Exercise 1.1.6

(i) \(C, Q : C^* \text{-algebra}, \phi : C \to Q : \ast \text{-homomorphism} \),

\[(i) \ \phi \text{ isometric } \iff \phi \text{ is injective}
\]

(ii) \(\ker \phi : C^* \text{-subalgebra of } C \),
\[\text{ran } \phi : C^* \text{-subalgebra of } Q\]

Proof

\((i) \Rightarrow \)

Let \(\phi \) be isometric.

Then, if \(\phi(a) = \phi(b) \) for \(a, b \in C \),
\[
\|a - b\| = \|\phi(a) - \phi(b)\| \quad (\because \phi \text{ isometric})
\]
\[
= \|\phi(a) - \phi(b)\| \quad (\because \phi \text{ homomorphism})
\]
\[
= 0 \quad (\because \phi(a) = \phi(b))
\]

Hence, \(a = b \).

\((\Leftarrow)\)

Let \(\phi \) is injective.

Let \(\varphi : = \phi^{-1} : \text{Im } \phi \to C \).

\(\forall a \in C\),
\[
\|\phi(a)\|^2 = \|\phi(\phi^{-1} \phi(a))\| \quad (\because Q : C^* \text{-algebra})
\]
\[
= \|\phi(\phi^{-1} \phi(a))\| \quad (\because \phi \text{ homomorphism})
\]
\[
= \|\phi(a)\| \quad (\because a^*a \text{ is hermitian})
\]
\[
\leq \gamma(a^*a) \quad (\because \sigma(\phi(\phi^{-1} \phi(a))) \subset \sigma(a^*a))
\]
\[= \|a^*a\| \quad (\because a^*a \text{ is hermitian}) \]
\[= \|a\|^2 \quad (\because \mathbb{C} \text{ is a *-algebra}) \]

So,
\[\|\varphi(a)\| \leq \|a\| \]

Similarly,
\[\|a\| = \|\varphi(\varphi(a))\| \leq \|\varphi(a)\| \]

Hence,
\[\|\varphi(a)\| = \|a\| \]

(ii) \text{ Ker } \varphi : C^* subalgebra of \mathbb{C}.

The only thing that needs to be proved is that
\text{ Ker } \varphi is closed.

Let \(a \in \text{ Ker } \varphi \) (\(n \in \mathbb{N} \)), \(a \in \mathbb{C} \) be an \(a \to a \).

Then \(\forall n \in \mathbb{N} \), \(\varphi(an) = 0 \).

Since \(\varphi \) is continuous,
\[\varphi(a) = \lim_{n \to \infty} \varphi(an) = 0 \]

Hence, \(a \in \text{ Ker } \varphi \), i.e., \(\text{ Ker } \varphi \) is closed.

\text{ Ran } \varphi : C^* subalgebra of \mathbb{Q}.

Since \(\text{ Ker } \varphi \) is a closed ideal of \(\mathbb{C} \),
\[\mathbb{C}/\text{ Ker } \varphi \text{ is a } C^* \text{ algebra.} \]

\[\|a + \text{ Ker } \varphi\| = \inf_{\beta \in \text{ Ker } \varphi} \|a + \beta\|, \]
\[(a + \text{ Ker } \varphi)^* = a^* + \text{ Ker } \varphi \quad (a \in \mathbb{C}) \]

By a homomorphism theorem,
\[\mathbb{C}/\text{ Ker } \varphi \cong \text{ Ran } \varphi \]
Hence, $\text{Ran} \Phi$ is a C*-subalgebra of Q. \qed