Partial isometries and wave operators

ID: 322201059 HYUGA ITO

1. Some basics of operator

Definition 1.1. Let H and K be Hilbert spaces. We say that $W \in B(H, K)$ is a partial isometry if W is an isometry on $\operatorname{ker}(W)^{\perp}$.

Lemma 1.2. The range of any partial isometry $W \in B(H, K)$ is closed.
Proof. Assume that a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset H$ is such that $W x_{n} \rightarrow y$ as $n \rightarrow \infty$ for some $y \in K$. Let $P \in B(H)$ be the orthogonal projection onto $\operatorname{ker}(W)^{\perp}$. Then, we have that

$$
\left\|P x_{n}-P x_{m}\right\|_{H}=\left\|W P x_{n}-W P x_{m}\right\|_{K}=\left\|W x_{n}-W x_{m}\right\|_{H} \rightarrow 0
$$

that is, $\left\{P x_{n}\right\}$ is a Cauchy sequence (remark that $\left.\left(\operatorname{ker}(W)^{\perp}\right)^{\perp}=\operatorname{ker}(W)\right)$. By the completeness of H, there exists $x \in \operatorname{ker}(W)^{\perp}$ such that $P x_{n} \rightarrow x$ (note that the orthogonal subspace of any subset is closed). Thus, we have that

$$
\|W x-y\|_{K}=\lim _{n}\left\|W x-W x_{n}\right\|_{K}=\left\|W x-W P x_{n}\right\|_{K}=\left\|x-P x_{n}\right\|_{H} \rightarrow 0
$$

that is, $W x=y$.
Lemma 1.3. Let H and K be Hilbert spaces, and M and N be closed subspaces of H and K, respectively. For $A \in B(H, K)$ such that $A M \subset N$, it holds that $A^{*} N^{\perp} \subset M^{\perp}$.

Proof. Assume that $A M \subset N$. For any $x \in N^{\perp}$ and any $y \in M$, we have that

$$
\left\langle A^{*} x, y\right\rangle=\langle x, A y\rangle=0
$$

since $A y \in N$. Thus, the statement holds.

2. Wave operator

Let us recall the definition of the wave operator.
Definition 2.1. Let H and H_{0} be Hilbert spaces. Let $U \in B(H)$ and $U_{0} \in B\left(H_{0}\right)$ be unitary operators on each space. Also, let J be a bounded operator from H_{0} to H, which is called identification operator. If there exists a SOT-limit s- $\lim _{n} U^{-n} J U_{0}^{n}$, then we call it the wave operator and denote it by $W_{ \pm}=W_{ \pm}\left(U, U_{0}, J\right)$. Moreover, for any Borel set $\Theta \subset[0,2 \pi)$, if there exists a SOT-limit s$\lim _{n} U^{-n} J U_{0}^{-n} E^{U_{0}}(\Theta)$, then we call it the (local) wave operator, where $E^{U_{0}}(\cdot)$ is the spectral measure of U_{0}. We denote it by $W_{ \pm}(\Theta)=W_{ \pm}\left(U, U_{0}, J, \Theta\right)$.
Lemma 2.2. If J is unitary, then $\operatorname{ker}\left(W_{ \pm}(\Theta)\right)$ is exactly $E^{U_{0}}([0,2 \pi) \backslash \Theta)$.
Proof. It is clear that $E^{U_{0}}([0,2 \pi) \backslash \Theta) \subset \operatorname{ker}\left(W_{ \pm}(\Theta)\right)$. On the other hand, for any $f \in H_{0}$ such that $W_{ \pm}(\Theta) f=0$, we have that

$$
\left\|E^{U_{0}}(\Theta) f\right\|_{H_{0}}=\left\|U^{-n} J U_{0}^{n} E^{U_{0}}(\Theta) f\right\|_{H} \rightarrow 0
$$

This implies that $f \in \operatorname{ran}\left(E^{U_{0}}([0,2 \pi) \backslash \Theta)\right)$.
Proposition 2.3. If J is unitary, the wave operator $W_{ \pm}(\Theta)$ is a partial isometry and its range is closed.

Proof. By Lemma 1.2, it suffices to show that $W_{ \pm}(\Theta)$ is a partial isometry. For any $f \in H_{0}$, we have that

$$
\left\|W_{ \pm}(\Theta) E^{U_{0}}(\Theta) f\right\|_{H}=\lim _{n}\left\|U^{-n} J U_{0}^{n} E^{U_{0}}(\Theta) f\right\|_{H}=\lim _{n}\left\|E^{U_{0}}(\Theta) f\right\|_{H_{0}}=\left\|E^{U_{0}}(\Theta) f\right\|_{H_{0}}
$$

Combining this with Lemma 2.2, we have that $W_{ \pm}(\Theta)$ is a partial isometry.
Definition 2.4. We define the subspace $\mathcal{N}_{ \pm}(\Theta)$ as

$$
\left\{f \in H \mid \lim _{n}\left\|J^{*} U^{n} E^{U}(\Theta) f\right\|_{H_{0}}=0\right\}
$$

Lemma 2.5. The $\mathcal{N}_{ \pm}(\Theta)$ is closed.
Proof. Let $\left\{f_{m}\right\} \subset \mathcal{N}_{ \pm}(\Theta)$ be a sequence such that $f_{m} \rightarrow f$ as $m \rightarrow \infty$ for some $f \in H$. Then, for any $\epsilon>0$ there exists $m_{0} \in \mathbb{N}$ such that $\left\|f-f_{m_{0}}\right\|<\epsilon$. Also, for $m_{0} \in \mathbb{N}$ there exists $n_{0} \in \mathbb{N}$ such that $\left\|J^{*} U^{n_{0}} E^{U}(\Theta) f_{m_{0}}\right\|<\epsilon$. Hence, we have that

$$
\begin{aligned}
\left\|J^{*} U^{n_{0}} E^{U}(\Theta) f\right\| & \leq\left\|J^{*} U^{n_{0}} E^{U}(\Theta) f_{m_{0}}\right\|+\left\|J^{*} U^{n_{0}} E^{U}(\Theta)\left(f-f_{m_{0}}\right)\right\| \\
& \leq\left\|J^{*} U^{n_{0}} E^{U}(\Theta) f_{m_{0}}\right\|+\|J\| \epsilon \\
& \leq(1+\|J\|) \epsilon
\end{aligned}
$$

that is, for any $\epsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|J^{*} U^{n_{0}} E^{U}(\Theta) f\right\| \leq(1+\|J\|) \epsilon \tag{1}
\end{equation*}
$$

This implies that $f \in \mathcal{N}_{ \pm}(\Theta)$.
Proposition 2.6. The U is reduced by $\mathcal{N}_{ \pm}(\Theta)$.
Proof. Consider the decomposition $H=\mathcal{N}_{ \pm}(\Theta) \oplus \mathcal{N}_{ \pm}(\Theta)^{\perp}$. The representation operator matrix of U with respect to this decomposition is

$$
\left[\begin{array}{cc}
\left.P U\right|_{\mathcal{N}_{ \pm}(\Theta)} & \left.P U\right|_{\mathcal{N}_{ \pm}(\Theta)^{\perp}} \\
\left.(I-P) U\right|_{\mathcal{N}_{ \pm}(\Theta)} & \left.(I-P) U\right|_{\mathcal{N}_{ \pm}(\Theta)^{\perp}}
\end{array}\right]
$$

where P is the orthogonal projection onto $\mathcal{N}_{ \pm}(\Theta)$. Here, remark that $U \mathcal{N}_{ \pm}(\Theta) \subset \mathcal{N}_{ \pm}(\Theta)$. In fact, for any $f \in \mathcal{N}_{ \pm}(\Theta)$, we have that

$$
\left\|J^{*} U^{n} E^{U}(\Theta) U f\right\|_{H_{0}}=\left\|J^{*} U^{n+1} E^{U}(\Theta) f\right\|_{H_{0}} \rightarrow 0
$$

Similarly, we can also see that $U^{*} \mathcal{N}_{ \pm}(\Theta) \subset \mathcal{N}_{ \pm}(\Theta)$. Also, by Lemma 1.3, it implies that $U \mathcal{N}_{ \pm}(\Theta)^{\perp} \subset$ $\mathcal{N}_{ \pm}(\Theta)^{\perp}$. Thus, we have that $\left.P U\right|_{\mathcal{N}_{ \pm}(\Theta)^{\perp}}=0$ and $\left.(I-P) U\right|_{\mathcal{N}_{ \pm}(\Theta)}=0$, that is,

$$
U=\left[\begin{array}{cc}
\left.P U\right|_{\mathcal{N}_{ \pm}(\Theta)} & 0 \\
0 & \left.(I-P) U\right|_{\mathcal{N}_{ \pm}(\Theta)^{\perp}}
\end{array}\right]
$$

See e.g. [H] for more information about partial isometries.

References

[H] P. R. Halmos, A Hilbert Space Problem Book, second edition, Springer, 1982.

