χ^2 Distributation

Basic Information

 χ^2 distributation has only one parameter: degree of freedom $k \in N_*$, written as $\chi^2(k)$ or χ^2_k . It is very important in the field of statistics and probability, and used extensively for hypothesis testing and/or constructing confidence intervals. Unlike other well-known distributions such as normal

distribution or exponential distributions, chi-squared distribution is not often applied in direct sampling;

however, it is widely used in hypothesis testing and at times construction of t or F distributions.

Definition:

 $\chi^2(k)$ is defined as the square sum of *n* stand normal distributation:

If Z_1, Z_2, \dots, Z_k are independent, standard normal random variables, then the sum of their squares

Relation to other distributions

Gamma Distribution: if $X \sim \chi^2(\nu)$ and c > 0, then $cX \sim \Gamma(k = \nu/2, \theta = 2c)$ Exponential distribution: if $X \sim \chi^2(2)$, then $X \sim \text{Exp}(1/2)$ Erlang distribution: if $X \sim \chi^2(2k)$, then $X \sim \text{Erlang}(k, 1/2)$ Rayleigh distribution: if $X \sim Rayleigh(1)$, then $X^2 \sim \chi^2(2)$ Maxwell distribution: if $X \sim Maxwell(1)$ then $X^2 \sim \chi^2(3)$ Beta distribution: *if* $X \sim \chi^2(v_1)$ *and* $Y \sim \chi^2(v_2)$ are independent, then $\frac{X}{X+Y} \sim \text{Beta}\left(\frac{v_1}{2}, \frac{v_2}{2}\right)$ Uniform distribution: *if* $X \sim U(0,1)$ then $-2\log(X) \sim \chi^2(2)$ Laplace distribution: *if* $X_i \sim \text{Laplace}(\mu, \beta)$ then $\sum_{i=1}^n \frac{2|X_i - \mu|}{\beta} \sim \chi^2(2n)$ Application

 χ^2 distributation is frequently used in testing goodness of fit (Pearson's chi-squared test), as it is reasonable to assume the errors are in independent normal distributions.

In Pearson's chi-squared test, we have

1. A set of data $S = \{\{x_n, \overline{y_n}\}\}$ has a + k entries, for which we are trying to fit into $\overline{x_n}$ based on $\overline{y_n}$. 2. A function \vec{f} calculated based on S with a degrees of freedom / parameters. and assume the magnitude of error for x_n , $\epsilon_n \sim N\left(f(\overline{y_n}), \sqrt{f(\overline{y_n})}\right)^{*1}$, thus $\frac{f(\overline{y_n}) - x_n}{\sqrt{f(\overline{y_n})}} \sim N(0,1)$.

choose h_0 : f fits the data set well; h_a : f does not fits the data set well. Here, define statistic

$$W = \sum_{n=0}^{k+a} \left(\frac{f(\overrightarrow{y_n}) - x_n}{\sqrt{f(\overrightarrow{y_n})}} \right)^2 = \sum_{n=0}^k \frac{(f(\overrightarrow{y_n}) - x_n)^2}{f(\overrightarrow{y_n})} \sim \chi^2(k)$$

And it is expected to be in χ^2 distributation of degree of freedom k^{*2} , and clearly higher W implies less possible our function fits the data well. Then we can choose some α as significance and perform p-test using this W.

^{*1-} Actually, $\epsilon_n' \sim N\left(f(\overrightarrow{y_n}), h \cdot \sqrt{f(\overrightarrow{y_n})}\right) | h \in \mathbb{R}^+$ is also sufficient, for W' corresponds to ϵ_n' is linear to W.

^{*2-}Just as a intuition, the reason for degree of freedom to be k but not $(k + a)x_n$ is that $f(\overline{y_n})$ takes a variables dependent on S thus losing a degrees of freedom.