Exercise 1 Consider the parametric curve in $\mathbb{R}^{3}$ defined by $[0,1] \ni t \mapsto\left(\mathrm{e}^{t}, \sqrt{2} t, \mathrm{e}^{-t}\right) \in \mathbb{R}^{3}$ and compute the length of this curve (it could be useful to remember that $\cosh (t)=\left(\mathrm{e}^{t}+\mathrm{e}^{-t}\right) / 2$ ).

Exercise 2 Consider the map

$$
f: \mathbb{R}^{2} \ni(x, y) \mapsto x^{4}-2 x y+2 y^{2}-1 \in \mathbb{R}
$$

(i) Show that the implicit function theorem can be applied at the point $(1,1) \in \mathbb{R}^{2}$,
(ii) Compute the tangent at the point $(1,1)$ of the curve of equation $f(x, y)=0$, and determine the position of this curve with respect to the tangent line at this point.

## Exercise 3 Compute:

(i) the curve integral of $f: \mathbb{R}^{3} \ni(x, y, z) \mapsto(x, z y, x z-y) \in \mathbb{R}^{3}$ along the curve defined by the segment between $(0,0,0)$ and $(1,2,3)$,
(ii) the curve integral of $f: \mathbb{R}^{2} \ni(x, y)=\left(3 x^{2} y+2 x+y^{3}, x^{3}+3 x y^{2}-2 y\right) \in \mathbb{R}^{2}$ along the curve defined by the parabola of equation $y=x^{2}$ from the point $(0,0)$ to the point $(1,1)$,
(iii) the integral $\iint_{\Omega}(x-y) \mathrm{d} x \mathrm{~d} y$ with $\Omega$ the subset of $\mathbb{R}^{2}$ defined by the three lines of equation $x=0$, $y=x+2$, and $y=-x$,
(iv) the integral $\iiint_{\Omega} z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$ with $\Omega$ the interior of the upper half of the ball centered at 0 and of radius 1 , namely $\Omega=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 1\right.$ and $\left.z \geq 0\right\}$.

Exercise 4 Consider the right half-sphere centered at the origin and of radius $2(y \geq 0)$. Consider also the function $\Psi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $\Psi(x, y, z)=(x, z,-y)$. State Stokes' theorem and verify its validity on this example.

Exercise 5 The aim of this exercise is to show that the area of a surface is independent of its parametrization. Let $\Omega$ be a subset of $\mathbb{R}^{2}$ and let $f: \Omega \rightarrow \mathbb{R}^{3}$ be a parametric surface of class $C^{1}$, namely

$$
\Omega \ni(x, y) \mapsto f(x, y)=\left(\begin{array}{c}
f_{1}(x, y) \\
f_{2}(x, y) \\
f_{3}(x, y)
\end{array}\right) \in \mathbb{R}^{3} .
$$

Let also $\mathcal{D} \subset \mathbb{R}^{2}$ and $\phi: \mathcal{D} \rightarrow \Omega$, be a diffeomorphism of class $C^{1}$, namely

$$
\mathcal{D} \ni(s, t) \mapsto \phi(s, t)=\binom{\phi_{1}(s, t)}{\phi_{2}(s, t)} \in \Omega
$$

is bijective, continuously differentiable with a continuously differentiable inverse.
(i) Write the expression for the area of $f(\Omega)$,
(ii) Compute $\frac{\partial}{\partial_{s}}(f(\phi(s, t)))$ and $\frac{\partial}{\partial_{t}}(f(\phi(s, t)))$, and $\frac{\partial}{\partial_{s}}(f(\phi(s, t))) \times \frac{\partial}{\partial_{t}}(f(\phi(s, t)))$,
(iii) With the expressions obtained above, write the expression for the area of the surface $f(\phi(\mathcal{D}))$ and compare it with the expression for the area of $f(\Omega)$.

Final examination
Total : 26 pt
Exercise 13 pts

$$
\begin{aligned}
c(t) & =\left(e^{t}, \sqrt{2} t, e^{-t}\right) \\
c^{\prime}(t) & =\left(e^{t}, \sqrt{2},-e^{-t}\right) \\
\left\|c^{\prime}(t)\right\| & =\left(e^{2 t}+2+e^{-2 t}\right)^{1 / 2} \\
& =\left(\left(e^{t}+e^{-t}\right)^{2}\right)^{1 / 2} \\
& =\left(4 \cosh (t)^{2}\right)^{t / 2} \\
& =2 \cosh (t) \cdot 1
\end{aligned}
$$

Thur, $L=\int_{0}^{1}\left\|c^{\prime}(t)\right\| d t=2 \int_{0}^{1} \cosh (t) d t$

$$
=\left.2 \sinh (t)\right|_{0} ^{1}=2 \sinh (1) \cdot 1
$$

Exercise 25 pts
i) $f$ is clearly of clan $C^{k}$, for any $k \in \mathbb{N}$, and $\partial_{y} f(1,1)=-2 x+\left.4 y\right|_{x=y=1}=2 \neq 0$, and $f(1,1)=0$. The implicit function theorem can be applied at this point. $\Rightarrow \exists \varepsilon>0$ and $\phi:(1-\varepsilon, 1+\varepsilon) \rightarrow \mathbb{R}$ witt $\phi(1)=1$ and of clan $C^{k}$ s.t. $f(x, \phi(x))=0 \quad \forall x \in(1-\varepsilon, 1+\varepsilon)$,

$$
\begin{aligned}
& \text { ii) } \begin{array}{l}
\text { By i) } \quad \frac{d}{d x} f(x, \phi(x))=0 \quad \forall x \in(1-\varepsilon, 1+\varepsilon) \\
\Rightarrow 4 x^{3}-2 \phi(x)-2 x \phi^{\prime}(x)+4 \phi(x) \phi^{\prime}(x)=0 \\
\Leftrightarrow 4 x^{3}-2 \phi(x)=\phi^{\prime}(x)(2 x-4 \phi(x)) \\
\Leftrightarrow \phi^{\prime}(x)=\frac{4 x^{3}-2 \phi(x)}{2 x-4 \phi(x)} 1
\end{array} .
\end{aligned}
$$

and in particular for $x=1, \phi^{\prime}(1)=\frac{4-2}{2-4}=\frac{2}{-2}=\frac{-1}{\underline{1}}$
The equation of the tangent is $(y-1)=-1(x-1)$

$$
\Leftrightarrow y=-x+2
$$

The position is determined by $\phi^{\prime \prime}(1)$. For this one han:

$$
\phi^{\prime \prime}(x)=\frac{\left(12 x^{2}-2 \phi^{\prime}(x)\right)(2 x-4 \phi(x))-\left(2-4 \phi^{\prime}(x)\right)\left(4 x^{3}-2 \phi(x)\right)}{(2 x-4 \phi(x))^{2}}
$$

which can be evaluated at $x=1, \phi(1)=1, \phi^{\prime}(1)=-1$ :

$$
\phi^{\prime \prime}(1)=\frac{(12+2)(2-4)-(2+4)(4-2)}{(2-4)^{2}}=\frac{-14 \cdot 2-6 \cdot 2}{4}=\frac{-40}{4}=-10 .
$$

The function is concave at $(1,1) \Rightarrow$ the tangent is above the curve $l \Leftrightarrow$ the curve is below the tangent).
Exercise $3 p_{(t)}^{t} 8$
i) $c(t)=\left(\begin{array}{c}t \\ \frac{t}{2} t \\ 3 t\end{array}\right), c^{\prime}(t)=\binom{\frac{1}{3}}{3}$ for $t \in[0,1]$

$$
\begin{aligned}
& \int_{0}^{1} f(c(t)) \cdot c^{\prime}(t) d t=\int_{0}^{1}\left(\begin{array}{c}
t \\
6 t^{2} \\
3 t^{2}-2 t
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) d t \\
= & \int_{0}^{1}\left(t+12 t^{2}+9 t^{2}-6 t\right) d t=\int_{0}^{1}\left(24 t^{2}-5 t\right) \\
= & \left.\frac{21}{3} t^{3}\right|_{0} ^{1}-\left.\frac{5}{2} t^{2}\right|_{0} ^{1}=7-\frac{5}{2}=\underline{\frac{9}{2}} \cdot 2
\end{aligned}
$$

ii) $f$ is the gradiect of a potectial function- $\phi$ witt

$$
\begin{aligned}
& \phi(x, y)=x^{3} y+x^{2}+x y^{3}-y^{2}+c t \\
& =\int_{c} f=\phi(1,1)-\phi(0,0)=2-0=\underline{2}{ }^{2}
\end{aligned}
$$

iii)

$$
\begin{aligned}
& \iint_{\Omega}(x-y) d x d y=\int_{-1}^{0}\left[\int_{-x}^{x+2}(x-y) d y\right] d x \\
& =\int_{-1}^{0}\left(x y-\frac{1}{2} y^{2}\right)_{y=-x}^{y=x+2} d x \\
& =\cdots=\int_{-1}^{2}\left(2 x^{2}-2\right) d x=\frac{2}{3} x^{3}-\left.2 x\right|_{-1} ^{0}=-\frac{4}{3}, 2
\end{aligned}
$$

iv) Since the ball is described by $(r, \theta, \varphi) \mapsto\left(\begin{array}{l}r \cos (\theta) \sin (\varphi) \\ r \sin (\theta) \\ r \cos (\varphi)\end{array}\right) \quad$ in $(\varphi)$. spherical coordinate one han $\iiint_{\Omega} z d x d y d z$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{1} r \cos (\varphi) r^{2} \sin (\varphi) d r d \varphi d \theta \\
& =\left.\left.\frac{1}{4} r^{4}\right|_{0} ^{1} 2 \pi \frac{1}{2} \sin ^{2}(\varphi)\right|_{0} ^{\pi / 2} \\
& =\frac{\pi}{2} \frac{1}{2}=\frac{\pi}{4} \cdot 2
\end{aligned}
$$

Exercise $4 \subset \mathbb{R}^{2} \quad{ }^{5} t$
Let $f: \Omega^{c} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{3}$ be a parametric surface of clan $C^{1}$, with $c$ boundary $c$ dercribed by
 be a vector field or $\mathbb{R}^{3}$, of clan $c^{1}$. If the orientation condition is satisfied, Then
to the surface

In the current opplication: $c(t)=\left(\begin{array}{c}2 \sin (t) \\ 0 \\ 2 \cos (t)\end{array}\right)$ for $t \in[0,2 \pi]$

$$
f:[0, \pi) \times[0, \pi\rangle \ni(\theta, \varphi) \longmapsto\left(\begin{array}{l}
2 \cos (\theta) \sin (\varphi) \\
2 \sin (\theta) \sin (\varphi) \\
2 \cos (\theta)
\end{array}\right) \quad 1
$$

Then $\int_{c} \psi=\int_{0}^{2 \pi} \psi(c(t)) \cdot c^{\prime}(t) d t$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left(\begin{array}{c}
2 \sin (t) \\
2 \cos (t) \\
0
\end{array}\right) \cdot\left(\begin{array}{cc}
2 \cos (t) \\
0 \\
-2 & \sin (t)
\end{array}\right) d t \\
& =\int_{0}^{2 \pi} 4 \cos (t) \sin (t) d t=0 .
\end{aligned}
$$

OL the other hand: $\operatorname{curl} \psi(x, y, z)=\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right)$,

$$
\begin{aligned}
& \iint_{\Omega}\left(\begin{array}{c}
-2 \\
0 \\
0
\end{array}\right) \cdot 2 \sin (\varphi)\left(\begin{array}{c}
2 \cos (\theta) \sin (\varphi) \\
2 \sin (\theta) \sin (\varphi) \\
2 \cos (\theta)
\end{array}\right) \\
& =\iint_{-\Omega}-8 \cos (\theta) \sin ^{2}(\varphi) d \theta d \varphi \\
& =-\left.8 \sin (\theta)\right|_{0} ^{\pi} \int_{0}^{2 \pi} \sin ^{2}(\varphi) d \varphi \\
& =0 .
\end{aligned}
$$

Exercise $5 \quad 5$ pts
i) arc of $f(\Omega)=\iint_{\Omega}\|N \rho(x, y)\| d x d y$ witt $N_{j}(x, y)=\partial_{1} \int_{1 \text { varialic }}(x, y) \times \partial_{2} f(x, y)$.
ii) OLe han $\left.\partial_{s} f(\phi(s, t))=\left[\partial_{1} f\right](\phi(s, r)) l \partial_{s} \phi_{1}\right](s, t)$ $+\left[\partial_{2} \int I(\phi(s, t))\left[\partial_{s} \phi_{2}\right](s, t)\right.$
and $\left.\left.\partial_{+} f(\phi(s, t))=L_{1} f\right](\phi(s, t)) L \partial_{t} \phi_{1}(s, t)\right]+\left[\partial_{2} f\right]\left(\phi(s, t) \mid \sum_{+} \phi_{2}\right](s, t)$
A they are still vector.

Then, witlout writting the varichles:

$$
\begin{aligned}
& \partial_{s} f \times \partial_{t} f=\left\{\left(\partial_{1} \rho_{2}\right]\left[d_{s} \phi_{1}\right]+\left[\partial_{2} \rho_{2}\right]\left[\partial_{s} \phi_{2}\right]\right\} \cdot\left\{\left[\partial_{1} \int_{3} \not I_{d} d_{1}\right]+\left[\partial_{2} \int_{3}\right]\left[\partial_{t} \phi_{2}\right]\right\} \\
& \left.-\left\{\left[\partial_{t} \partial_{3}\right]\left[\partial_{s} \phi_{1}\right]+\left[\partial_{2} \int_{3}\right]\left[\partial_{s} \phi_{2}\right]\right\} \cdot\left\{\left[\partial_{t} \int_{2}\right] \partial_{t} \phi_{1}\right]+\left[\partial_{2} \int_{2}\right]\left[\partial_{t} \phi_{2}\right]\right\}, 000,
\end{aligned}
$$

$$
\cdots)
$$

Ithin is for the jout conparent of the crom product
iii) $A_{\text {rea }} f(\phi(D))=\iint_{D} \| d_{s} f\left(\phi(s, t) \times d_{t} f(\phi(s, t)) \| d s d t\right.$ $=\iint_{D}\left|\operatorname{det}^{2}\left(\begin{array}{cc}\partial_{s} \phi_{1} & \partial_{t} \phi_{1} \\ \partial_{s} \phi_{2} & \delta_{t} \phi_{2}\end{array}\right)(s, t)\right|\left\|\partial_{1} f(\phi(s, t)) \times \partial_{2} f(\phi(s, t))\right\| d s d t$ by ii)

$$
\begin{aligned}
& =\iint_{D}\|N \rho(\phi(s, t))\|\left|\operatorname{det} D_{\phi}(s, t)\right| d s d t \text {, change of coordinates } \\
& =\iint
\end{aligned}
$$

$$
=\iint_{\Omega}^{D}\|N \rho(x, y)\| d x d y .
$$

$$
\begin{aligned}
& =\left(\left\{\left\{\partial_{s} \phi_{1}\right]\left[\partial_{1} \phi_{2}\right]-\left[\partial_{s} \phi_{2}\right]\left[\partial_{t} \phi_{1}\right]\right\}\left[\partial_{1} f_{2}\right]\left[\partial_{2} \rho_{3}\right]\right. \\
& +\left\{\operatorname{lds} \phi_{2} I L \partial_{+} \phi_{1}\right]-\left[\partial_{s} \phi_{1} I\left[\partial_{+} \phi_{2}\right]\right\}\left[\partial_{1} \rho_{3} I L \partial_{2} \rho_{2}\right], \\
& \ldots, \ldots \text { ) } \\
& =\left(\left[\partial_{s} \phi_{1}\right]\left[d_{t} \phi_{2}\right]-\left[\partial_{s} \phi_{2}\right]\left[\partial_{t} \phi_{1}\right]\right)\left(\left[\partial_{1} \rho_{2}\right]\left[\partial_{2} f_{3}\right]-\left[\partial_{1} f_{3}\right]\left[\nu_{2} f_{2}\right]\right. \text {, } \\
& \text { o.. , ...) } \\
& =\left[\operatorname{det}\left(\begin{array}{ll}
\partial_{s} \phi_{1} & \partial_{t} \phi_{1} \\
\partial_{c} \phi_{2} & \partial_{t} \phi_{2}
\end{array}\right)\right]\left(\partial_{1} f \wedge \partial_{2} f\right) \cdot 3
\end{aligned}
$$

