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𝜒2 Distributation 

Basic Information 
𝜒2distributation has only one parameter: degree of freedom 𝑘 ∈ 𝑁∗, written as 𝜒2(𝑘) or 𝜒𝑘

2 .  
It is very important in the field of statistics and probability, and used extensively for hypothesis testing 

and/or constructing confidence intervals. Unlike other well-known distributions such as normal 

distribution or exponential distributions, chi-squared distribution is not often applied in direct sampling; 

however, it is widely used in hypothesis testing and at times construction of t or F distributions.  

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧: 
χ2(𝑘) is defined as the square sum of 𝑛 stand normal distributation: 
If 𝑍1, 𝑍2,⋅⋅⋅⋅⋅⋅, 𝑍𝑘 are independent, standard normal random variables, then the sum of their squares 
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Support: 𝑥 ∈ (0,∞) 𝑖𝑓 k = 1; 𝑥 ∈ [1,∞) 𝑖𝑓 𝑘 > 1. 
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Relation to other distributions 
Gamma Distribution: if 𝑋 ∼ 𝜒2(𝜈) and 𝑐 > 0, then 𝑐𝑋 ∼ Γ(𝑘 = 𝜈/2, 𝜃 = 2𝑐) 

Exponential distribution: if 𝑋 ∼ 𝜒2(2), then 𝑋 ∼ Exp(1/2) 

Erlang distribution: if 𝑋 ∼ 𝜒2(2𝑘), then 𝑋 ∼ Erlang(𝑘, 1/2) 

Rayleigh distribution: if 𝑋 ∼ 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(1), then 𝑋2 ∼ 𝜒2(2)  

Maxwell distribution: if 𝑋 ∼ 𝑀𝑎𝑥𝑤𝑒𝑙𝑙(1) then 𝑋2 ∼ 𝜒2(3) 
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Beta distribution: 𝑖𝑓 𝑋 ∼ 𝜒2(𝜈1) 𝑎𝑛𝑑 𝑌 ∼ 𝜒2(𝜈2) are independent, then
𝑋
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Uniform distribution: 𝑖f𝑋 ∼ U(0,1) then − 2 log(𝑋) ∼ 𝜒2(2) 

Laplace distribution: 𝑖𝑓 𝑋𝑖 ∼ Laplace(𝜇, 𝛽) then ∑
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Application 
𝜒2distributation is frequently used in testing goodness of fit (Pearson's chi-squared test), as it is 
reasonable to assume the errors are in independent normal distributions. 
 
In Pearson's chi-squared test, we have 
1. A set of data 𝑆 ≡ {{𝑥𝑛, 𝑦𝑛⃗⃗⃗⃗ }} ℎ𝑎𝑠 𝑎 + 𝑘 entries, for which we are trying to fit into 𝑥𝑛⃗⃗⃗⃗  𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑦𝑛⃗⃗⃗⃗  . 

2. A function 𝑓  calculated based on 𝑆 with a degrees of freedom / parameters. 

and assume the magnitude of error for 𝑥𝑛,  𝜖𝑛 ∼ 𝑁(𝑓(𝑦𝑛⃗⃗⃗⃗ ), √𝑓(𝑦𝑛⃗⃗⃗⃗ ))*1 ,thus 
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choose ℎ0: 𝑓 fits the data set well; ℎ𝑎: 𝑓 does not fits the data set well. 
Here, define statistic 
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And it is expected to be in 𝜒2distributation of degree of freedom 𝑘*2, and clearly higher 𝑊 implies less 
possible our function fits the data well. Then we can choose some α as significance and perform p-test 
using this W. 
 
 

 

*1- Actually,  𝜖𝑛′ ∼ 𝑁 (𝑓(𝑦𝑛⃗⃗⃗⃗ ), ℎ ⋅ √𝑓(𝑦𝑛⃗⃗⃗⃗ )) |h ∈ R+ is also sufficient, for 𝑊’ corresponds to 𝜖𝑛′ is linear to 𝑊. 

*2-Just as a intuition, the reason for degree of freedom to be 𝑘 𝑏𝑢𝑡 𝑛𝑜𝑡 (𝑘 + 𝑎)𝑥𝑛 𝑖𝑠 𝑡ℎ𝑎𝑡 𝑓(𝑦𝑛⃗⃗⃗⃗ ) takes 𝑎 variables dependent on 𝑆 thus losing 𝑎 

degrees of freedom.   


