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1 Introduction

In the course Lp spaces were defined for p ≥ 1, but one might wonder what happens when 0 < p < 1.
In this report first the definition of Lp spaces will be recalled, then it will be discussed what happens
when we have 0 < p < 1.

2 Lp spaces for p ≥ 1

Firstly, let us recall the definition of Lp spaces for p ≥ 1 (Definition 2.6.7 of [3]).

Definition 2.1 (Lp spaces) For any p ≥ 1 the set Lp(Ω) is defined as

{f : Ω→ K|f is Lebesgue measurable, and |f |p ∈ L(Ω)} / ∼

endowed with the norm

||f ||p :=

(∫
Ω

|f(X)|pdX

) 1
p

.

Note that in Lp spaces we consider equivalence classes of functions instead of single functions (two
functions are in the same equivalence group if they are equal a.e.). The norm must satisfy the
following three properties by definition [3]

1. ||λf ||p = |λ|||f ||p for any λ ∈ C and f ∈ Lp,

2. ||f1 + f2||p ≤ ||f1||p + ||f2||p for any f1, f2 ∈ Lp,

3. ||f ||p = 0 if and only if f = 0 a.e..

3 Lp spaces when 0 < p < 1

The main reason the Lp space is not defined for these values of p is that the 2nd property of the
norm from the previous section (the triangle inequality) is not always true. An example to this is
provided in the followings (this example is based on the sketch provided in [1]). Take two bounded,
disjoint Lebesgue-measurable sets Ω1 ⊂ Rn and Ω2 ⊂ Rn. Let a be the Lebesgue measure of Ω1

and b be the Lebesgue measure of Ω2. Next, consider the characteristic functions corresponding
to these two sets:

f1 : Rn → R f2 : Rn → R

f1(X) =

{
1 if X ∈ Ω1

0 if X 6∈ Ω1
f2(X) =

{
1 if X ∈ Ω2

0 if X 6∈ Ω2

These functions are in Lp (with 0 < p < 1), since∫
Rn

|f1(X)|pdX =

∫
Ω1

1pdX =

∫
Ω1

dX = m(Ω1) = a <∞,∫
Rn

|f2(X)|pdX =

∫
Ω2

1pdX =

∫
Ω2

dX = m(Ω2) = b <∞,
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since Ω1 and Ω2 are bounded. Therefore, the “norm” of these functions

||f1||p =

(∫
Rn

|f1(X)|pdX

) 1
p

= a
1
p ,

||f2||p =

(∫
Rn

|f2(X)|pdX

) 1
p

= b
1
p .

The left side of the inequality in the properties of the norm (the norm of the sum the two functions)

||f1 + f2||p =

(∫
Rn

|f1(X) + f2(X)|pdX

) 1
p

.

Since the sets are disjoint, f1(X) = 1 and f2(X) = 0 when X ∈ Ω1, f1(X) = 0 and f2(X) = 1
when X ∈ Ω1, and f1(X) = f2(X) = 0 when X is in neither of the two sets. Therefore

||f1 + f2||p =

(∫
Ω1

|1 + 0|pdX +

∫
Ω2

|0 + 1|pdX

) 1
p

=

(∫
Ω1

dX +

∫
Ω2

dX

) 1
p

= (m(Ω1) +m(Ω2))
1
p = (a+ b)

1
p .

Next, let us prove that (a+ b)
1
p ≥ a

1
p + b

1
p . For this let us define f(t) := (1 + t)

1
p − 1− t

1
p (based

on the proof of Lemma 1 in [5]). Then

f ′(t) =
(1 + t)

1
p−1

p
− t

1
p−1

p
=

1

p

(
(1 + t)

1
p−1 − t

1
p−1
)
> 0

for all t ∈ (0,∞). This is because (1 + t) > t, and 0 < p < 1⇒ 1
p > 1⇒ 1

p − 1 > 0, so the function

g(x) = x
1
p−1 is increasing. Therefore, f(t) is increasing on t ∈ (0,∞). Also, f(0) = 0, so f(t) ≥ 0

on (0,∞). Now let us substitute t = a
b . Note : a, b ≥ 0, since the Lebesgue measure is always

positive, and we can assume b 6= 0, since if b = 0 then it is trivial that the inequality is true (we

get a
1
p ≥ a

1
p ). (

1 +
a

b

) 1
p − 1−

(a
b

) 1
p ≥ 0

⇐⇒
(
a+ b

b

) 1
p

− 1−
(a
b

) 1
p ≥ 0

⇐⇒ (a+ b)
1
p − (a

1
p + b

1
p ) ≥ 0

⇐⇒ (a+ b)
1
p ≥ a

1
p + b

1
p

substituting back one gets
||f1 + f2||p ≥ ||f1||p + ||f2||p,

therefore the triangle inequality does not hold for these two functions.
Here, we saw that the p-norm does not define a norm; however, it does define a quasi-norm. Before
proving this, let us see the definition of a quasi-norm [4].

Definition 3.1 If V is a complex vector space, then a map V 3 v 7→ ||v|| ∈ [0,∞) is a quasi-norm
if:

1. ||λv|| = |λ|||v|| for any λ ∈ C and v ∈ V ,

2. there exists a real number C independent of v1 and v2 such that ||v1 + v2|| ≤ C(||v1||+ ||v2||)
for any v1, v2 ∈ V ,

3. ||v|| = 0 if and only if v = 0.
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First let us check if the first condition holds. Let f ∈ Lp and λ ∈ C. We have

||λf ||p =

(∫
Ω

|λf(X)|pdX

) 1
p

=

(∫
Ω

|λ|p|f(X)|pdX

) 1
p

= |λ|
(∫

Ω

|f(X)|pdX

) 1
p

= |λ|||f ||p

because of the linearity of the integral.
Next, let us check the third condition. Note that since in Lp spaces we consider equivalence classes
of functions instead of single functions (and two functions are in the same equivalence group if
they are equal a.e.), the condition modifies to: for a function f ∈ Lp, ||f ||p = 0 if and only f = 0
a.e.. Since it is an equivalence, we have to check both directions

• If f(X) = 0 for a.e. X, then |f(X)|p is also 0 for a.e. X, so its Lebesgue integral is 0. From
this,

||f ||p =

(∫
Ω

|f(X)|pdX

) 1
p

= 0
1
p = 0.

• ||f ||p = 0. Let us use proof by contradiction, and let us assume that f is not 0 a.e.. By
definition

||f ||p =

(∫
Ω

|f(X)|pdX

) 1
p

.

One can notice that because of the absolute value, |f(X)|p is never negative, and it is also
positive on a set with Lebesgue measure bigger than 0. This means that the integral is bigger
than 0, so the norm is bigger than 0. But, this contradicts the initial assumption, therefore
f(X) is 0 almost everywhere.

Finally, let us check the second condition, for which we follow [2]. First we show that (a + b)p ≤
ap + bp for 0 < p < 1 (using the same method that we used at the beginning of this section). Let
us define f(t) := (1 + t)p − 1− tp (also based on the proof of Lemma 1 in [5]). Then

f ′(t) = p(1 + t)p−1 − ptp−1 = p
(
(1 + t)p−1 − tp−1

)
< 0

for all t ∈ (0,∞). This is because (1 + t) > t, and 0 < p < 1 ⇒ p − 1 < 0, so the function
g(x) = xp−1 is decreasing. Therefore, f(t) is decreasing on t ∈ (0,∞). Also, f(0) = 0, so f(t) ≤ 0
on (0,∞). Now let us substitute t = a

b . Note : a, b ≥ 0, since the Lebesgue measure is always
positive, and we can assume b 6= 0, since if b = 0 then it is trivial that the inequality is true (we
get ap ≤ ap). (

1 +
a

b

)p
− 1−

(a
b

)p
≤ 0

⇐⇒
(
a+ b

b

)p

− 1−
(a
b

)p
≤ 0

⇐⇒ (a+ b)p − (ap + bp) ≤ 0

⇐⇒ (a+ b)p ≤ ap + bp.

Next, consider two functions f1, f2. We have

|f(X) + g(X)| ≤ |f(X)|+ |g(X)|.

Since taking the pth power (p positive) is increasing, and using the previous result

|f(X) + g(X)|p ≤ (|f(X)|+ |g(X)|)p ≤ |f(X)|p + |g(X)|p,

from which ∫
Ω

|f1(X) + f2(X)|pdX ≤
∫

Ω

|f1(X)|pdX +

∫
Ω

|f2(X)|pdX. (1)
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Now, let for c > 1

f(t) =
tc + 1

(t+ 1)c
.

Let us calculate the derivative of this function and find where it is 0. The derivative

f ′(t) =
ctc−1(t+ 1)c − (tc + 1) · c(t+ 1)c−1

(t+ 1)2c
=

c

(t+ 1)c+1
(tc−1(t+ 1)− (tc + 1))

=
c

(t+ 1)c+1
(tc + tc−1 − tc − 1) =

c

(t+ 1)c+1
(tc−1 − 1),

and when f ′(t) = 0

0 =
c

(t+ 1)c+1
(tc−1 − 1)

⇐⇒ 0 = tc−1 − 1

⇐⇒ tc−1 = 1

⇐⇒ t = 1.

Let us calculate the second derivative at t = 1 to check if this is a minimum, maximum, or
something else. The second derivative:

f ′′(t) = c
(c− 1)tc−2(t+ 1)c+1 − (tc−1 − 1)(c+ 1)(t+ 1)c

(t+ 1)2c+2
.

The second derivative at t = 1:

f ′′(1) = c
(c− 1)1c−2(1 + 1)c+1 − (1c−1 − 1)(c+ 1)(1 + 1)c

(1 + 1)2c+2
= c

(c− 1)2c+1

22c+2

which is positive (c > 1), so this is a minimum. Since we only have this extremum, this minimum
is unique. Therefore

f(t) ≥ f(1)

⇐⇒ tc + 1

(t+ 1)c
≥ 1c + 1

(1 + 1)c
=

2

2c
= 21−c

⇒ tc + 1 ≥ 21−c(t+ 1)c

let t = a/b with a ≥ 0 and b > 0, (a
b

)c
+ 1 ≥ 21−c

(a
b

+ 1
)c

⇐⇒ ac + bc ≥ 21−c (a+ b)
c
.

Note that this inequality is also true when b = 0: ac ≥ 21−cac ⇐⇒ 1 = 20 ≥ 21−c ⇐⇒ 0 ≥ 1− c,
which is true since c > 1 (when a = 0, we get 0 ≥ 0, which is also true). Next, let c = 1/p (for
0 < p < 1), a =

∫
Ω
|f1(X)|pdX, b =

∫
Ω
|f2(X)|pdX. From the definition of the “norm”(∫

Ω

|f1(X)|pdX

) 1
p

+

(∫
Ω

|f2(X)|pdX

) 1
p

≥ 21− 1
p

(∫
Ω

|f1(X)|pdX +

∫
Ω

|f2(X)|pdX

) 1
p

⇐⇒
(∫

Ω

|f1(X)|pdX +

∫
Ω

|f2(X)|pdX

) 1
p

≤ 2
1
p−1

((∫
Ω

|f1(X)|pdX

) 1
p

+

(∫
Ω

|f2(X)|pdX

) 1
p

)
.

Based on (1) and that the function x 7→ x
1
p is increasing for positive p, we have(∫

Ω

|f1(X) + f2(X)|pdX

) 1
p

≤
(∫

Ω

|f1(X)|pdX +

∫
Ω

|f2(X)|pdX

) 1
p
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which implies that(∫
Ω

|f1(X) + f2(X)|pdX

) 1
p

≤ 2
1
p−1

((∫
Ω

|f1(X)|pdX

) 1
p

+

(∫
Ω

|f2(X)|pdX

) 1
p

)
⇐⇒ ||f1 + f2||p ≤ 2

1
p−1 (||f1||p + ||f2||p) .

Another interesting property of the quasi-norm of Lp is the following inequality (called the reverse
Minkowski’s inequality, for the proof refer to [5])

Proposition 3.1 (Reverse Milkowski’s) Let f1, ..., fn ∈ Lp where 0 < p < 1. Then

n∑
j=1

||fj ||p ≤

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

|fj |

∣∣∣∣∣∣
∣∣∣∣∣∣
p

.

Note: setting n = 2 we can get

||f1||p + ||f2||p ≤ |||f1|+ |f2|||p ≤ 2
1
p−1 (||f1||p + ||f2||p) .

4 Conclusion

In this report Lp spaces were introduced for p ≥ 1, and then it was investigated why it cannot be
defined the same way for 0 < p < 1. It turned out that the main reason Lp cannot be defined
for 0 < p < 1 is that the corresponding norm does not satisfy the triangle inequality, so it is not
actually a norm. However, it also turned out that even though it is not a norm, it does satisfy the
conditions of being a quasi-norm.
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