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1. Direct integral

Let us recall the usual direct sum of Hilbert spaces. Let Y be a set and Hy be separable Hilbert
spaces with the inner product ⟨·, ·⟩Hy

for each y ∈ Y . The algebraic direct sum of {Hy}y∈Y , denoted
by

⊕
y∈Y Hy, is defined as the following vector space:⊕

y∈Y

Hy = {(hy)y∈Y ∈ Πy∈Y Hy |#(supp(hy)) < ∞} ,

where supp(hy) = {y ∈ Y |hy ̸= 0} and Πy∈Y Hy = {(hy)y∈Y |hy ∈ Hy}. This space is also the inner
product space with ⟨·, ·⟩ =

∑
y∈Y ⟨·, ·⟩Hy

. Here, we define the Hilbert space direct sum of {Hy}y∈Y ,

denoted by
⊕

y∈Y Hy as the completion of
⊕

y∈Y Hy with respect to the inner product ⟨·, ·⟩, that is,

⊕
y∈Y

Hy =

(hy)y∈Y ∈ Πy∈Y

∣∣∣∣∣∣
∑
y∈Y

∥hy∥2Hy
< ∞

 .

Their inner product is also denoted by ⟨, ⟩. If Hy = H for all y ∈ Y for some a separable Hilbert

space H, then we can also see the
⊕

y∈Y Hy as follows: Set A = 2Y , that is, the trivial (most strong)

σ-algebra of Y and let µ be the discrete measure (counting measure) on measurable space (Y,A).
Then, we have⊕

y∈Y

Hy =

{
h := (hy)y∈Y ∈ Πy∈Y

∣∣∣∣ ∥h∥2 :=

∫
Y

∥hy∥2H dµ < ∞
}

= l2(Y ;H),

the right hand side is the H-valued l2-space on Y (the space of L2-functions on the discrete measure
space (Y,A, µ)). By the way, how is the case when Hy ̸= Hy′ for some y, y′ ∈ Y ? If ran(H(·)) =
{H[λ]}λ∈Λ for some set Λ and we define Yλ := {y ∈ Y |Hy = H[λ]}, then it is easily seen that⊕

y∈Y

Hy =
⊕
λ∈Λ

l2(Yλ;H[λ]).

Also, how is the case when (Y,A, µ) is not discrete ? It is easy to guess that the resulting spaces
become (the Hilbert spaces direct sum of) the spaces of L2-functions which take value in different
Hilbert spaces Hy for each y ∈ Y . But, for that, we need some appropriate measurability as seen
bellow.

Let (Y,A, µ) be a (separable) σ-finite measure space. Let also H be a function which is defined on
µ-a.e. Y and each value H(y) is a separable Hilbert space for µ-a.e. y ∈ Y .

Definition 1.1. Let Ω0 be a finite or countable set of
⊔

y∈Y H(y)-valued functions whose value at

y ∈ Y in H(y), defined on µ-a.e.Y . The set Ω0 is the base of measurability if Ω0 satisfies
(1) span{g(y) | g ∈ Ω0} = H(y) for µ-a.e. y ∈ Y , where span is the closure of linear span.
(2) ⟨g1(·), g2(·)⟩H(·) is a µ-measurable function defined on µ-a.e.Y for any g1, g2 ∈ Ω0.
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A
⊔

y∈Y H(y)-valued function h such that h(y) ∈ H(y) is called measurable with respect to Ω0 if for any

g ∈ Ω0, ⟨h(·), g(·)⟩H(·) is µ-measurable. We denote by Ω̂0 denotes the set of all measurable functions

with respect to Ω0. The family of Hilbert spaces {H(y)}y∈Y endowed with a measurable structure Ω̂0

is called a measurable Hilbert family on the measure space (Y,A, µ), which is denoted by (H(·), Ω̂0).

Remark 1.2. It is clear that Ω̂0 ⊃ Ω0. Also, Ω̂0 is invariant under multiplication by C-valued
µ-measurable function.

Now, in a position to define the direct integral of H with respect to (Y,A, µ).

Definition 1.3. The Ω0 be a base of measurability. Then, we define the direct integral of H with
respect to Ω0 as follows:

H :=

∫ ⊕
Ω̂0

Y

H(y) dµ(y) :=

{
h ∈ Ω̂0

∣∣∣∣ ∥h∥2 :=

∫
Y

∥h(y)∥2H(y) dµ(y) < ∞
}

with inner product

⟨g, h⟩ :=
∫
Y

⟨g(y), h(y)⟩H(y) dµ

for any g, h ∈ H. Now, we can know only the direct integral is pre-Hilbert space. In fact, we also can
see the direct integral is complete (see Example 1.13).

In the sequel, we study some basic notion related to direct integral. In general, the choice of the
base of measurability is not unique, so that we may take better one in some sense. The following
lemma shows that we can always take an orthonormal base as base of measurability: Let m :=
µ- sup{dim(H(y)) | y ∈ Y }, 1 ≤ m ≤ ∞ and Ω1 = {ej}j∈[1,m⟩, where {ej(y)}j∈[1,dim(H(y))⟩ is an
orthonormal base in H(y) and ej(y) = 0 for j > dim(H(y)) (here, if k < ∞, then [1, k⟩ = {1, 2, · · · , k};
if k = ∞, then [1, k⟩ = Z>0). Clearly, Ω1 satisfies the two properties of Definition 1.1, which is called
the orthogonal base of measurability.

Lemma 1.4. Let Ω0 be a base of measurability. Then, there exists an orthogonal base of measurability

Ω1 ⊂ Ω̂0 such that Ω̂1 = Ω̂0.

Proof. Use Gram-Schmidt orthogonalization. □

By the proof of Lemma 1.4, we have the following fact:

Corollary 1.5. For any g, h ∈ Ω̂0, the function ⟨g(·), h(·)⟩H(·) is µ-measurable.

Let (H(·), Ω̂0) and (H′(·), Ω̂′
0) be two measurable Hilbert families on (Y,A, µ). Then, we can de-

fine a measurable structure in the set of operator-valued function F whose values F (y) belongs to
B(H(y),H′(y)) µ-a.e.

Definition 1.6. The function F as above is measurable if ⟨F (·)h(·), h′(·)⟩H′(·) are measurable for any

h ∈ Ω̂0 and any h′ ∈ Ω̂′
0. This is equivalent to the condition: ⟨F (·)h(·), h′(·)⟩H′(·) are measurable for

any h ∈ Ω0 and h′ ∈ Ω′
0. Here, it is clear that F is measurable if and only if so is F ∗.

Two Hilbert spaces which have the same dimension are unitarily isomorphic, so that two Hilbert
space direct sums whose corresponding component have same dimension are also unitarily isomorphic.

Similarly, two measurable Hilbert families (H, Ω̂0) and (H′, Ω̂′
0) such that dim(H(y)) = dim(H′(y)) for

µ-a.e. y ∈ Y are unitarily isomorphic. We leave it as the following lemma:

Lemma 1.7. Let us consider two measurable Hilbert families (H, Ω̂0) and (H′, Ω̂′
0) which satisfy that

dim(H(y)) = dim(H′(y)) for µ-a.e. y ∈ Y . Then, there exists a measurable unitary operator-valued

function w whose value w(y) are from H(y) onto H′(y) µ-a.e. y ∈ Y such that Ω̂′
0 = {wh |h ∈ Ω̂0}.
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Proof. By Lemma 1.4, we can assume that Ω0 and Ω′
0 are orthogonal bases of measurability. Hence,

if we define w : (H, Ω̂0) → (H′, Ω̂′
0) by

(wej)(y) := e′j(y)

for µ-a.e. y ∈ Y , where Ω0 = {ej}j∈[1,m⟩ and Ω′
0 = {e′j}j∈[1,m⟩, m = µ- sup{dim(H(y))}. Then, w is

the desired map. □

Hence, we have the same property for direct integrals as follows:

Corollary 1.8. Let us consider two measurable Hilbert families (H, Ω̂0) and (H′, Ω̂′
0) which satisfy

that dim(H(y)) = dim(H′(y)) for µ-a.e. y ∈ Y . Let w be the unitary operator-valued function of

Lemma 1.7. Then, W :
∫ ⊕

Ω̂0

Y H(y) dµ(y) →
∫ ⊕

Ω̂′
0

Y H′(y) dµ(y) defined by (Wh)(y) := w(y)h(y) is a
unitary isomorphism.

The next lemma provides a dense subset of
∫ ⊕

Ω̂0

Y H(y) dµ(y):

Lemma 1.9. Let (H, Ω̂0) be a measurable Hilbert family on (Y,A, µ) and let {ej}j∈[1,m⟩ be an orthog-

onal base of measurability for Ω̂0, where m = µ- sup{dim(H(y))} (that is, assume Ω0 = {ej}j∈[1,m⟩).

Let f0 be an element of L2(Y, µ;C) such that f0 ̸= 0 µ-a.e.Y . Then, the set of functions hj,δ(y) =
f0(y)χδ(y)ej(y), where δ ∈ A, j ∈ [1,m⟩ and χδ is the characteristic function on δ, is dense in∫ ⊕

Ω̂0

Y H(y) dµ(y).

Proof. Let g ∈
∫ ⊕

Ω̂0

Y H(y) dµ(y) such that g ⊥ hj,δ for any j ∈ [1,m⟩ and δ ∈ A. Here, we have∫
δ

f0(y)⟨g(y), ej(y)⟩H(y) dµ(y) =

∫
Y

⟨g(y), hj,δ(y)⟩H(y) dµ(y) = ⟨g, hj,δ⟩ = 0.

Since δ ∈ A is arbitrary, we have ⟨g(y), ej(y)⟩H(y) = 0 for any j ∈ [1,m⟩ and µ-a.e. y ∈ Y . This implies
that

⟨g, ej⟩ :=
∫
Y

⟨g(y), ej(y)⟩H(y) dµ(y) = 0.

for any j ∈ [1,m⟩, and thus g = 0. □

The basic object usually considered in the context of direct integral is multiplication operator by a
C-valued function.

Definition 1.10. Let φ be a measurable C-valued function on defined µ-a.e.Y . Then, the operator
Qφ in the direct integral is defined as the following operator with domain

dom(Qφ) =

{
g ∈

∫ ⊕
Ω̂0

Y

H(y) dµ(y)

∣∣∣∣ ∫
Y

|φ(y)|2∥g(y)∥2H(y) dµ(y) < ∞
}

such that
(Qφg)(y) := φ(y)g(y)

for any g ∈ dom(Qφ).

The following corollary is clear:

Corollary 1.11. Let us consider two measurable Hilbert families (H, Ω̂0) and (H′, Ω̂′
0) which satisfy

that dim(H(y)) = dim(H′(y)) for µ-a.e. y ∈ Y . Let also Qφ and Q′
φ be the multiplication operator

by some C-valued function on
∫ ⊕

Ω̂0

Y H(y) dµ(y) and on
∫ ⊕

Ω̂′
0

Y H′(y) dµ(y), respectively. Then, we have
Q′

φW = WQφ, where W is the unitary operator of Corollary 1.8.

According to Corollary 1.8 and 1.11, the concrete choice of measurable Hilbert families is not so

important. Hence, we can omit Ω̂0 in the symbol of the direct integral of (H(·), Ω̂0), that is,∫ ⊕

Y

H(y) dµ(y).
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To end this section, we see some examples of direct integral.

Example 1.12. Let (Y,A, µ) = ({x}, {∅, {x}, µ}) such that µ({x}) = 1 and H(x) = H, where H is

a separable Hilbert space. Let Ω0 be an orthonormal base of H. Then it is clear that (H, Ω̂0) is an
orthogonal base of measurability and∫ ⊕

Ω̂0

Y

H(y) dµ(y) =
{
h : {x} → H

∣∣ ∥h∥2 = ∥h(x)∥H < ∞
}
≃ H.

Similarly, if (Y,A, µ) = ({x1, · · · , xn}, 2{x1,··· ,xn}, µ) such that µ({xi}) = 1 and H(xi) = Hi, then we
have ∫ ⊕

Ω̂0

Y

H(y) dµ(y) = H1 ⊕H2 ⊕ · · · ⊕Hn.

Example 1.13. Let (Y,A, µ) is a σ-finite measure space and H(y) = H where H is a separable Hilbert
space. Let Ω0 be an orthonormal base of H. Then, it is easy to see that∫ ⊕

Ω̂0

Y

H(y) dµ(y) ≃ L2(Y, µ;H).

More generally, let H be a function whose value H(y) are separable Hilbert spaces and Y =
⊔

λ∈Λ Yλ

such that Yλ = {y ∈ Y |H(y) = Hλ}. If we set Ω0 = {ej} such that

ej(y) =

{
eλj , if j ∈ [1,dim(Hλ)⟩, y ∈ Yλ

0, otherwise,

where {eλj }j∈[1,dim(Hλ)⟩ is an orthonormal base of Hλ, then we have∫ ⊕
Ω̂0

Y

H(y) dµ(y) ≃
⊕
λ∈Λ

L2(Yλ, µ|Yλ
;Hλ).

By this example, we can see the direct integral is complete using Corollary 1.8.

2. Decomposable operator

Let (Y,A, µ) be a (separable) σ-finite measure space and H be an direct integral
∫ ⊕
Y

H(y) dµ(y).

Definition 2.1. For δ ∈ A, we define X(δ) as the operator from H to H by

(X(δ)g)(y) := χδ(y)g(y)

for any g ∈ H.

It is easy to see that X(δ), δ ∈ A, is the orthogonal projection onto the subspace of these vector-
functions g ∈ H which equal zero µ-a.e. on Y \ δ and {X(δ)}δ∈A defines a spectral measure on H.
Then, for a measurable C-valued function φ defined µ-a.e. on Y , we define an operator Jφ by spectral
integral:

Jφ :=

∫
Y

φ(y) dX(y)

with the domain

dom(Jφ) :=

{
g ∈ H

∣∣∣∣ ∫
Y

|φ(y)|2 d⟨X(y)g, g⟩ < ∞
}
.

Here, we can easily see the following fact:

Corollary 2.2. The operator Jφ coincides with the operator Qφ.

Proof. See [BS, Chapter 7, Theorem 2.1]. □
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Let (Y,A, ν) be another σ-finite measure space. We say that µ << ν if for δ ∈ A, ν(δ) = 0 implies
µ(δ) = 0. We also say that µ ∼ ν if µ << ν and ν << µ hold. Note that for C-valued function φ on Y ,
that φ is measurable with respect to µ is equivalent to that φ is measurable with respect to ν if µ ∼ ν.

Let H ′ be another direct integral
∫ ⊕ H′(y) dν(y), where H′(y) be separable Hilbert spaces ν-a.e. on Y .

We denote the corresponding spectral measure on H and on H ′ by X and X ′, respectively. Similarly,
Qφ and Q′

φ denote the multiplication operators on H and on H ′, respectively. Corollary 1.8 will be
generalized to more general situation as follows:

Theorem 2.3. Let µ, ν be σ-finite measure space (with a countable base) on a measurable space
(Y,A).

(1) Assume that µ ∼ ν, dim(H(y)) = dim(H′(y)) µ-a.e. on y ∈ Y and there exists a measurable
operator-valued function v defined µ-a.e. on Y which maps H(y) unitarily onto H′(y). Then,

V : h 7→ Qpvh is a unitary operator from H onto H ′ such that VQφ = Q′
φV , where p =

(
dµ
dν

) 1
2

is the square root of the Radon-Nikodym derivative of µ and ν. In particular, V X(δ) = X ′(δ)V
for any δ ∈ A.

(2) If V is an isometry from H onto H ′ such that V X(δ) = X ′(δ)V for any δ ∈ A, then we
have µ ∼ ν, dim(H(y)) = dim(H′(y)) µ-a.e. on y ∈ Y , and V admits the representation
(V h)(y) = p(y)v(y)h(y) for µ-a.e. on y ∈ Y .

Proof. Here, we omit this proof. See [BS, Chapter 7, Theorem 2.2]. □

Lemma 2.4. Let t be a measurable operator-valued function defined µ-a.e. on Y which satisfies
t(y) ∈ B(H(y)) for y ∈ Y and µ- sup ∥t(y)∥B(H(y)) < ∞. Then, the operator T : H → H which is
given by

(Th)(y) = t(y)h(y) (1)

is a bounded operator which commutes with Qφ for any measurable C-valued function φ defined µ-a.e.
on Y . In particular, T commutes with X(δ) for any δ ∈ A, and

∥T∥ = µ- sup ∥t(y)∥B(H). (2)

Proof. This follows by direct computations except to norm equality (2). It is easy to see that

∥T∥ ≤ µ- sup ∥t(y)∥B(H(y)).

The opposite follows from the proof Theorem 2.6 (we omit it in this note. see [BS, Chapter 7, Theorem
2.3 (b)]). □

Definition 2.5. The operator T :
∫ ⊕ H(y) dµ(y) →

∫ ⊕ H(y) dµ(y) having the form (1) in Lemma 2.4

is called a decomposable operator, denoted by T =
∫ ⊕
Y

t(y) dµ(y).

The following is the main theorem in this note. This is a generalization of diagonalization:

Theorem 2.6. If T ∈ B(H) commutes with X(δ) for any δ ∈ A, then T admits the representation
(1) in Lemma 2.4, that is, there exists a measurable operator-valued function t defined µ-a.e. on Y
such that t(y) ∈ B(H(y)), µ- sup ∥t(y)∥B(H(y)) < ∞ and

T =

∫ ⊕

Y

t(y) dµ(y).

We only state the sketch of the proof of this theorem. To show this theorem, we have to construct
some operator-valued function t defined on µ-a.e. on Y such that t(y) ∈ B(H(y)). It is natural to
define t by t(y)h(y) := (Th)(y). But, there is a big difference between the continuity of t(y) and
that of T . The continuity of T ∈ B(H) is related to the topology of H, that is, L2-convergence.
On the other hand, the continuity of t(y) for some y ∈ Y is related to the topology of H(y), that
is, pointwise convergence. Thus, seeing the continuity of t(y) from that of T means roughly seeing
the pointwise convergence from L2-convergence. For that, we need the sequence which approximate
some L2-function not only in L2-topology but also in pointwise-topology (H(y)-topology). However,
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in general, a sequence which L2-converges does not pointwisely converge (remark that they have a
subsequence which pointwisely converges). Thus, most important point of the proof is to find a nice
Y0 ∈ A such that µ(Y \Y0) = 0 and some natural L2-approximation sequence also pointwisely converges
on Y0. For details, see [BS, Chapter 7, Theorem 2.3 (b)].

3. Decomposability of scattering operator

Let us recall some facts about scattering operator. LetH be a separable Hilbert space and U ∈ B(H)
be a unitary operator. A core for U is a Borel set σ̂ ⊂ [0, 2π) such that EU ([0, 2π)\ σ̂) = 0 (σ̂ supports
the spectral measure of U) and if σ′ is another Borel set which supports the spectral measure of U ,
then |σ̂ \ σ′| = 0 (the left hand side is the Lebesgue measure of σ̂ \ σ′). Then, we have the following
fact by the spectral theorem:

Fact 3.1. For a.e. θ ∈ σ̂, there exists a separable Hilbert space H(θ) and a map F : H →
∫ ⊕
σ̂

H(θ) dθ
(dθ is the Lebesgue measure) such that F|Hs(U) = 0 and Fac is a unitary operator from Hac(U) to∫ ⊕
σ̂

H(θ) dθ, and

FacUHac(U)F∗
ac =

∫ ⊕

σ̂

eiθ dθ.

Note that the absolutely continuous part EU
ac(δ) of spectral measure of U corresponds to X(δ) in∫ ⊕

σ̂
H(θ) dθ. Let H0 be another separable Hilbert space and U0 ∈ B(H0) be a unitary operator. Let

also J be an bounded operator from H0 to H. The expressions W+(U,U0,J ,Θ) and W−(U,U0,J ,Θ)
denote the wave operators for any Borel set Θ ⊂ [0, 2π). Then, the scattering operator is defined by

S(U,U0,J ,Θ) := W+(U,U0,J ,Θ)∗W−(U,U0,J ,Θ) ∈ B(H0).

By the intertwining property of wave operator, we have that S(U,U0,J ,Θ) commutes with U0. Then,
applying Fact 3.1 to (H0, U0) and using Theorem 2.6, we have the following fact:

Corollary 3.2. The operator S(U,U0,J ,Θ) is decomposable and

FacS(U,U0,J ,Θ)|Hac(U0)F
∗
ac =

∫ ⊕

σ̂

s(θ) dθ

with s a measurable operator-valued function defined dθ-a.e. on σ̂ such that s(θ) ∈ B(H(θ)) and
∥S(U,U0,J ,Θ)|Hac(U0)∥ = dθ- sup ∥s(θ)∥H(θ).
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