## 1 Exercise 1.3.8

Exercise 1.3.8. Consider $h: \mathbb{R}^{n} \rightarrow \mathbb{K}$ satisfying $\int_{\mathbb{R}^{n}}|h(X)| \mathrm{d} X<\infty$, and assume that $\int_{\mathbb{R}^{n}} h(X) \mathrm{d} X=1$. For $j \in \mathbb{N}$, set $h_{j}(X):=j^{n} h(j X)$. Then, prove that $T_{h_{j}} \rightarrow \delta_{0}$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ as $j \rightarrow \infty$. Equivalently, for $\varepsilon>0$ one often sets $h_{\varepsilon}(X):=\frac{1}{\varepsilon^{n}} h\left(\frac{X}{\varepsilon}\right)$. Show that $T_{h_{\varepsilon}} \rightarrow \delta_{0}$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \searrow 0$.

Theorem 1.1 (Triangle Inequality). The sum of any two sides of a triangle is greater than or equal to the third side.

$$
|A+B| \leq|A|+|B|
$$

We begin with the definition of a limit.
Definition 1.1 (The limit of a sequence). The limit $\lim _{j \rightarrow \infty} a_{j}=\alpha$ exists if $\forall \epsilon>0, \exists J \in \mathbb{N}$ such that $\left|a_{j}-\alpha\right|<\epsilon, \forall j>J$.
Proof. For $T_{h_{j}}, \delta_{0} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ and $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$.
The equality $\lim _{j \rightarrow \infty} T_{h_{j}}=\delta_{0}$ holds if $\forall \epsilon>0, \exists J \in \mathbb{N}$ such that $\mid T_{h_{j}}(f)-$ $\delta_{0}(f) \mid<\epsilon, \forall j>J$.

$$
\begin{aligned}
& \left|T_{h_{j}}(f)-\delta_{0}(f)\right| \\
& =\left|\int_{\mathbb{R}^{n}} j^{n} h_{j}\left(\frac{X}{j}\right) f(X) d X-\int_{\mathbb{R}^{n}} \delta_{0}(X) f(X) d X\right|
\end{aligned}
$$

Note: $\int_{\mathbb{R}^{n}} \delta_{0}(X) f(X) d X=f(0)=f(0) \int_{\mathbb{R}^{n}} h(X) d X$ since $\int_{\mathbb{R}^{n}} h(X) d X=1$

$$
=\left|\int_{\mathbb{R}^{n}} j^{n} h_{j}\left(\frac{X}{j}\right) f(X) d X-\int_{\mathbb{R}^{n}} h(X) f(0) d X\right|
$$

Change of Variables: Let $X=j Y$

$$
\begin{gathered}
d X=j^{n} d Y \\
=\left|\int_{\mathbb{R}^{n}} h(Y) f\left(\frac{Y}{j}\right) d Y-\int_{\mathbb{R}^{n}} h(X) f(0) d X\right|
\end{gathered}
$$

Match the Variables

$$
\begin{aligned}
& =\left|\int_{\mathbb{R}^{n}} h(\theta) f\left(\frac{\theta}{j}\right) d \theta-\int_{\mathbb{R}^{n}} h(\theta) f(0) d \theta\right| \\
& =\left|\int_{\mathbb{R}^{n}} h(\theta)\left[f\left(\frac{\theta}{j}\right)-f(0)\right] d \theta\right|
\end{aligned}
$$

Consider two subsets defined by $\mathcal{B}_{r}(0)=\left\{X \in \mathbb{R}^{n} \mid\|X\|<r\right\}$

$$
=\left|\int_{\mathcal{B}_{r}(0)} h(\theta)\left[f\left(\frac{\theta}{j}\right)-f(0)\right] d \theta+\int_{\mathbb{R}^{n} \backslash \mathcal{B}_{r}(0)} h(\theta)\left[f\left(\frac{\theta}{j}\right)-f(0)\right] d \theta\right|
$$

SML Spring 2023: Introduction to Functional Analysis Ai Yamada 5th May 2023
$f\left(\frac{\theta}{j}\right)$ becomes closer to $f(0)$ for $\theta \in \mathcal{B}_{r}(0)$ as $\mathrm{j} \rightarrow \infty$
thereby we get, $f\left(\frac{\theta}{j}\right)-f(0) \rightarrow 0$ as $\mathrm{j} \rightarrow \infty$, for $\theta \in \mathcal{B}_{r}(0)$

By the Triangle Inequality Theorem 1.1, we split the sum

$$
\begin{aligned}
& \leq\left|\int_{\mathcal{B}_{r}(0)} h(\theta)\left[f\left(\frac{\theta}{j}\right)-f(0)\right] d \theta\right|+\left|\int_{\mathbb{R}^{n} \backslash \mathcal{B}_{r}(0)} h(\theta)\left[f\left(\frac{\theta}{j}\right)-f(0)\right] d \theta\right| \\
& \leq \int_{\mathcal{B}_{r}(0)}|h(\theta)|\left|f\left(\frac{\theta}{j}\right)-f(0)\right| d \theta+\int_{\mathbb{R}^{n} \backslash \mathcal{B}_{r}(0)}|h(\theta)|\left|f\left(\frac{\theta}{j}\right)-f(0)\right| d \theta
\end{aligned}
$$

Introduce $\left|\left|f \|_{\infty}:=\sup _{\theta^{\prime} \in \mathbb{R}^{n}}\right| f\left(\theta^{\prime}\right)\right|$

$$
\leq \sup _{\theta^{\prime} \in \mathcal{B}_{r}(0)}\left|f\left(\frac{\theta^{\prime}}{j}\right)-f(0)\right| \int_{\mathcal{B}_{r}(0)}|h(\theta)| d \theta+2\|f\|_{\infty} \int_{\mathbb{R}^{n} \backslash \mathcal{B}_{r}(0)}|h(\theta)| d \theta
$$

Now we choose:

1. r such that $\int_{\mathbb{R}^{n} \backslash \mathcal{B}_{r}(0)}|h(\theta)| d \theta<\frac{\epsilon}{4\|f\|_{\infty}}$
2. J such that $\sup _{\theta^{\prime} \in \mathcal{B}_{r}(0)}\left|f\left(\frac{\theta^{\prime}}{j}\right)-f(0)\right|<\frac{\epsilon}{2 \int_{\mathbb{R}^{n}}|h(\theta)| d \theta}, \forall j>J$

$$
\begin{aligned}
& \leq \frac{\epsilon}{2} \frac{\int_{\mathcal{B}_{r}(0)}|h(\theta)| d \theta}{\int_{\mathbb{R}^{n}}|h(\theta)| d \theta}+\frac{\epsilon}{2} \\
& \leq \epsilon
\end{aligned}
$$

## 2 Exercise 1.3.9

Exercise 1.3.9. For $j \in \mathbb{N}$, consider $h_{j}(x):=\frac{\sin (j x)}{x}$ for any $x \in \mathbb{R} \backslash\{0\}$ and $h_{j}(0):=j$. Show that $T_{h_{j}} \rightarrow \pi \delta_{0}$ in $\mathcal{D}^{\prime}(\mathbb{R})$ as $j \rightarrow \infty$. Why is this situation not covered by the previous exercise ?

The condition for the situation in the previous exercise was for a distribution $T_{h} \in L^{1}\left(\mathbb{R}^{n}\right)$, i.e. $\int_{\mathbb{R}^{n}}|h(X)| d X<\infty$. However, in Exercise 1.3.9, we have $h(X):=\frac{\sin (X)}{X}$ where $\int_{\mathbb{R}^{n}}|h(X)| d X=\infty . h \in L_{l o c}^{1}(\mathbb{R})$ as opposed to $L^{1}(\mathbb{R})$.

Before we begin, I'd like to present a few theorems and lemmas.
Lemma 2.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $g: I \rightarrow[a, b]$ be continuously differentiable with $\operatorname{Im}(g) \subset[a, b]$, where $I \subset \mathbb{R}$ is some open interval. Then, the function

$$
F(x):=\int_{a}^{g(x)} f(t) d t
$$

is continuously differentiable on I and

$$
F^{\prime}(x)=g^{\prime}(x) f(g(x))
$$

Theorem 2.2 (Dominated Convergent Theorem). If $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}$ is a sequence of measurable functions which converge point-wise almost everywhere to $f$, and if there exists an integrable function $g$ such that $\left|f_{n}(x)\right| \leq g(x) \forall n$ and $\forall x$, then $f$ is integrable and

$$
\int_{\mathbb{R}} f=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}
$$

Proof. Let us begin by setting

$$
F(x):=\lim _{n \rightarrow-\infty} \int_{n}^{x} \frac{\sin (t)}{t} d t
$$

This integral is well-defined since it is an integral of a continuous and even function and it exists as an improper Riemann integral where $\int_{0}^{\infty} \frac{\sin (t)}{t} d t=\frac{\pi}{2}$.

Observation 2.1.

$$
\lim _{x \rightarrow-\infty} F(x)=0 \text { and } \lim _{x \rightarrow \infty} F(x)=\pi
$$

Via Lemma 2.1, since $h(x)=\frac{\sin (x)}{x}$ is continuous, F is differentiable with $F^{\prime}(x)=\frac{\sin (x)}{x}$.

## Observation 2.2.

$$
\frac{d}{d x} F(j x)=F^{\prime}(j x) j=\frac{\sin (j x) j}{j x}=\frac{\sin (j x)}{x}
$$

$$
\text { Then } \begin{aligned}
T_{h_{j}}(f) & =\int_{\mathbb{R}} \frac{\sin (j x)}{x} f(x) d x \\
& =\int_{\mathbb{R}} F^{\prime}(j x) f(x) d x
\end{aligned}
$$

By integration by parts

$$
\begin{aligned}
& =\left.F(j x) f(x)\right|_{-\infty} ^{\infty}-\int_{\mathbb{R}} F(j x) f^{\prime}(x) d x \\
& =-\int_{\mathbb{R}} F(j x) f^{\prime}(x) d x
\end{aligned}
$$

Observation 2.3. Since $F$ is continuous:

$$
\lim _{x \rightarrow-\infty} F(x)=0 \text { and } \lim _{x \rightarrow \infty} F(x)=\pi
$$

It follows that $F$ is bounded, namely, $\|F\|_{\infty}<\infty$
Furthermore,

$$
\left|\int_{\mathbb{R}} F(j x) f^{\prime}(x) d x\right| \leq\|F\|_{\infty} \int_{\mathbb{R}}\left|f^{\prime}(x)\right| d x<C
$$

where $C$ is independent of $j$.

We can apply Theorem 2.2 , and exchange the limit and the integral.

$$
\lim _{j \rightarrow \infty}-\int_{\mathbb{R}} F(j x) f^{\prime}(x) d x=-\int_{\mathbb{R}} \lim _{j \rightarrow \infty} F(j x) f^{\prime}(x) d x
$$

Observation 2.4. For a fixed $x \neq 0: \lim _{j \rightarrow \infty} F(j x)= \begin{cases}\pi & \text { if } x>0 \\ 0 & \text { if } x<0\end{cases}$

$$
\begin{aligned}
-\int_{\mathbb{R}} \lim _{j \rightarrow \infty} F(j x) f^{\prime}(x) d x & =-\pi \int_{0}^{\infty} f^{\prime}(x) d x \\
& =-\left.\pi f(x)\right|_{0} ^{\infty} \\
& =\pi f(0)
\end{aligned}
$$

SML Spring 2023: Introduction to Functional Analysis
Ai Yamada 5th May 2023

Thus we obtain

$$
\lim _{j \rightarrow \infty} T_{h_{j}}=\pi \delta_{0}
$$

