On norm of $L^1(\Omega)$

Submitted by: APRU students and TAs

This report aims to give a proof for **Exercise 2.6.4**. We start by recalling all the discussed concepts.

$L^1 -$ space

The set $L^1(\Omega)$ is defined by $\mathcal{L}(\Omega)/\sim$, namely the elements of $L^1(\Omega)$ consists of equivalence classes of Lebesgue integrable functions which are equal almost everywhere. The set $L^1(\Omega)$ is endowed with the norm:

$$|f||_1 \equiv ||f||_{L^1(\Omega)} = \int_{\Omega} |f(X)| dX$$

Note that, since $L^1 := \mathcal{L}(\Omega) / \sim$, it consists of equivalence classes of functions that are equal almost everywhere. For example, f and g belong to the same equivalency class (or are treated as the same) if the set $\{x \in \Omega \mid f(x) \neq g(x)\}$ has Lesbegue Measure θ , then one writes f(x) = g(x) a.e.

Exercise 2.6.4

Show that the map defined above $f \mapsto ||f||_1$ defines a norm on $L^1(\Omega)$.

Proof. To show that the map $f \mapsto ||f||_1$ defines a norm on $L^1(\Omega)$, we need to show that the map satisfies the three properties of a norm. Namely, if $p: X \to \mathbb{R}$ defines a norm on X then p satisfies the following:

- 1. Subadditivity/Triangle inequality: $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$.
- 2. Absolute homogeneity: p(sx) = |s|p(x) for all $x \in X$ and all $s \in \mathbb{C}$.
- 3. Positive definiteness/positiveness: for all $x \in X$, if p(x) = 0, then x = 0.

Subadditivity/Triangle inequality:

For any $f, g \in L^1(\Omega)$, we have

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \quad \text{for all } \mathbf{x} \in \Omega.$$

Therefore, since the integral is linear, we have

$$\|f+g\|_1 = \int_{\Omega} |f(x)+g(x)| \, dx \le \int_{\Omega} |f(x)| \, dx + \int_{\Omega} |g(x)| \, dx = \|f\|_1 + \|g\|_1.$$

Therefore, the subadditivity property holds.

Absolute homogeneity:

For any $f \in L^1(\Omega)$ and s with $s \in \mathbb{C}$, we have:

$$\|sf\|_{1} = \int_{\Omega} |sf(x)| \, dx = \int_{\Omega} |s| \cdot |f(x)| \, dx = |s| \int_{\Omega} |f(x)| \, dx = |s| \|f\|_{1}.$$

Note that |s| denotes the modulus.

Hence, the absolute homogeneity property is satisfied.

Positive definiteness/positiveness: For a real valued function f, we have $|f(x)| \ge 0$ and |f(x)| = 0 means x = 0. So $\int_{\Omega} |f(x)| dx \ge 0$.

Let $f \in L^1(\Omega)$ such that $||f||_1 = 0$. This implies that $\int_{\Omega} |f(x)| dx = 0$. Since $|f(x)| \ge 0$ for all $x \in \Omega$, it follows that |f(x)| = 0 almost everywhere on Ω . Consequently, f(x) = 0 almost everywhere on Ω . Therefore, if $||f||_1 = 0$, then f = 0 in $L^1(\Omega)$. Thus, the positive definiteness property holds.

Since all three properties are satisfied, we conclude that the map $f \mapsto ||f||_1$ defines a norm on $L^1(\Omega)$. \Box