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Exercise 1.5.1

Prove some of the properties of Fourier Transform which is given as follows. For f, g ∈ L1(Rn):

1. F is a linear map on L1(Rn),

2.
∣∣∣f̂(ξ)∣∣∣ ≤ 1

(2π)n/2

∫
Rn |f(X)|dX,

3. f̂ belongs to C0(Rn), meaning that f̂ is a continuous function on Rn satisfying lim||ξ||→∞ f̂(ξ) =

0,

4. F(f ∗ g) = f̂ ∗ g = f̂ ĝ, where the convolution of f and g is defined by

[f ∗ g](X) =
1

(2π)n/2

∫
Rn

f(X − Y )g(Y )dY,

5. If ∂jf exists and belong to L1(Rn), then

[F(−i∂jf)](ξ) ≡ [−̂i∂jf ](ξ) = ξj f̂(ξ).

Proof:

1. From the definition of Fourier transform of functions f, g ∈ L1(Rn), one has

[F(af + g)](ξ) =
1

(2π)n/2

∫
Rn

e−iξ·X{af(X) + g(X)}dX

= a
1

(2π)n/2

∫
Rn

e−iξ·Xf(X)dX +
1

(2π)n/2

∫
Rn

e−iξ·Xg(X)dX

= a[Ff ](ξ) + [Fg](ξ)

for some constant a ∈ R. Hence, F is a linear map on L1(Rn)
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2. For f ∈ L1(Rn), let us express
∣∣∣f̂(ξ)∣∣∣

∣∣∣f̂(ξ)∣∣∣ = ∣∣∣∣ 1

(2π)n/2

∫
Rn

e−iξ·Xf(X)dX

∣∣∣∣
=

1

(2π)n/2

∣∣∣∣∫
Rn

e−iξ·Xf(X)dX

∣∣∣∣
≤ 1

(2π)n/2

∫
Rn

∣∣∣e−iξ·X
∣∣∣ |f(X)| dX

=
1

(2π)n/2

∫
Rn

|f(X)| dX

where we have used the equality
∣∣e−iξ·X ∣∣ = 1 which holds true whatever the value of ξ ·X is.

Hence, one has ∣∣∣f̂(ξ)∣∣∣ ≤ 1

(2π)n/2

∫
Rn

|f(X)| dX.

3. We show only the continuity of f̂ . Consider η ∈ Rn such that one has

f̂(ξ + η)− f̂(ξ) =
1

(2π)n/2

∫
Rn

(
e−i(ξ+η)·X − e−iξ·X

)
f(X)dX

=
1

(2π)n/2

∫
Rn

e−iξ·X (
e−iη·X − 1

)
f(X)dX.

For any f ∈ L1 and ε > 0, we can find r > 0 such that

1

(2π)n/2

∫
Rn\Br(0)

|f(X)|dX <
ε
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which comes from the definition of L1. For finite n, let δ = (2π)n/2ε
2r||f ||L1

and for x ∈ Br(0) and

|η| < δ, one has

|e−iη·X − 1| ≤ |iη ·X| ≤ |η||X| ≤ (2π)n/2ε

2||f ||L1

where we have used Cauchy-Schwarz inequality for the inner product.

Claim: For x ∈ R, the inequality |e−ix − 1| ≤ |x| holds true.
Proof: Let us express |e−ix − 1| explicitly

|e−ix − 1| = |(cosx− 1)− i sinx| =
√
2− 2 cosx = 2

∣∣∣sin(x
2

)∣∣∣ ≤ 2
∣∣∣x
2

∣∣∣ = |x|.

We have proved the claim.

Observe that for all η ·X, one has

|e−iη·X − 1| ≤ 2

2



Then, for |η| < δ, one has∣∣∣f̂(ξ + η)− f̂(ξ)
∣∣∣ ≤ 1

(2π)n/2

∫
Rn

∣∣e−iη·X − 1
∣∣ |f(X)|dX

=
1

(2π)n/2

∫
Rn\Br(0)

∣∣e−iη·X − 1
∣∣ |f(X)|dX +

1

(2π)n/2

∫
Br(0)

∣∣e−iη·X − 1
∣∣ |f(X)|dX

≤ ε

2
+

1

(2π)n/2
||f ||L1

(2π)n/2ε

2||f ||L1

= ε.

We have proved that f̂ is continuous.

4. From the definition, the Fourier transform of a convolution of two functions f, g ∈ L1(Rn) can

be written as

F(f ∗ g) = 1

(2π)n

∫
Rn

∫
Rn

e−iξ·Xf(X − Y )g(Y )dY dX

Let us define a new variable Z = X − Y such that X = Z + Y and one has

F(f ∗ g) = 1

(2π)n

∫
Rn

∫
Rn

e−iξ·(Z+Y )f(Z)g(Y )dZdY

=
1

(2π)n/2

∫
Rn

e−iξ·Zf(Z)dZ · 1

(2π)n/2

∫
Rn

e−iξ·Y g(Y )dY

= f̂(ξ)ĝ(ξ)

where we have used the distributive property of the scalar product in Rn.

5. Let us fix j = n, then we have the following expression

ξnf̂(ξ) = ξn
1

(2π)n

∫
Rn

e−iξ·Xf(X)dX

=
1

(2π)n

∫
Rn

ξne
−iξ·Xf(X)dX

=
1

(2π)n

∫
Rn

i

(
d

dxn
e−iξ·X

)
f(X)dX

=
1

(2π)n
i

∫
Rn−1

dx1 . . . dxn−1

∫
R
dxn

(
d

dxn
e−iξ·X

)
f(x1, . . . , xn)

=
1

(2π)n
i

∫
Rn−1

dx1 . . . dxn−1

[
lim

N→∞
e−iξ·Xf(x1, . . . , xn)

∣∣∣xn=N

xn=−N

]
− 1

(2π)n
i

∫
Rn

e−iξ·X(∂nf)(X)dX

We want to show that the limit term is equal to zero. Consider the mapping R+ ∋ m 7→ g(m) :=∫
Rn−1 dx1 . . . dxn−1e

−i
∑n−1

j=1 ξjxje−iξnmf(x1, . . . , xn−1,m) ∈ C. The map is a Cauchy sequence
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since any ϵ > 0, ∃m > 0 such that for any m1 > m2 > m, one has

|g(m1)− g(m2)| =

∣∣∣∣∣
∫
Rn−1

dx1 . . . dxn−1e
−i

∑n−1
j=1 ξjxj

(
e−iξnm1f(x1, . . . , xn−1,m1)

− e−iξnm2f(x1, . . . , xn−1,m2)
)∣∣∣∣∣

Let us set Y = (x1, . . . , xn−1) and ξ′ = (ξ1, . . . , ξn−1) such that one has

|g(m1)− g(m2)| =
∣∣∣∣∫

Rn−1

dY e−iξ′·Y
(
e−iξnm1f(Y,m1)− e−iξnm2f(Y,m2)

)∣∣∣∣
=

∣∣∣∣∫
Rn−1

dY e−iξ′·Y
(∫ m1

m2

d

ds

(
e−iξnsf(Y, s)

)
ds

)∣∣∣∣
=

∣∣∣∣∫
Rn−1

dY e−iξ′·Y
(∫ m1

m2

(
−iξne

−iξnsf(Y, s) + e−iξns∂nf(Y, s)
)
ds

)∣∣∣∣
≤

∫
Rn−1

dY

∫ m1

m2

(|ξnf(Y, s)|+ |∂nf(Y, s)|) ds

≤
∫
Rn−1

dY

∫ ∞

m2

(|ξnf(Y, s)|+ |∂nf(Y, s)|) ds

≤ ε

the expression holds true for any m large enough since f and ∂nf are in L1(Rn) by our assump-

tion. Then, by the same argument, the map R− ∋ m 7→ g(m) ∈ C is also a Cauchy sequence. In

R, the Cauchy sequence converges, which means limm→±∞ g(m) exists, which means that the 2

limit terms discussed previously exist. Let us show that g ∈ L1(R). Since f ∈ L1(Rn), one has∫
R
|g(m)|dm =

∫
R
dm

∣∣∣∣∫
Rn−1

dY e−iξ′·Y e−iξ′·mf(Y,m)

∣∣∣∣
≤

∫
R
dm

∫
Rn−1

dY |f(Y,m)|

= ||f ||L1(Rn)

Thus, g ∈ L1(R) and limm→±∞ g(m) exist and this implies that limm→±∞ g(m) = 0, otherwise

it cannot be L1(R) (Since the limit at m → ±∞ is a constant and by the condition that

g ∈ L1(R), namely the integral of |g| over R is bounded, then the constant of that limit has to

be equal to zero). Hence, for the expression that we had previously, for any j = 1, 2, . . . , n, one

has

ξj f̂(ξ) = − 1

(2π)n
i

∫
Rn

e−iξ·X(∂jf)(X)dX

= −i[F(∂jf)](ξ)

= [F(−i∂jf)](ξ)
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