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1. Some basics of operator

Definition 1.1. Let H and K be Hilbert spaces. We say that W ∈ B(H,K) is a partial isometry if
W is an isometry on ker(W )⊥.

Lemma 1.2. The range of any partial isometry W ∈ B(H,K) is closed.

Proof. Assume that a sequence {xn}n∈N ⊂ H is such that Wxn → y as n → ∞ for some y ∈ K. Let
P ∈ B(H) be the orthogonal projection onto ker(W )⊥. Then, we have that

∥Pxn − Pxm∥H = ∥WPxn −WPxm∥K = ∥Wxn −Wxm∥H → 0,

that is, {Pxn} is a Cauchy sequence (remark that (ker(W )⊥)⊥ = ker(W )). By the completeness of
H, there exists x ∈ ker(W )⊥ such that Pxn → x (note that the orthogonal subspace of any subset is
closed). Thus, we have that

∥Wx− y∥K = lim
n

∥Wx−Wxn∥K = ∥Wx−WPxn∥K = ∥x− Pxn∥H → 0,

that is, Wx = y. □

Lemma 1.3. Let H and K be Hilbert spaces, and M and N be closed subspaces of H and K,
respectively. For A ∈ B(H,K) such that AM ⊂ N , it holds that A∗N⊥ ⊂ M⊥.

Proof. Assume that AM ⊂ N . For any x ∈ N⊥ and any y ∈ M , we have that

⟨A∗x, y⟩ = ⟨x,Ay⟩ = 0

since Ay ∈ N . Thus, the statement holds. □

2. Wave operator

Let us recall the definition of the wave operator.

Definition 2.1. Let H and H0 be Hilbert spaces. Let U ∈ B(H) and U0 ∈ B(H0) be unitary
operators on each space. Also, let J be a bounded operator from H0 to H, which is called identification
operator. If there exists a SOT-limit s-limn U

−nJUn
0 , then we call it the wave operator and denote

it by W± = W±(U,U0, J). Moreover, for any Borel set Θ ⊂ [0, 2π), if there exists a SOT-limit s-
limn U

−nJU−n
0 EU0(Θ), then we call it the (local) wave operator, where EU0(·) is the spectral measure

of U0. We denote it by W±(Θ) = W±(U,U0, J,Θ).

Lemma 2.2. If J is unitary, then ker(W±(Θ)) is exactly EU0([0, 2π) \Θ).

Proof. It is clear that EU0([0, 2π) \ Θ) ⊂ ker(W±(Θ)). On the other hand, for any f ∈ H0 such that
W±(Θ)f = 0, we have that

∥EU0(Θ)f∥H0 = ∥U−nJUn
0 E

U0(Θ)f∥H → 0.

This implies that f ∈ ran(EU0([0, 2π) \Θ)). □

Proposition 2.3. If J is unitary, the wave operator W±(Θ) is a partial isometry and its range is
closed.
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Proof. By Lemma 1.2, it suffices to show that W±(Θ) is a partial isometry. For any f ∈ H0, we have
that

∥W±(Θ)EU0(Θ)f∥H = lim
n

∥U−nJUn
0 E

U0(Θ)f∥H = lim
n

∥EU0(Θ)f∥H0 = ∥EU0(Θ)f∥H0 .

Combining this with Lemma 2.2, we have that W±(Θ) is a partial isometry. □

Definition 2.4. We define the subspace N±(Θ) as{
f ∈ H | lim

n
∥J∗UnEU (Θ)f∥H0

= 0
}
.

Lemma 2.5. The N±(Θ) is closed.

Proof. Let {fm} ⊂ N±(Θ) be a sequence such that fm → f as m → ∞ for some f ∈ H. Then, for
any ϵ > 0 there exists m0 ∈ N such that ∥f − fm0∥ < ϵ. Also, for m0 ∈ N there exists n0 ∈ N such
that ∥J∗Un0EU (Θ)fm0∥ < ϵ. Hence, we have that

∥J∗Un0EU (Θ)f∥ ≤ ∥J∗Un0EU (Θ)fm0
∥+ ∥J∗Un0EU (Θ)(f − fm0

)∥
≤ ∥J∗Un0EU (Θ)fm0∥+ ∥J∥ϵ
≤ (1 + ∥J∥)ϵ,

that is, for any ϵ > 0 there exists n0 ∈ N such that

∥J∗Un0EU (Θ)f∥ ≤ (1 + ∥J∥)ϵ. (1)

This implies that f ∈ N±(Θ). □

Proposition 2.6. The U is reduced by N±(Θ).

Proof. Consider the decomposition H = N±(Θ)⊕N±(Θ)⊥. The representation operator matrix of U
with respect to this decomposition is[

PU |N±(Θ) PU |N±(Θ)⊥

(I − P )U |N±(Θ) (I − P )U |N±(Θ)⊥

]
,

where P is the orthogonal projection onto N±(Θ). Here, remark that UN±(Θ) ⊂ N±(Θ). In fact, for
any f ∈ N±(Θ), we have that

∥J∗UnEU (Θ)Uf∥H0
= ∥J∗Un+1EU (Θ)f∥H0

→ 0.

Similarly, we can also see that U∗N±(Θ) ⊂ N±(Θ). Also, by Lemma 1.3, it implies that UN±(Θ)⊥ ⊂
N±(Θ)⊥. Thus, we have that PU |N±(Θ)⊥ = 0 and (I − P )U |N±(Θ) = 0, that is,

U =

[
PU |N±(Θ) 0

0 (I − P )U |N±(Θ)⊥

]
.

□

See e.g. [H] for more information about partial isometries.

References

[H] P. R. Halmos, A Hilbert Space Problem Book, second edition, Springer, 1982.


