to functional analysis) Name: Haruki Tsunekawa Student ID: 062200990

Dividing this equation by Δy , and, after that, if $\Delta y\,\rightarrow\,0,$ we can get this equation:

$$\{\partial_y \partial_x f(x,y) + \lim_{\Delta y \to 0} \varepsilon(\Delta x, \Delta y)\} \Delta x = \lim_{\Delta y \to 0} \{\frac{\varphi(x + \Delta x)}{\Delta y} - \frac{\varphi(x)}{\Delta y}\} = \partial_y f(x + \Delta x) - \partial_y f(x)$$

Therefore, we can conclude

$$\partial_y \partial_x f(x,y) = \frac{\partial_y f(x+\Delta x) - \partial_y f(x)}{\Delta x} - \lim_{\Delta y \to 0} \varepsilon(\Delta x, \Delta y)$$

Considering $\Delta x \to 0$, we finally get

$$\partial_y \partial_x f(x, y) = \partial_x \partial_y f(x, y) \quad \Box$$