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Exercise 1.5.4 Let {fn}n∈N be a sequence with fn ∈ D(A) which strongly converges

to f ∈ H. We show first that {Afn}n∈N strongly converges, that is, A is continuous.

Let ϵ > 0 and there exists an integer N s.t. if m > N , then ||limn fn − fm|| < ϵ
c
. Then

||limn Afn−Afm|| = limn||A(fn−fm)|| ≤ limn c||fn−fm|| = c||limn fn−fm|| < ϵ. Here,

if {f ′
n}n∈N is another sequence in D(A) which converges to f , then {Af ′

n}n∈N converges

to the same element as the one to which {Afn}n∈N converges. To see this, let N be

a natural number such that ||fn − f || < ϵ
2c
, ||f ′

m − f || < ϵ
2c

for m,n > N . We get

m m m m

m

||fn − f ′ || < ||fn − f || + ||f ′ − f || < 
c
ϵ . This leads to ||Afn − Af ′ || ≤ c||fn − f ′ || < ϵ, 

concluding that ||limnAfn − Af ′ || < ϵ as desired.
Let f ∈ H\D(A). Since D(A) is dense, there exists a sequence {fn}n∈N of elements of 

D(A) strongly converging to f . We define Af = limn Afn (note that it is independent on
choice of {fn}n∈N due to continuity of A). Let ϵ > 0. There exists an integer N s.t. for all n > 
N , we have ||Af − Afn|| < ϵ/2 and ||f − fn|| < ϵ/2c. We can estimate ||Af ||as follows;

||Af || ≤ ||Afn||+ ||Af − Afn||

< ||Afn||+
ϵ

2

≤ c||fn||+
ϵ

2

< c||f ||+ ϵ

where we use triangle inequality in the first and the last inequality (as for the latter, we

use ||fn|| − ||f || ≤ ||f − fn|| < ϵ/2c). Taking ϵ → +0, we obtain ||Af || ≤ c||f ||.
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Exercise 1.3.3

||An|| = sup
f∈H

||Anf ||
||f ||

= sup
f∈H

||
∑

j⟨f, gj⟩hj||
||f ||

≤ sup
f∈H

∑
j |⟨f, gj⟩| · ||hj||

||f ||

=
∑
j

||φgj || · ||hj||

=
∑
j

||gj|| · ||hj||

Moreover we have

⟨Anf, f
′⟩ = ⟨

∑
j

⟨f, gj⟩hj, f
′⟩

=
∑
j

⟨f, gj⟩⟨hj, f
′⟩

=
∑
j

⟨f, ⟨hj, f ′⟩gj⟩

= ⟨f,
∑
j

⟨hj, f ′⟩gj⟩

= ⟨f,
∑
j

⟨f ′, hj⟩gj⟩.

So we get A∗
nf =

∑
j⟨f, hj⟩gj.

Exercise 1.6.5 For f ′ ∈ D(A) and z, z′ ∈ C, (A− z)f ′ ∈ D(A) iff (A− z′)f ′ ∈ D(A)

as the difference (z − z′)f ′ is contained in D(A). So the operators (A − z)(A − z′) and

(A−z′)(A−z) have the same domain D. Note that if f ′ ∈ D, then Af ′ ∈ D(A), by which

we can compute expansions of (A−z)(A−z′)f ′ and (A−z′)(A−z)f ′ for f ′ ∈ D, concluding

that (A−z)(A−z′) = (A−z′)(A−z). Since z1, z2 ∈ ρ(A), for any f ∈ H, there exists g ∈ D

such that f = (A−z1)(A−z2)g = (A−z2)(A−z1)g. We have ((A−z1)
−1−(A−z2)

−1)f =

((A− z2)− (A− z1))g = (z1 − z2)g while (z1 − z2)(A− z1)
−1(A− z2)

−1f = (z1 − z2)g. As

f is arbitrary, we get (A− z1)
−1 − (A− z2)

−1 = (z1 − z2)(A− z1)
−1(A− z2)

−1.

Exercise 3.3.7 First, we show that (C0(G), G, L) is a C∗-dynamical system. We need

to show that x 7→ Lxf is continuous for each f ∈ C0(G), that is, for any ϵ > 0, there exists

an open neighborhood V of x such that for all y ∈ V , supz∈G|f(y−1z) − f(x−1z)| < ϵ.

By replacing x−1z by z, we can assume that x = e is the identity element of G. Since

f ∈ C0(G), there exists a compact subset K ′ ⊂ G with the property that if z ∈ G\K ′,
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then |f(z)| < ϵ
2
. As G is locally compact, there exists a compact neighborhood K ′′ of

e. Let K = K ′′ · K ′. This is a compact subset since the multiplication G × G → G is

continuous and the image of a compact set (in our case, K ′′ × K ′) under a continuous

map is compact. If K = G, the necessary argument is given in the following paragraph.

Assume that K ̸= G. For fixed y ∈ K ′′, if z ∈ G\(yK ′ ∪ K ′), then |f(y−1z) − f(z)| <
|f(y−1z)| + |f(z)| < ϵ. Varying y in K ′′, we see that if z ∈ G\K and y ∈ K ′′, then

|f(y−1z)− f(z)| < ϵ. It suffices to find an open neighborhood U of e such that if y ∈ U ,

then |f(y−1z) − f(z)| < ϵ for all z ∈ K. Given such U , V = U ∩ K ′′◦ has the desired

property where K ′′◦ denotes for the interior of K ′′.

We claim that for each z ∈ G and any ϵ > 0, there exists an open neighborhood Uz

of e such that if a, b ∈ Uz, then |f(az)− f(bz)| < ϵ. Indeed, as f and the multiplication

with z are continuous, there exists an open neighborhood Uz ∋ e with the property that

if c ∈ Uz, then |f(cz) − f(z)| < ϵ
2
. By the triangle inequality, we get |f(az) − f(bz)| ≤

|f(az)− f(z)|+ |f(bz)− f(z)| < ϵ for a, b ∈ Uz.

If y−1g, g ∈ Uz, then |f(y−1gz)−f(gz)| < ϵ. Since the multiplication in G is continuous,

there exist two open neighborhoods U ′
z, U

′′
z of e with U ′

zU
′′
z ⊂ Uz. So we conclude that for

fixed z ∈ G, there exist an open neighborhood Vz(= U ′′
z z) of z and an open neighborhood

Wz(= U ′
z) of e satisfying that for any points z′ ∈ Vz and y−1 ∈ Wz, |f(y−1z′)− f(z′)| < ϵ.

Because K is compact, one can take a finite number of points {zk}1≤k≤n such that ∪kVk ⊃
K where Vk = Vzk . Let W ′ = ∩kWk and set W = W ′−1 where Wk = Wzk . Then W is

an open subset (as the map associating to g ∈ G its inverse is continuous) which satisfies

the desired condition, i.e. y ∈ W ⇒ |f(y−1z)− f(z)| < ϵ for all z ∈ K.

Next, we show (L2(G), Id, U) is a covariant representation of (C0(G), G, L). It is known

that (L2(G), U) is a representation of G. We will show (L2(G), Id) is a representation

of C0(G). We first show that Id(h) is an element of B(H) for h ∈ C0(G). We need to

show ||Id(h)|| =
(∫

G |Id(h)f |2dµ∫
G |f |2dµ

)1/2

< ∞. For any ϵ > 0, there exists a compact subset

Kϵ ⊂ G with the property that g ∈ G\Kϵ ⇒ h(g) < ϵ. Since a continuous function

(whose value is in R) defined over a compact set has a maximum value, there is M > 0

such that |h(x)| ≤ M for all x ∈ Kϵ. So we can estimate the numerator as follows;∫
G
|Id(h)f |2dµ =

∫
Kϵ

|Id(h)f |2dµ+
∫
G\Kϵ

|Id(h)f |2dµ < M2
∫
Kϵ

|f |2dµ+ ϵ2
∫
G\Kϵ

|f |2dµ ≤
max{ϵ2,M2}

∫
G
|f |2dµ, which means that ||Id(h)|| < max{ϵ,M}. It is obvious that Id is

a homomorphism. By the following computation, we see that it preserves involution, so it

is actually a ∗-homomorphism; ⟨f, Id(h)g⟩ =
∫
fhgdµ =

∫
hfgdµ = ⟨hf, g⟩ = ⟨Id(h)f, g⟩

for h ∈ C0(G) and f, g ∈ L2(G).
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Finally, we need to show the equality Id(Lxh) = UxId(h)U
∗
x for any h ∈ C0(G). For f ∈

L2(G), we have [Id(Lxh)f ](y) = (Lxh(y))f(y) while UxId(h)U
∗
xf(y) = UxId(h)(f(xy)) =

Ux(h(y)f(xy)) = h(x−1y)f(y) = (Lxh(y))f(y). As y is arbitrary, the equality holds.

Exercise 4.1.3 For f ∈ S(Rd), we have

[Xj, Xk]f = (iXjXk − iXkXj)f = (ixjxk − ixkxj)f = 0

[Dj, Dk]f = [DjDk −DkDj]f = [−∂j∂k − ∂k∂j]f = 0

since the partial differentials commute on f which is a C∞ function. Moreover,

[iDj, Xk]f = (iDjXk −Xk · (iDj))f

= (∂jXk −Xk∂j)f

= ∂j(xkf)− xk∂jf

= δjkf + xk∂jf − xk∂jf

= δjkf.
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