Exponential Distribution

Patrick Finke, Zhengliang Zhu

1 General Information

The exponential distribution is a (absolutely) continuous probability distribution.

Parameter	beta > 0 (survival parameter)
Support	$0 \le x < \infty$
Probability density function (pdf)	$f(x \mid \beta) = \frac{1}{\beta} e^{-\frac{x}{\beta}}$
Cumulative distribution function (cdf)	$F(x \mid \beta) = 1 - e^{-\frac{x}{\beta}}$
Moment-generating function (mgf)	$M_x(t) = \frac{1}{1-\beta t} \text{ (for } t < \frac{1}{\beta} \text{)}$
Mean	β
Mode	0
Median	$\beta \ln(2)$
Variance	eta^2
Skewness	2
Kurtosis	6

2 Related Distributions

Let $X \sim \text{Exp}(\beta)$ with $\beta > 0$. Then each of the following holds true

$$\begin{array}{cccc} X & \sim & \operatorname{Gamma}(1,\frac{1}{\beta}), \\ X & \sim & \operatorname{Weilbull}(\beta,1), \\ \sqrt{X} & \sim & \operatorname{Rayleigh}(\sqrt{\frac{\beta}{2}}), \\ e^{-X} & \sim & \operatorname{Beta}(\frac{1}{\beta},1) \\ ke^X & \sim & \operatorname{Pareto}(k,\frac{1}{\beta}), \\ \alpha - \gamma \log(\frac{X}{\beta}) & \sim & \operatorname{Gumbel}(\alpha,\gamma). \end{array}$$

3 Properties

• closed under scaling by a positive factor, i.e.

$$kX \sim \operatorname{Exp}(\frac{X}{k}) \quad \forall k > 0$$

• memoryless property, i.e.

$$P(X > s + t \mid X > s) = P(X > t) \quad \forall s, t \ge 0$$

4 Applications

1. Bolzmann distribution (from physics)

$$p_i \propto e^{-rac{arepsilon_i}{\kappa T}}$$

where ε_i energy, T temperature, and κ bolzmann constant.

It gives the probability that a system will be in a certain state as a function of that state's energy and the temperature of the system.

2. The exponential distribution describes the time for a continuous process to change state. β is the survival parameter, e.g. time before a machine in a factory breaks.

Example: On average it takes 10 years for a machine in a certain production line to break, i.e. $\beta=10$. Let $X\sim \text{Exp}(\beta)$ be the time till the machine breaks. The probability that the machine breaks in the first 5 years is given by

$$P(X \le 5) = 1 - e^{-\frac{5}{10}} = 1 - e^{-\frac{1}{2}} \approx 0.3935.$$