Functional Analysis

Report

Chenxi Zeng
July 26, 2023

Problem 1

Exercise 3.3.13
For the operator $A, \forall f \in \mathscr{A}$ and any family $\left\{g_{j}, h_{j}\right\}_{j=1}^{N} \subset \mathscr{H}$, defined by

$$
A f \equiv\left(\sum_{j=1}^{N}\left|h_{j}\right\rangle\left\langle g_{j}\right|\right) f:=\sum_{j=1}^{N}\left\langle g_{j}, f\right\rangle h_{j}
$$

give an upper estimate for $\|A\|$ and compute A^{*}.

Solution.

Clearly A is a bounded linear operator. Then

$$
\|A f\|=\left\|\sum_{j=1}^{N}\left\langle g_{j}, f\right\rangle h_{j}\right\| \leq \sum_{j=1}^{N} \mid\left\langle g_{j}, f\right\rangle\| \| h_{j}\left\|\leq \sum_{j=1}^{N}\right\| g_{j}\| \| h_{j}\| \| f \|
$$

so we can get

$$
\|A\| \leq \sum_{j=1}^{N}\left\|g_{j}\right\|\left\|h_{j}\right\|
$$

and $\forall f, l \in \mathscr{H}$,

$$
\langle l, A f\rangle=\sum_{j=1}^{N}\left\langle g_{j}, f\right\rangle\left\langle l, h_{j}\right\rangle=\left\langle\sum_{j=1}^{N}\left\langle h_{j}, l\right\rangle g_{j}, f\right\rangle=\left\langle A^{*} l, f\right\rangle
$$

then

$$
A^{*}=\sum_{j=1}^{N}\left|g_{j}\right\rangle\left\langle h_{j}\right|
$$

Obviously A^{*} is also a finite rank operator.

Problem 2

Exercise 3.3.15
Check that a projection P is a compact operator if and only if $P \mathscr{A}$ is of finite dimension.

Solution.

1. Let $\operatorname{dim}(P \mathscr{H})=N<\infty$. Then P is a finite rank operator. And obviously P is a compact operator(just let the $A_{j}=P, \forall j \in \mathbb{N}$).
2. Using the proof by contradiction, we need prove that: If $\operatorname{dim}(\mathscr{M}:=P \mathscr{G})=\infty$, then $P \notin \mathscr{K}(\mathscr{H})$.

Let $\operatorname{dim}(\mathscr{M})=\infty$. Then for any finite rank operator A, generally defined in Problem 1, that $\operatorname{Ran}(A) \subset \operatorname{Vect}\left(h_{1}, \ldots, h_{N}\right)$, there must exist an vector $a \neq 0, a \in \mathcal{M}$, such that $\left\langle a, h_{j}\right\rangle=0,1 \leq j \leq N$. Then $\langle a, A a\rangle=0$. So

$$
\|P-A\|=\sup _{0 \neq f \in(\mathscr{G})} \frac{\|(P-A) f\|}{\|f\|} \geq \frac{\sqrt{\langle a-A a, a-A a\rangle}}{\|a\|}=\frac{\sqrt{\|a\|^{2}+\|A a\|^{2}}}{\|a\|} \geq 1
$$

which means that for any finite rank operator $A,\|P-A\| \geq 1$. Then there doesn't exist a sequence of finite rank operator $\left\{A_{j}\right\}_{j \in \mathbb{N}}$ such that $\lim _{j \rightarrow \infty}\left\|P-A_{j}\right\|=0$. So $P \notin \mathscr{K}(\mathscr{C})$.

Problem 3

Proof the following properties for $\mathscr{K}(\mathscr{H})$:

1. $B \in \mathscr{K}(\mathscr{H}) \Longleftrightarrow B^{*} \in \mathscr{K}(\mathscr{H})$.
2. $\mathscr{K}(\mathscr{H})$ is a *-algebra, complete for the norm $\|\cdot\|$.
3. If $B \in \mathscr{K}(\mathscr{H})$ and $A \in \mathscr{B}(\mathscr{H})$, then $A B$ and $B A$ belong to $\mathscr{K}(\mathscr{H})$.

Solution.

1. If $B \in \mathscr{K}(\mathscr{G})$, then there exist a family $\left\{B_{j}\right\}_{j \in \mathbb{N}}$, such that $\lim _{j \rightarrow \infty}\left\|B-B_{j}\right\|=0$. Then $\lim _{j \rightarrow \infty}\left\|B^{*}-B_{j}^{*}\right\|=0$. We can see in Problem 1 that B_{j}^{*} is also a finite operator. So $B^{*} \in \mathscr{K}(\mathscr{H})$. Use the relation $\left(B^{*}\right)^{*}=B$ can proof the other half.
2. $\mathscr{K}(\mathscr{H})$ is clearly a vector space. Algebra, a vector space equipped with an operation of multiplication. The product of two compact operators is just the composition of two mappings: $A B f=A(B f)$. And from the $B \in \mathscr{K}(\mathscr{H}) \Leftrightarrow B^{*} \in \mathscr{K}(\mathscr{H})$ we know that $\mathscr{K}(\mathscr{G})$ is involutive, called a *-algebra.

If there is a sequence A_{n} in $\mathscr{F}(\mathscr{H}), j \in \mathbb{N}$, such that $\lim _{n \rightarrow \infty}\left\|A-A_{n}\right\|=0$. Then $\forall \epsilon>0, \exists n$, such that $\left\|A-A_{n}\right\|<\frac{\epsilon}{2}$. And there exists a family $\left\{A_{n j}\right\}_{j \in \mathbb{N}}$ of finite rank operators such that $\lim _{j \rightarrow \infty}\left\|A_{n}-A_{n j}\right\|=0$, then for the ϵ above, $\exists M \in \mathbb{N}$, such that $\forall j>M,\left\|A_{n}-A_{n j}\right\|<\frac{\epsilon}{2}$. Then we get

$$
\forall \epsilon>0, \exists n, M \in \mathbb{N}, \text { such that } \forall j>M,\left\|A-A_{n j}\right\| \leq\left\|A-A_{n}\right\|+\left\|A-A_{n j}\right\|=\epsilon
$$

which means $\lim _{j \rightarrow \infty}\left\|A-A_{n j}\right\|=0, A_{n j}$ is finite operator. So $A \in \mathscr{K}(\mathscr{H}), \mathscr{K}(\mathscr{H})$ is complete for the norm $\|\cdot\|$.
3. For $B \in \mathscr{K}(\mathscr{H})$, there exists a family $\left\{B_{n j}\right\}_{j \in \mathbb{N}}$ such that $\lim _{j \rightarrow \infty}\left\|B-B_{j}\right\|=0$. Obviously $A B_{j}, B_{j} A$ are finite operators, and

$$
\begin{gathered}
\left\|A B-A B_{j}\right\| \leq\|A\|\left\|B-B_{j}\right\| \\
\left\|B A-B_{j} A\right\| \leq\left\|B-B_{j}\right\|\|A\|
\end{gathered}
$$

then $\lim _{j \rightarrow \infty}\left\|A B-A B_{j}\right\|=\lim _{j \rightarrow \infty}\left\|B A-B_{j} A\right\|=0, A B$ and $B A \in \mathscr{K}(\mathscr{H})$.

