Definition 3.1.8 (Subspace, closed subspace). A subspace \mathcal{M} of a Hilbert space \mathcal{H} is a linear subset of \mathcal{H}, or more precisely $\forall f, g \in \mathcal{M}$ and $\lambda \in \mathbb{C}$ one has $f+\lambda g \in \mathcal{M}$. The subspace \mathcal{M} is closed if whenever a sequence
$\left(f_{j}\right)_{j \in \mathcal{N}} \subset \mathcal{M}$ converges to $f_{\infty} \in \mathcal{H}$, then $f_{\infty} \in \mathcal{M}$. In other words, a closed space contains its limit points.

Note that if \mathcal{M} is closed, then \mathcal{M} is a Hilbert space in itself, with the scalar product and norm inherited from \mathcal{H}. For the next examples, we recall that $f, g \in \mathcal{H}$ are said to be orthogonal if $\langle f, g\rangle=0$. In this case, we
is a closed subspace of \mathcal{H}.

$$
\mathcal{M}^{\perp}:=\{f \in \mathcal{H} \mid\langle f, g\rangle=0, \forall g \in \mathcal{M}\}
$$

$$
\mathcal{H} \text {. For the next examples, we recall that } f, g \in \mathcal{H} \text { are said to be orthogonal if }\langle f, g\rangle=0 \text {. In this case, we }
$$

Ex. 3.1. 10
Linear: Let $f_{1}, f_{2} \in M^{\perp}$ and $\lambda \in \mathbb{C}$

$$
\begin{aligned}
&\left\langle f_{1}+\lambda f_{2}, g\right\rangle=\left\langle f_{1}, g\right\rangle+\bar{\lambda}\left\langle f_{2}, g\right\rangle \\
&=0 \\
& f_{1}+\lambda f_{2} \in M^{+}
\end{aligned}
$$

Thus, M^{\perp} linear.
Consider a strongly converging sequence: $\left(f_{j}\right)_{j e n} \subset M^{\perp}$

$$
s-\lim _{j \rightarrow \infty} f_{j}=f_{\infty} \in \mathcal{H} \text { implies } w-\lim _{j \rightarrow \infty} f_{j}=f_{\infty}
$$

The scalar product is inherited from \mathcal{L}_{1} so $\langle f, g\rangle=\overline{\langle g, f\rangle}$

$$
\begin{aligned}
\lim _{j \rightarrow \infty}\left\langle f_{j}-f_{\infty} \cdot g\right\rangle & =\lim _{j \rightarrow \infty} \overline{\left\langle g \cdot f_{j}-f_{\infty}\right\rangle} \\
& =\overline{0} \\
& =0
\end{aligned}
$$

We obtain $\lim _{j \rightarrow \infty}\left\langle f_{j}, g\right\rangle-\left\langle f_{\infty}, g\right\rangle=0$

$$
\Rightarrow \lim _{j \rightarrow \infty}\left\langle f_{j}, g\right\rangle=\left\langle f_{\infty}, g\right\rangle
$$

$$
\forall j \in N,\left\langle f_{j}, g\right\rangle=0 \text { so }\left\langle f_{\infty}, g\right\rangle=0
$$

Thus $f_{\infty} \in M^{\perp}$
For any convergent sequence $\left(f_{j}\right){ }_{j \in \mathbb{N}}$ in M^{2}, its limit point f_{∞} is also in M^{2}.

