report

M1 Renta Yagi (Student ID : 322201318)

Exercise 2.4.16

We write $\Phi : \mathbf{\Omega} \ni x \mapsto \tau_x \in \Omega(C(\mathbf{\Omega}))$, and we prove that Φ is a homeomorphism.

 Φ is continuous:

Let $\{x_{\lambda}\}_{\lambda \in \Lambda}$ be a net converging a point $x \in \Omega$. Since the topology of $\Omega(C(\Omega))$ is weak* topology, we have $\tau_{x_{\lambda}} \to \tau_x$ since for all $f \in C(\Omega)$, $f(x_{\lambda}) \to f(x)$. So Φ is continuous. Φ is bijective:

If $x_1, x_2 \in \Omega$ are distinct point, by Urisohn's lemma there is a function $f \in C(\Omega)$ such that $f(x_1) = 0$ and $f(x_2) = 1$. Therefore $\Phi(x_1) \neq \Phi(x_2)$. To show surjectivity of Φ , we take $\tau \in \Omega(C(\Omega))$. Then ker (τ) become a proper C* subalgebra of $C(\Omega)$, and ker (τ) separates points of Ω . Because we can find some function $f \in C(\Omega)$ such that $f(x_1) \neq f(x_2)$ for some distinct point $x_1, x_2 \in \Omega$. And we take $g = f - \tau(f)$, g belongs to ker (τ) and $g(x_1) \neq g(x_2)$. By Stone-Weierstrass Theorem, there is a point $x \in \Omega$ such that f(x) = 0 for all $f \in \text{ker}(\tau)$. Applying this for g, we have

$$0 = (f - \tau(f))(x) = f(x) - \tau(f)(x) = f(x) - \tau(f).$$

So, $f(x) = \tau(f)$ for all $f \in C(\Omega)$ i.e. $\tau = \Phi(x)$.

As a result, we prove that Φ is continuous and bijective on Ω . Since Ω is compact, $\Phi(\Omega)$ is compact and for any closed subset $F \subset \Omega$, $(\Phi^{-1})^{-1}(F) = \Phi(F)$ is closed because Ω is Hausdorff and Φ is continuous. Therefore Φ^{-1} is also continuous.

Exercise 3.1.12

G: locally compact group, $f \in C_c(G), x \in G, \mu$: left Haar measure on G. By the definition of the modular function, we have

$$\mu(Ex) = \Delta(x)\mu(E)$$

for any Borel set $E \subset G$, and by the definition of the left Haar measure, we also have

$$\mu(xE) = \mu(E).$$

So, by translating y to $x^{-1}y$ we have

$$\int_G f(xy) \, d\mu(y) = \int_G f(y) \, d\mu(y).$$

And by translating y to yx^{-1} , the measure μ is changed

$$\mu(Ex^{-1}) = \Delta(x^{-1})\mu(E).$$

Since the modular function Δ is a homomorphism, we have

$$\int_{G} f(yx) \, d\mu(y) = \int_{G} f(y) \Delta(x^{-1}) \, d\mu(y) = \Delta(x)^{-1} \int_{G} f(y) \, d\mu(y) = \Delta(x)^{-$$

Finally, if we define $\lambda(E) := \mu(E^{-1})$, then λ is a right Haar measure and $d\lambda(x) = \Delta(x^{-1})d\mu(x)$. So $d\mu(x^{-1}) = \Delta(x^{-1})d\lambda(x^{-1}) = \Delta(x^{-1})d\mu(x)$, and therefore we have

$$\int_{G} \Delta(y^{-1}) f(y^{-1}) \, d\mu(y) = \int_{G} f(y^{-1}) \, d\mu(y^{-1}) = \int_{G} f(y) \, d\mu(y).$$