About bet 3,1.1 It H is normal subgroup then 3/4 is also a locally compo	NDACT Proud
--	-------------

bf We define the topology of G_H by Euclient map $\pi: G \longrightarrow G_H$.

That is, OCG/H is open 🖨 TC'(O) is open in G.

We will check ^G/H is locally compact group in this topology.

- · locally compact
 - · For any PE \$4, there exists a ge & s.t. $\Pi(g) = P$ since Π is subjective.
 - Since G is locally compact. There exists a compact set $K \subset G$ s.t. $3 \in K^i$ (K^i is a interior of K)
 - Moreover, $\rho = \pi(s) \in \pi(k^{i}) \subset \pi(k^{i})$ since π is open map, and $\pi(k)$ is compact since π is continuous.
 - Thus, T(K) is a compact neighborhood of P.

· G/H ; S a topological group

We show the map $6/_{H} \times 6/_{H} \rightarrow 6/_{H}$ is continuous. $(aH, bH) \longmapsto (aH)(bH)^{-1}$

We take any open set () s.t. $(aH)(bH)^{-1} \in U$

By $(aH)(bH)^{-1} = ab^{-1}H$, then $ab^{-1} \in \pi^{-1}(U)$ and $\pi^{-1}(U)$ is open since π is continuous.

Since G is a topological group, there exist open sets V and W s.t. QEV, beW, ab eVW c T(U)

Thus, we get $aH = \pi(a) = \pi(v)$, $bH = \pi(b) = \pi(w)$,

 $(aH)(bH)^{-1} = ab^{-}H = \pi(ab^{-}) = \pi(vw^{-}) = \pi(v)\pi(w)^{-1} \subset U$ since π is surjective homorphism.

Moreover. T((v) and T((w) are open sets since T is a open map.

This implies that $\mathscr{G}_{H} \times \mathscr{G}_{H} \longrightarrow \mathscr{G}_{H}$ is continuous. $(aH, bH) \longmapsto (aH)(bH)^{-1}$