Properties of Fourier Transform

SEKIYA Emika, FIRDAUS Rafi Rizqy

Special Mathematics Lecture: Introduction to Functional Analysis (Spring 2023)

Exercise 1.5.1

Prove some of the properties of Fourier Transform which is given as follows. For $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$:

1. \mathcal{F} is a linear map on $L^{1}\left(\mathbb{R}^{n}\right)$,
2. $|\hat{f}(\xi)| \leq \frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}|f(X)| d X$,
3. \hat{f} belongs to $C_{0}\left(\mathbb{R}^{n}\right)$, meaning that \hat{f} is a continuous function on \mathbb{R}^{n} satisfying $\lim _{\|\xi\| \rightarrow \infty} \hat{f}(\xi)=$ 0 ,
4. $\mathcal{F}(f * g)=\widehat{f * g}=\hat{f} \hat{g}$, where the convolution of f and g is defined by

$$
[f * g](X)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} f(X-Y) g(Y) d Y,
$$

5. If $\partial_{j} f$ exists and belong to $L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\left[\mathcal{F}\left(-i \partial_{j} f\right)\right](\xi) \equiv\left[\widehat{-i \partial_{j} f}\right](\xi)=\xi_{j} \hat{f}(\xi) .
$$

Proof:

1. From the definition of Fourier transform of functions $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$, one has

$$
\begin{aligned}
{[\mathcal{F}(a f+g)](\xi) } & =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot X}\{a f(X)+g(X)\} d X \\
& =a \frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot X} f(X) d X+\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot X} g(X) d X \\
& =a[\mathcal{F} f](\xi)+[\mathcal{F} g](\xi)
\end{aligned}
$$

for some constant $a \in \mathbb{R}$. Hence, \mathcal{F} is a linear map on $L^{1}\left(\mathbb{R}^{n}\right)$
2. For $f \in L^{1}\left(\mathbb{R}^{n}\right)$, let us express $|\hat{f}(\xi)|$

$$
\begin{aligned}
|\hat{f}(\xi)| & =\left|\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot X} f(X) d X\right| \\
& =\frac{1}{(2 \pi)^{n / 2}}\left|\int_{\mathbb{R}^{n}} e^{-i \xi \cdot X} f(X) d X\right| \\
& \leq \frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}\left|e^{-i \xi \cdot X}\right||f(X)| d X \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}|f(X)| d X
\end{aligned}
$$

where we have used the equality $\left|e^{-i \xi \cdot X}\right|=1$ which holds true whatever the value of $\xi \cdot X$ is. Hence, one has

$$
|\hat{f}(\xi)| \leq \frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}|f(X)| d X
$$

3. We show only the continuity of \hat{f}. Consider $\eta \in \mathbb{R}^{n}$ such that one has

$$
\begin{aligned}
\hat{f}(\xi+\eta)-\hat{f}(\xi) & =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}\left(e^{-i(\xi+\eta) \cdot X}-e^{-i \xi \cdot X}\right) f(X) d X \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot X}\left(e^{-i \eta \cdot X}-1\right) f(X) d X
\end{aligned}
$$

For any $f \in L^{1}$ and $\varepsilon>0$, we can find $r>0$ such that

$$
\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n} \backslash \mathcal{B}_{r}(0)}|f(X)| d X<\frac{\varepsilon}{4}
$$

which comes from the definition of L^{1}. For finite n, let $\delta=\frac{(2 \pi)^{n / 2} \varepsilon}{2 r\|f\|_{L^{1}}}$ and for $x \in \mathcal{B}_{r}(0)$ and $|\eta|<\delta$, one has

$$
\left|e^{-i \eta \cdot X}-1\right| \leq|i \eta \cdot X| \leq|\eta||X| \leq \frac{(2 \pi)^{n / 2} \varepsilon}{2\|f\|_{L^{1}}}
$$

where we have used Cauchy-Schwarz inequality for the inner product.

Claim: For $x \in \mathbb{R}$, the inequality $\left|e^{-i x}-1\right| \leq|x|$ holds true.
Proof: Let us express $\left|e^{-i x}-1\right|$ explicitly

$$
\left|e^{-i x}-1\right|=|(\cos x-1)-i \sin x|=\sqrt{2-2 \cos x}=2\left|\sin \left(\frac{x}{2}\right)\right| \leq 2\left|\frac{x}{2}\right|=|x|
$$

We have proved the claim.

Observe that for all $\eta \cdot X$, one has

$$
\left|e^{-i \eta \cdot X}-1\right| \leq 2
$$

Then, for $|\eta|<\delta$, one has

$$
\begin{aligned}
|\hat{f}(\xi+\eta)-\hat{f}(\xi)| & \leq \frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}\left|e^{-i \eta \cdot X}-1\right||f(X)| d X \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n} \backslash \mathcal{B}_{r}(0)}\left|e^{-i \eta \cdot X}-1\right||f(X)| d X+\frac{1}{(2 \pi)^{n / 2}} \int_{\mathcal{B}_{r}(0)}\left|e^{-i \eta \cdot X}-1\right||f(X)| d X \\
& \leq \frac{\varepsilon}{2}+\frac{1}{(2 \pi)^{n / 2}}\|f\|_{L^{1}} \frac{(2 \pi)^{n / 2} \varepsilon}{2\|f\|_{L^{1}}} \\
& =\varepsilon .
\end{aligned}
$$

We have proved that \hat{f} is continuous.
4. From the definition, the Fourier transform of a convolution of two functions $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$ can be written as

$$
\mathcal{F}(f * g)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot X} f(X-Y) g(Y) d Y d X
$$

Let us define a new variable $Z=X-Y$ such that $X=Z+Y$ and one has

$$
\begin{aligned}
\mathcal{F}(f * g) & =\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot(Z+Y)} f(Z) g(Y) d Z d Y \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot Z} f(Z) d Z \cdot \frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot Y} g(Y) d Y \\
& =\hat{f}(\xi) \hat{g}(\xi)
\end{aligned}
$$

where we have used the distributive property of the scalar product in \mathbb{R}^{n}.
5. Let us fix $j=n$, then we have the following expression

$$
\begin{aligned}
\xi_{n} \hat{f}(\xi)= & \xi_{n} \frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot X} f(X) d X \\
= & \frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \xi_{n} e^{-i \xi \cdot X} f(X) d X \\
= & \frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} i\left(\frac{d}{d x_{n}} e^{-i \xi \cdot X}\right) f(X) d X \\
= & \frac{1}{(2 \pi)^{n}} i \int_{\mathbb{R}^{n-1}} d x_{1} \ldots d x_{n-1} \int_{\mathbb{R}} d x_{n}\left(\frac{d}{d x_{n}} e^{-i \xi \cdot X}\right) f\left(x_{1}, \ldots, x_{n}\right) \\
= & \frac{1}{(2 \pi)^{n}} i \int_{\mathbb{R}^{n-1}} d x_{1} \ldots d x_{n-1}\left[\left.\lim _{N \rightarrow \infty} e^{-i \xi \cdot X} f\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{n}=-N} ^{x_{n}=N}\right] \\
& -\frac{1}{(2 \pi)^{n}} i \int_{\mathbb{R}^{n}} e^{-i \xi \cdot X}\left(\partial_{n} f\right)(X) d X
\end{aligned}
$$

We want to show that the limit term is equal to zero. Consider the mapping $\mathbb{R}_{+} \ni m \mapsto g(m):=$ $\int_{\mathbb{R}^{n-1}} d x_{1} \ldots d x_{n-1} e^{-i \sum_{j=1}^{n-1} \xi_{j} x_{j}} e^{-i \xi_{n} m} f\left(x_{1}, \ldots, x_{n-1}, m\right) \in \mathbb{C}$. The map is a Cauchy sequence
since any $\epsilon>0, \exists m>0$ such that for any $m_{1}>m_{2}>m$, one has

$$
\begin{aligned}
\left|g\left(m_{1}\right)-g\left(m_{2}\right)\right|= & \mid \int_{\mathbb{R}^{n-1}} d x_{1} \ldots d x_{n-1} e^{-i \sum_{j=1}^{n-1} \xi_{j} x_{j}}\left(e^{-i \xi_{n} m_{1}} f\left(x_{1}, \ldots, x_{n-1}, m_{1}\right)\right. \\
& \left.-e^{-i \xi_{n} m_{2}} f\left(x_{1}, \ldots, x_{n-1}, m_{2}\right)\right) \mid
\end{aligned}
$$

Let us set $Y=\left(x_{1}, \ldots, x_{n-1}\right)$ and $\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{n-1}\right)$ such that one has

$$
\begin{aligned}
\left|g\left(m_{1}\right)-g\left(m_{2}\right)\right| & =\left|\int_{\mathbb{R}^{n-1}} d Y e^{-i \xi^{\prime} \cdot Y}\left(e^{-i \xi_{n} m_{1}} f\left(Y, m_{1}\right)-e^{-i \xi_{n} m_{2}} f\left(Y, m_{2}\right)\right)\right| \\
& =\left|\int_{\mathbb{R}^{n-1}} d Y e^{-i \xi^{\prime} \cdot Y}\left(\int_{m_{2}}^{m_{1}} \frac{d}{d s}\left(e^{-i \xi_{n} s} f(Y, s)\right) d s\right)\right| \\
& =\left|\int_{\mathbb{R}^{n-1}} d Y e^{-i \xi^{\prime} \cdot Y}\left(\int_{m_{2}}^{m_{1}}\left(-i \xi_{n} e^{-i \xi_{n} s} f(Y, s)+e^{-i \xi_{n} s} \partial_{n} f(Y, s)\right) d s\right)\right| \\
& \leq \int_{\mathbb{R}^{n-1}} d Y \int_{m_{2}}^{m_{1}}\left(\left|\xi_{n} f(Y, s)\right|+\left|\partial_{n} f(Y, s)\right|\right) d s \\
& \leq \int_{\mathbb{R}^{n-1}} d Y \int_{m_{2}}^{\infty}\left(\left|\xi_{n} f(Y, s)\right|+\left|\partial_{n} f(Y, s)\right|\right) d s \\
& \leq \varepsilon
\end{aligned}
$$

the expression holds true for any m large enough since f and $\partial_{n} f$ are in $L^{1}\left(\mathbb{R}^{n}\right)$ by our assumption. Then, by the same argument, the map $\mathbb{R}_{-} \ni m \mapsto g(m) \in \mathbb{C}$ is also a Cauchy sequence. In \mathbb{R}, the Cauchy sequence converges, which means $\lim _{m \rightarrow \pm \infty} g(m)$ exists, which means that the 2 limit terms discussed previously exist. Let us show that $g \in L^{1}(\mathbb{R})$. Since $f \in L^{1}\left(\mathbb{R}^{n}\right)$, one has

$$
\begin{aligned}
\int_{\mathbb{R}}|g(m)| d m & =\int_{\mathbb{R}} d m\left|\int_{\mathbb{R}^{n-1}} d Y e^{-i \xi^{\prime} \cdot Y} e^{-i \xi^{\prime} \cdot m} f(Y, m)\right| \\
& \leq \int_{\mathbb{R}} d m \int_{\mathbb{R}^{n-1}} d Y|f(Y, m)| \\
& =\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

Thus, $g \in L^{1}(\mathbb{R})$ and $\lim _{m \rightarrow \pm \infty} g(m)$ exist and this implies that $\lim _{m \rightarrow \pm \infty} g(m)=0$, otherwise it cannot be $L^{1}(\mathbb{R})$ (Since the limit at $m \rightarrow \pm \infty$ is a constant and by the condition that $g \in L^{1}(\mathbb{R})$, namely the integral of $|g|$ over \mathbb{R} is bounded, then the constant of that limit has to be equal to zero). Hence, for the expression that we had previously, for any $j=1,2, \ldots, n$, one has

$$
\begin{aligned}
\xi_{j} \hat{f}(\xi) & =-\frac{1}{(2 \pi)^{n}} i \int_{\mathbb{R}^{n}} e^{-i \xi \cdot X}\left(\partial_{j} f\right)(X) d X \\
& =-i\left[\mathcal{F}\left(\partial_{j} f\right)\right](\xi) \\
& =\left[\mathcal{F}\left(-i \partial_{j} f\right)\right](\xi)
\end{aligned}
$$

