report

M1 Renta Yagi (Student ID: 322201318)

1. (Example of an unbounded operator)

Let $H = L^2(\mathbb{R}), D(X) = \{f \in H; \int_{\mathbb{R}} x^2 |f(x)|^2 dx < \infty\}$ where X acts on D(X) by [Xf](x) = xf(x) for all $x \in \mathbb{R}$ and $f_n(x) = \chi_{(n,n+1)}(x)$. Then for each $n \in \mathbb{N}$, we have

$$\int_{\mathbb{R}} x^2 |\chi_{(n,n+1)}(x)|^2 \, dx = \int_n^{n+1} x^2 \, dx = n^2 + n + \frac{1}{3} < \infty.$$

So, f_n is in the domain of X. Since $||f_n||_2 = 1$,

$$||Xf_n||_2^2 = \left(n^2 + n + \frac{1}{3}\right) ||f_n||_2^2 \ge n^2 ||f_n||_2^2.$$

Therefore $||Xf_n||_2 \ge n||f_n||_2$. Density of D(X) in $L^2(\mathbb{R})$:

Let $f_n(x) = \chi_{(-n,n)}(x)f(x)$ for all $f \in L^2(\mathbb{R})$. Then for each $n \in \mathbb{N}$, we have

$$\int_{\mathbb{R}} x^2 |f_n(x)|^2 \, dx = \int_{-n}^n x^2 |f(x)|^2 \, dx \le n^2 \int_{\mathbb{R}} |f(x)|^2 \, dx < \infty.$$

So, f_n is in the domain of X and since

$$||f_n - f||_2^2 = \int_{\mathbb{R}} |\chi_{(-n,n)}(x) - 1|^2 |f(x)|^2 \, dx,$$

and $|\chi_{(-n,n)}(x) - 1|^2 |f(x)|^2 \le 4|f(x)|^2$, applying the Lebesgue convergence theorem, we have

$$\lim_{n \to \infty} \int_{\mathbb{R}} |\chi_{(-n,n)}(x) - 1|^2 |f(x)|^2 \, dx = \int_{\mathbb{R}} \lim_{n \to \infty} |\chi_{(-n,n)}(x) - 1|^2 |f(x)|^2 \, dx = 0$$

Therefore $\overline{D(X)} = L^2(\mathbb{R})$.

2. (Self adjoint operators are closed)

Let (A, D(A)) be a self adjoint operator, i.e. $D(A) = D(A^*)$ and $Af = A^*f$ for all $f \in D(A)$. Now we take a sequence $\{f_n\}_{n=1}^{\infty} \subset D(A)$ such that s- $\lim_{n \to \infty} f_n = f \in H$ and there exists h := s- $\lim_{n \to \infty} Af_n$. Then for all $g \in D(A)$, we have

So, f is in the domain of $D(A^*) = D(A)$. Since g is arbitrary, we get $Af = A^*f = h = s - \lim_{n \to \infty} Af_n$. Therefore A is closed.