$f=g$ a.e. The property of this relation is summarized in the following exercise.
Exercise 2.6.2. Prove that the relation \sim defines an equivalence relation, namely the following three properties
are satisfied for any $f, g, h \in \mathcal{L}(\Omega)$:

1) $f \sim f$ (reflexivity),
2) If $f \sim g$ then $g \sim f$ (symmetry),
3) If $f \sim g$ and $g \sim h$, then $f \sim h$ (transitivity).

Definition 2.3.6 (Almost everywhere). Consider $f, g:[a, b] \rightarrow \mathbb{R}$

1. We write $f=g$ ae. if the set $\{x \in[a, b] \mid f(x) \neq g(x)\}$ has Lebesgue measure
2. We write $f \leq g$ a.e. if the set $\{x \in[a, b] \mid f(x)>g(x)\}$ has Lebesgue measure 0 .

In both cases, we say that the relation holds almost everywhere.
Note that one can define similarly f
importance of this
importance of this concept, and already provides a glimpse about the generality we are dealing with
Proposition 2.3.7. Let $f:[a, b] \rightarrow \mathbb{R}$ be a Lebesgue measurable function, and let $g=f$ ae. Then g is also $o d$
Lebesgue measurable function

1) $f=f \Rightarrow f \sim f$
2) Suppose $f=g$ abe. Let us define $h=f-g$.

Then $h=0$ are so $\int_{\Omega} h(x) d x=0$

$$
\begin{aligned}
& \Rightarrow \quad \int_{\Omega} f(x)-g(x) d x=0 \\
& \Rightarrow \int_{\Omega} f(x) d x-\int_{\Omega} g(x) d x=0
\end{aligned}
$$

if $f \sim g$ then $g \sim f$
Given $f \sim g \Rightarrow \int_{\Omega} f(x) d x-\int_{\Omega} g(x) d x=0$

$$
\begin{aligned}
& \Rightarrow \int g(x) d x-\int_{\Omega} f(x) d x \Rightarrow \\
& \Rightarrow g \sim f
\end{aligned}
$$

3) if $f \sim g, g \sim h$ then $f \sim h$

Let us define $\omega_{f h}=\{x \in \Omega \quad \mid f(x) \neq h(x)\}$
and simsarly, $\omega_{\mathrm{fg}}=\{x \in \Omega \quad \mid f(x) \notin g(x)\}$.

$$
\text { won }=\{x \in \Omega \quad \mid g(x) \neq h(x)\}
$$

For $X \in W_{f n}, X$ must be also contained in esther $W_{f g}$ or $W_{g n}$ since mere would be a contradiction

Suppose $x \in \omega_{f h}$, and $x \notin \omega_{f g} \cup W_{g h}$
since $x \notin \omega_{f g} \cup \omega_{g h}$,

$$
f(x)=g(x)=h(x) \quad \Rightarrow f(x)=h(x)
$$

which contradicts our previous statement mat $f(x) \neq h(x)$. Thus Win $C W_{f g} \cup W_{g h}$

$$
\begin{aligned}
m\left(\omega_{f n}\right) & \leqslant m\left(\omega_{* g} \cup \omega_{g n}\right) \\
& \leqslant m\left(\omega_{+g}\right)+m\left(\omega_{g n}\right) \\
& \leqslant 0+0
\end{aligned}
$$

$$
\begin{aligned}
\int_{\Omega} f(x) d x-\int \Omega h(x) d x & =\int_{\omega_{f h}} f(x)-h(x) d x \\
& =0
\end{aligned}
$$

$$
f \sim h
$$

