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1 Introduction

The aim of this report is to introduce a special class of bounded linear operators called orthogonal
projection, and show a few properties and relations about this special operator.

2 Definition and basic properties

Let us start with the definition of orthogonal projection (based on Definition 3.3.4 of the lecture
notes [1]).

Definition 2.1 (Projection) An element P ∈ B(H) is an orthogonal projection if P = P 2 = P ∗.

Next, we will show that there is a one-to-one correspondence between the set of closed subspaces
of H and the set of orthogonal projections in B(H). That is, for any orthogonal projection P one
can define a closed subspace M := PH, and for any closed subspace M one can find an orthogonal
projection P such that PH = M . To prove this, first let us define for any f ∈ H and P orthogonal
projection

f‖ := P (f),

f⊥ := f − f‖.

Clearly, f = f‖ + f⊥. Also, since PP = P ,

P (f⊥) = P (f − f‖) = P (f)− P (f‖) = P (f)− P (P (f)) = P (f)− P (f) = 0.

From this, one can define equivalence classes [f ] such that f‖ is the same for every element in the
same class. Because of this, the orthogonal projection of every element in the same equivalence
class is the same. Also, in every equivalence class there is an element f0 with f0⊥ = 0 (i.e.
P (f0) = f0). Because of this, M := PH can also be defined as M := {f ∈ H | P (f) = f}. Now
consider the set N = {f ∈ H|P (f) = 0}. Since P ∗ = P , for any f ∈ N , g ∈M we have

〈f, g〉 = 〈f, P (g)〉 = 〈P ∗(f), g〉 = 〈P (f), g〉 = 〈0, g〉 = 0

which means that g ∈ N⊥ (the orthocomplement of N , N⊥ := {f ∈ H| 〈f, g〉 ,∀g ∈ N}). This
means that M ⊂ N⊥. Next, let h ∈ N⊥ (meaning 〈f, h〉 = 0 ∀f ∈ N). Since P (h‖) = h‖ and

P (h⊥) = 0, h‖ ∈M and h⊥ ∈ N , which also means
〈
f, h‖

〉
= 0. From these

0 = 〈f, h〉 =
〈
f, h‖ + h⊥

〉
=
〈
f, h‖

〉
+ 〈f, h⊥〉 = 〈f, h⊥〉

⇐⇒ 0 = 〈f, h⊥〉
⇐⇒ h⊥ ∈ N⊥.

But the only element which can be both in N and its orthogonal complement N⊥ is the 0 element,
so h⊥ = 0. Therefore h = h‖ + h⊥ = h‖ ⇒ h ∈ M for any h ∈ N⊥. This means that N⊥ ⊂ M ,

therefore M = N⊥. But, by Example 3.1.9 of the lecture note, the orthocomplement of any subset
of H is a closed subspace, so M is a closed subspace.
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Next, let M be a closed subspace with orthonormal basis (ONB) B = (b1, b2, ...), that is a basis
such that

〈bj , bk〉 =

{
0 if j 6= k
1 if j = k

and define

P : H → H

f 7→
∑
j=1

〈bj , f〉 bj .

Clearly, the image of this function is M . This map is linear since if f, g ∈ H, λ ∈ C, from the
linearity of the scalar product

P (f + λg) =
∑
j=1

〈bj , f + λg〉 bj =
∑
j=1

(〈bj , f〉+ λ 〈bj , g〉) bj =
∑
j=1

〈bj , f〉 bj + λ 〈bj , g〉 bj

=
∑
j=1

〈bj , f〉 bj + λ
∑
j=1

〈bj , g〉 bj = P (f) + λP (g).

We also have from the linearity of the scalar product

P (P (f)) =
∑
j=1

〈
bj ,

(∑
k=1

〈bk, f〉 bk

)〉
bj =

∑
j=1

(∑
k=1

〈bj , 〈bk, f〉 bk〉

)
bj =

∑
j=1

(∑
k=1

〈bk, f〉 〈bj , bk〉

)
bj

=
∑
j=1

〈bj , f〉 bj = P (f)

since (b1, b2, ...) is orthonormal and the scalar product gives a number in C. Also, from the
properties of the scalar product

〈f, P (g)〉 =

〈
f,
∑
j=1

〈bj , g〉 bj

〉
=
∑
j=1

〈f, 〈bj , g〉 bj〉 =
∑
j=1

〈f, bj〉 〈bj , g〉 ,

〈P (f), g〉 =

〈∑
j=1

〈bj , f〉 bj , g

〉
=
∑
j=1

〈〈bj , f〉 bj , g〉 =
∑
j=1

〈bj , f〉 〈bj , g〉 =
∑
j=1

〈f, bj〉 〈bj , g〉 ,

which means that P = P ∗. From these we can conclude that P = PP = P ∗, so P is an orthogonal
projection (corresponding to M).
Finally, one should note that if P and Q are orthogonal projections, then PQ and QP are not
orthogonal projections in general. Take the following as a simple counterexample. Let H = R2, P
be the orthogonal projection onto the x axis (y = 0), and Q be the orthogonal projection onto the
y = x line. We have (also see Figure 1)

P (4, 0) = (4, 0),

QP (4, 0) = Q(4, 0) = (2, 2),

PQP (4, 0) = P (2, 2) = (2, 0),

QPQP (4, 0) = Q(2, 0) = (1, 1) 6= (2, 2) = QP (4, 0),

therefore (QP )(QP ) 6= QP ⇒ QP is not a projection.

3 Some relations of projections

In this section, let us see some relationships between orthogonal projections and the corresponding
subspaces. The statements that will be proven later are summarized in the following proposition
(Exercise 3.3.6 from the lecture notes).
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Figure 1: Counterexample for PQ or QP not being an orthogonal projection (where P,Q are
orthogonal projections).

Proposition 3.1 Let M and N be closed subspaces of H and PM , PN be the corresponding or-
thogonal projections.

1. If PMPN = PNPM , then PMPN is a projection and the associated closed subspace is M ∩N .

2. If M ⊂ N , then PMPN = PNPM = PM .

3. If M ⊥ N , then PMPN = PNPM = 0, and PM⊕N = PM + PN .

4. If PMPN = 0, then M ⊥ N .

The proofs of these statements:

1. If PMPN = PNPM , then, since PM , PN are orthogonal projections

(PMPN )(PMPN ) = PM (PNPM )PN = PM (PMPN )PN = (PMPM )(PNPN ) = PMPN .

Also, from the properties of the adjoint

(PMPN )∗ = P ∗NP
∗
M = PNPM = PMPN .

Therefore, PMPN = (PMPN )(PMPN ) = (PMPN )∗, so PMPN is an orthogonal projection.
Let P := PMPN . For any f ∈ H, PM (f) ∈M and PN (f) ∈ N . From this, PM (PN (f)) ∈M
and PN (PM (f)) ∈ N . But, since PM (PN (f)) = PN (PM (f)), P (f) ∈ M and P (f) ∈ N ,
hence P (f) ∈M ∩N . Also, since for any g ∈M ∩N , P (g) = g, therefore the image of P (so
the corresponding closed subspace) is M ∩N .
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2. For any f ∈ H we have PM (f) ∈ M and PN (f) ∈ N . Since M ⊂ N , PM (f) ∈ N ,
so PNPM (f) = PM (f). Also, we can write f = f‖ + f⊥ = f ′‖ + f ′⊥ with PM (f) =

PM (f‖) = f‖, PM (f⊥) = 0, PN (f) = PN (f ′‖) = f ′‖, PN (f ′⊥) = 0. Since PN (f ′⊥) = 0,

f ′⊥ ∈ {f ∈ H|PN (f) = 0}, but we saw that any element of N is orthogonal to any element
of this set, and any element of M is also an element of N , so any element of this set is
orthogonal to M . Hence, PM (f ′⊥) = 0. Using these and the linearity of the projection

PMPN (f) = PMPN (f ′‖ + f ′⊥) = PM (PN (f ′‖) + PN (f ′⊥)) = PM (f ′‖)

= PM (f‖ + f⊥ − f ′⊥) = PM (f‖) + PM (f⊥)− PM (f ′⊥) = f‖ = PM (f)

so PMPN = PNPM = PM .

3. M ⊥ N ⇐⇒ ∀f ∈ M, g ∈ N, f ⊥ g ⇐⇒ ∀f ∈ M, g ∈ N,PM (g) = PN (f) = 0, PM (f) =
f, PN (g) = g. Also, for any h ∈ H, PM (h) ∈M and PN (h) ∈ N . Hence,

PMPN (h) = 0,

PNPM (h) = 0.

Let B1 = (b1, b2, ...) ONB of N and B2 = (c1, c2, ...) ONB of M . Let f ∈M and also f ∈ N .
We have PM (f) = f since f ∈M , and PM (f) = 0, since f ∈ N . Hence, M ∩N = {0}. Also,
since ∀f ∈ M, g ∈ N , f ⊥ g, so b1, b2, ... are all orthogonal to any of c1, c2. Also, since all
these elements have norm 1, these elements are orthonormal, so (b1, b2, ...) ∪ (c1, c2, ...) is an
ONB of M ⊕N . From how the orthogonal projection was defined

PN (f) =
∑
j=1

〈bj , f〉 bj ,

PM (f) =
∑
j=1

〈cj , f〉 cj ,

and also

PM⊕N =
∑

j=1,k=1

〈bj , f〉 bj + 〈ck, f〉 ck = 〈b1, f〉 b1 + 〈b2, f〉 b2 + ...+ 〈c1, f〉 c1 + 〈c2, f〉 c2 + ...

=
∑
j=1

〈bj , f〉 bj +
∑
j=1

〈cj , f〉 cj = PN (f) + PM (f).

4. Let f ∈ N .

PMPN (f) = 0

⇒ PM (f) = 0

so ∀f ∈ N,PM (f) = 0⇒M ⊥ N .

4 Summary

In this report first orthogonal projections were defined, and then some basic properties of these op-
erators were presented. One of these properties was that the product of two orthogonal projections
is not an orthogonal projection in general. However, in the second half of the report we saw that
although in general the product of two orthogonal projections is not an orthogonal projection,
some relations still can be drawn between two orthogonal projections (and their corresponding
closed subspaces).
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