C^{*}-ALGEBRAIC METHODS IN SPECTRAL THEORY Various exercises from the lecture notes

NO. 322101205 SHUTO SHIMIZU

Exercise 1.5.4 Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a sequence with $f_{n} \in D(A)$ which strongly converges to $f \in \mathcal{H}$. We show first that $\left\{A f_{n}\right\}_{n \in \mathbb{N}}$ strongly converges, that is, A is continuous. Let $\epsilon>0$ and there exists an integer N s.t. if $m>N$, then $\left\|\lim _{n} f_{n}-f_{m}\right\|<\frac{\epsilon}{c}$. Then $\left\|\lim _{n} A f_{n}-A f_{m}\right\|=\lim _{n}\left\|A\left(f_{n}-f_{m}\right)\right\| \leq \lim _{n} c\left\|f_{n}-f_{m}\right\|=c\left\|l i m_{n} f_{n}-f_{m}\right\|<\epsilon$. Here, if $\left\{f_{n}^{\prime}\right\}_{n \in \mathbb{N}}$ is another sequence in $D(A)$ which converges to f, then $\left\{A f_{n}^{\prime}\right\}_{n \in \mathbb{N}}$ converges to the same element as the one to which $\left\{A f_{n}\right\}_{n \in \mathbb{N}}$ converges. To see this, let N be a natural number such that $\left\|f_{n}-f\right\|<\frac{\epsilon}{2 c},\left\|f_{m}^{\prime}-f\right\|<\frac{\epsilon}{2 c}$ for $m, n>N$. We get $\left\|f_{n}-f_{m}^{\prime}\right\|<\left\|f_{n}-f\right\|+\left\|f_{m}^{\prime}-f\right\|<\frac{\epsilon}{c}$. This leads to $\left\|A f_{n}-A f_{m}^{\prime}\right\| \leq c\left\|f_{n}-f_{m}^{\prime}\right\|<\epsilon$, concluding that $\left\|\lim _{n} A f_{n}-A f_{m}^{\prime}\right\|<\epsilon$ as desired.

Let $f \in \mathcal{H} \backslash D(A)$. Since $D(A)$ is dense, there exists a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ of elements of $D(A)$ strongly converging to f. We define $A \bar{f}=\lim _{n} A f_{n}$ (note that it is independent on choice of $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ due to continuity of A). Let $\epsilon>0$. There exists an integer N s.t. for all $n>$ N, we have $\left\|A f-A f_{n}\right\|<\epsilon / 2$ and $\left\|f-f_{n}\right\|<\epsilon / 2 c$. We can estimate $\|A f\|$ as follows; -

$$
\begin{aligned}
\|\bar{A} f\| & \leq\left\|A f_{n}\right\|+\left\|\bar{A} f-A f_{n}\right\| \\
& <\left\|A f_{n}\right\|+\frac{\epsilon}{2} \\
& \leq c\left\|f_{n}\right\|+\frac{\epsilon}{2} \\
& <c\|f\|+\epsilon
\end{aligned}
$$

where we use triangle inequality in the first and the last inequality (as for the latter, we use $\left.\left\|f_{n}\right\|-\|f\| \leq\left\|f-f_{n}\right\|<\epsilon / 2 c\right)$. Taking $\epsilon \rightarrow+0$, we obtain $\|\bar{A} f\| \leq c\|f\|$.

Exercise 1.3.3

$$
\begin{aligned}
\left\|A_{n}\right\| & =\sup _{f \in \mathcal{H}} \frac{\left\|A_{n} f\right\|}{\|f\|} \\
& =\sup _{f \in \mathcal{H}} \frac{\left\|\sum_{j}\left\langle f, g_{j}\right\rangle h_{j}\right\|}{\|f\|} \\
& \leq \sup _{f \in \mathcal{H}} \frac{\sum_{j}\left|\left\langle f, g_{j}\right\rangle\right| \cdot\left\|h_{j}\right\|}{\|f\|} \\
& =\sum_{j}\left\|\varphi_{g_{j}}\right\| \cdot\left\|h_{j}\right\| \\
& =\sum_{j}\left\|g_{j}\right\| \cdot\left\|h_{j}\right\|
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
\left\langle A_{n} f, f^{\prime}\right\rangle & =\left\langle\sum_{j}\left\langle f, g_{j}\right\rangle h_{j}, f^{\prime}\right\rangle \\
& =\sum_{j}\left\langle f, g_{j}\right\rangle\left\langle h_{j}, f^{\prime}\right\rangle \\
& =\sum_{j}\left\langle f, \overline{\left\langle h_{j}, f^{\prime}\right\rangle} g_{j}\right\rangle \\
& =\left\langle f, \sum_{j} \overline{\left\langle h_{j}, f^{\prime}\right\rangle} g_{j}\right\rangle \\
& =\left\langle f, \sum_{j}\left\langle f^{\prime}, h_{j}\right\rangle g_{j}\right\rangle .
\end{aligned}
$$

So we get $A_{n}^{*} f=\sum_{j}\left\langle f, h_{j}\right\rangle g_{j}$.
Exercise 1.6.5 For $f^{\prime} \in D(A)$ and $z, z^{\prime} \in \mathbb{C},(A-z) f^{\prime} \in D(A)$ iff $\left(A-z^{\prime}\right) f^{\prime} \in D(A)$ as the difference $\left(z-z^{\prime}\right) f^{\prime}$ is contained in $D(A)$. So the operators $(A-z)\left(A-z^{\prime}\right)$ and $\left(A-z^{\prime}\right)(A-z)$ have the same domain D. Note that if $f^{\prime} \in D$, then $A f^{\prime} \in D(A)$, by which we can compute expansions of $(A-z)\left(A-z^{\prime}\right) f^{\prime}$ and $\left(A-z^{\prime}\right)(A-z) f^{\prime}$ for $f^{\prime} \in D$, concluding that $(A-z)\left(A-z^{\prime}\right)=\left(A-z^{\prime}\right)(A-z)$. Since $z_{1}, z_{2} \in \rho(A)$, for any $f \in \mathcal{H}$, there exists $g \in D$ such that $f=\left(A-z_{1}\right)\left(A-z_{2}\right) g=\left(A-z_{2}\right)\left(A-z_{1}\right) g$. We have $\left(\left(A-z_{1}\right)^{-1}-\left(A-z_{2}\right)^{-1}\right) f=$ $\left(\left(A-z_{2}\right)-\left(A-z_{1}\right)\right) g=\left(z_{1}-z_{2}\right) g$ while $\left(z_{1}-z_{2}\right)\left(A-z_{1}\right)^{-1}\left(A-z_{2}\right)^{-1} f=\left(z_{1}-z_{2}\right) g$. As f is arbitrary, we get $\left(A-z_{1}\right)^{-1}-\left(A-z_{2}\right)^{-1}=\left(z_{1}-z_{2}\right)\left(A-z_{1}\right)^{-1}\left(A-z_{2}\right)^{-1}$.

Exercise 3.3.7 First, we show that $\left(C_{0}(G), G, L\right)$ is a C^{*}-dynamical system. We need to show that $x \mapsto L_{x} f$ is continuous for each $f \in C_{0}(G)$, that is, for any $\epsilon>0$, there exists an open neighborhood V of x such that for all $y \in V$, $\sup _{z \in G}\left|f\left(y^{-1} z\right)-f\left(x^{-1} z\right)\right|<\epsilon$. By replacing $x^{-1} z$ by z, we can assume that $x=e$ is the identity element of G. Since $f \in C_{0}(G)$, there exists a compact subset $K^{\prime} \subset G$ with the property that if $z \in G \backslash K^{\prime}$,
then $|f(z)|<\frac{\epsilon}{2}$. As G is locally compact, there exists a compact neighborhood $K^{\prime \prime}$ of e. Let $K=K^{\prime \prime} \cdot K^{\prime}$. This is a compact subset since the multiplication $G \times G \rightarrow G$ is continuous and the image of a compact set (in our case, $K^{\prime \prime} \times K^{\prime}$) under a continuous map is compact. If $K=G$, the necessary argument is given in the following paragraph. Assume that $K \neq G$. For fixed $y \in K^{\prime \prime}$, if $z \in G \backslash\left(y K^{\prime} \cup K^{\prime}\right)$, then $\left|f\left(y^{-1} z\right)-f(z)\right|<$ $\left|f\left(y^{-1} z\right)\right|+|f(z)|<\epsilon$. Varying y in $K^{\prime \prime}$, we see that if $z \in G \backslash K$ and $y \in K^{\prime \prime}$, then $\left|f\left(y^{-1} z\right)-f(z)\right|<\epsilon$. It suffices to find an open neighborhood U of e such that if $y \in U$, then $\left|f\left(y^{-1} z\right)-f(z)\right|<\epsilon$ for all $z \in K$. Given such $U, V=U \cap K^{\prime \prime \circ}$ has the desired property where $K^{\prime \prime \circ}$ denotes for the interior of $K^{\prime \prime}$.

We claim that for each $z \in G$ and any $\epsilon>0$, there exists an open neighborhood U_{z} of e such that if $a, b \in U_{z}$, then $|f(a z)-f(b z)|<\epsilon$. Indeed, as f and the multiplication with z are continuous, there exists an open neighborhood $U_{z} \ni e$ with the property that if $c \in U_{z}$, then $|f(c z)-f(z)|<\frac{\epsilon}{2}$. By the triangle inequality, we get $|f(a z)-f(b z)| \leq$ $|f(a z)-f(z)|+|f(b z)-f(z)|<\epsilon$ for $a, b \in U_{z}$.

If $y^{-1} g, g \in U_{z}$, then $\left|f\left(y^{-1} g z\right)-f(g z)\right|<\epsilon$. Since the multiplication in G is continuous, there exist two open neighborhoods $U_{z}^{\prime}, U_{z}^{\prime \prime}$ of e with $U_{z}^{\prime} U_{z}^{\prime \prime} \subset U_{z}$. So we conclude that for fixed $z \in G$, there exist an open neighborhood $V_{z}\left(=U_{z}^{\prime \prime} z\right)$ of z and an open neighborhood $W_{z}\left(=U_{z}^{\prime}\right)$ of e satisfying that for any points $z^{\prime} \in V_{z}$ and $y^{-1} \in W_{z},\left|f\left(y^{-1} z^{\prime}\right)-f\left(z^{\prime}\right)\right|<\epsilon$. Because K is compact, one can take a finite number of points $\left\{z_{k}\right\}_{1 \leq k \leq n}$ such that $\cup_{k} V_{k} \supset$ K where $V_{k}=V_{z_{k}}$. Let $W^{\prime}=\cap_{k} W_{k}$ and set $W=W^{\prime-1}$ where $W_{k}=W_{z_{k}}$. Then W is an open subset (as the map associating to $g \in G$ its inverse is continuous) which satisfies the desired condition, i.e. $y \in W \Rightarrow\left|f\left(y^{-1} z\right)-f(z)\right|<\epsilon$ for all $z \in K$.

Next, we show $\left(L^{2}(G), I d, U\right)$ is a covariant representation of $\left(C_{0}(G), G, L\right)$. It is known that $\left(L^{2}(G), U\right)$ is a representation of G. We will show $\left(L^{2}(G), I d\right)$ is a representation of $C_{0}(G)$. We first show that $\operatorname{Id}(h)$ is an element of $\mathcal{B}(\mathcal{H})$ for $h \in C_{0}(G)$. We need to show $\|I d(h)\|=\left(\frac{\int_{G}|I d(h) f|^{2} d \mu}{\int_{G}|f|^{2} d \mu}\right)^{1 / 2}<\infty$. For any $\epsilon>0$, there exists a compact subset $K_{\epsilon} \subset G$ with the property that $g \in G \backslash K_{\epsilon} \Rightarrow h(g)<\epsilon$. Since a continuous function (whose value is in \mathbb{R}) defined over a compact set has a maximum value, there is $M>0$ such that $|h(x)| \leq M$ for all $x \in K_{\epsilon}$. So we can estimate the numerator as follows; $\int_{G}|I d(h) f|^{2} d \mu=\int_{K_{\epsilon}}|I d(h) f|^{2} d \mu+\int_{G \backslash K_{\epsilon}}|I d(h) f|^{2} d \mu<M^{2} \int_{K_{\epsilon}}|f|^{2} d \mu+\epsilon^{2} \int_{G \backslash K_{\epsilon}}|f|^{2} d \mu \leq$ $\max \left\{\epsilon^{2}, M^{2}\right\} \int_{G}|f|^{2} d \mu$, which means that $\|I d(h)\|<\max \{\epsilon, M\}$. It is obvious that $I d$ is a homomorphism. By the following computation, we see that it preserves involution, so it is actually a $*$-homomorphism; $\langle f, I d(h) g\rangle=\int f \overline{h g} d \mu=\int \bar{h} f \bar{g} d \mu=\langle\bar{h} f, g\rangle=\langle I d(\bar{h}) f, g\rangle$ for $h \in C_{0}(G)$ and $f, g \in L^{2}(G)$.

Finally, we need to show the equality $\operatorname{Id}\left(L_{x} h\right)=U_{x} I d(h) U_{x}^{*}$ for any $h \in C_{0}(G)$. For $f \in$ $L^{2}(G)$, we have $\left[I d\left(L_{x} h\right) f\right](y)=\left(L_{x} h(y)\right) f(y)$ while $U_{x} \operatorname{Id}(h) U_{x}^{*} f(y)=U_{x} \operatorname{Id}(h)(f(x y))=$ $U_{x}(h(y) f(x y))=h\left(x^{-1} y\right) f(y)=\left(L_{x} h(y)\right) f(y)$. As y is arbitrary, the equality holds.

Exercise 4.1.3 For $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, we have

$$
\begin{gathered}
{\left[X_{j}, X_{k}\right] f=\left(i X_{j} X_{k}-i X_{k} X_{j}\right) f=\left(i x_{j} x_{k}-i x_{k} x_{j}\right) f=0} \\
{\left[D_{j}, D_{k}\right] f=\left[D_{j} D_{k}-D_{k} D_{j}\right] f=\left[-\partial_{j} \partial_{k}-\partial_{k} \partial_{j}\right] f=0}
\end{gathered}
$$

since the partial differentials commute on f which is a C^{∞} function. Moreover,

$$
\begin{aligned}
{\left[i D_{j}, X_{k}\right] f } & =\left(i D_{j} X_{k}-X_{k} \cdot\left(i D_{j}\right)\right) f \\
& =\left(\partial_{j} X_{k}-X_{k} \partial_{j}\right) f \\
& =\partial_{j}\left(x_{k} f\right)-x_{k} \partial_{j} f \\
& =\delta_{j k} f+x_{k} \partial_{j} f-x_{k} \partial_{j} f \\
& =\delta_{j k} f
\end{aligned}
$$

