
Chapter 6

Commutator methods

Let us consider a self-adjoint operator H in a Hilbert space H. As seen in Section 4.4
the resolvent (H − λ ∓ iε)−1 does not possess a limit in B(H) as ε ↘ 0 if λ ∈ σ(H).
However, the expression 〈f, (H − λ ∓ iε)−1f〉 may have a limit as ε ↘ 0 for suitable
f . In addition, if this limit exists for sufficiently many f , then H is likely to have only
absolutely continuous spectrum around λ, see Proposition 4.4.2 for a precise statement.

Our aim in this chapter is to present a method which allows us to determine if
the spectrum of H is purely absolutely continuous in some intervals. This method is
an extension of Theorem 4.4.3 of Putnam which is valid if both operators H and A
are unbounded. Again, the method relies on the positivity of the commutator [iH,A],
once this operator is well-defined and localized in the spectrum of H. In fact, it was E.
Mourre who understood how the method of Putnam can be sufficiently generalized.

Since the proof of the main result is rather long and technical, we shall first state
the main result in a quite general setting. Then, the various tools necessary for under-
standing this result will be presented, as well as some of its corollaries. Only at the end
of the chapter, a proof will be sketched, or presented in a restricted setting.

6.1 Main result

As mentioned above, we will state the main results of the chapter even if it is not
fully understandable yet. Additional explanations will be provided in the subsequent
sections. Let us however introduce very few information. A self-adjoint operator H in
a Hilbert space H has a gap if σ(H) 6= R. In the sequel, we shall give a meaning to
the requirement “H is of class C1(A) or of class C1,1(A)”, but let us mention that
the condition H being of class C1(A), and a fortiori of class C1,1(A), ensures that the
commutator [iH,A], between two unbounded self-adjoint operators, is well-defined in a
sense explained later on.

The following statement corresponds to [ABG, Thm. 7.4.2].

Theorem 6.1.1. Let H be a self-adjoint operator in H, of class C1,1(A) and having a
spectral gap. Let J ⊂ R be open and bounded and assume that there exist a > 0 and
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K ∈ K (H) such that

EH(J)[iH,A]EH(J) ≥ aEH(J) +K.

Then H has at most a finite number of eigenvalues in J , multiplicity counted, and has
no singular continuous spectrum in J .

In fact, this statement is already a corollary of a more general result that we provide
below. For its statement, let us still introduce some information. If A is a second self-
adjoint operator in H, with domain D(A), let us set G :=

(
D(A),H

)
1/2,1

for the Banach

space obtained by interpolation between D(A) andH (explained later on). Its dual space
is denoted by G∗ and one has G ⊂ H ⊂ G∗ with dense and continuous embeddings, as
well as B(H) ⊂ B(G,G∗). If H is of class C1(A) we also define the subset µA(H) by

µA(H) :=
{
λ ∈ R | ∃ε > 0, a > 0 s.t. E(λ; ε)[iH,A]E(λ; ε) ≥ aE(λ; ε)

}
, (6.1)

where E(λ; ε) := EH
(
(λ− ε, λ+ ε)

)
.

The following statement is a slight reformulation of [ABG, Thm 7.4.1].

Theorem 6.1.2. Let H be a self-adjoint operator in H and assume that H has a gap
and is of class C1,1(A). Then, for each λ ∈ µA(H) the limits limε↘0〈f, (H−λ∓ iε)−1f〉
exist for any f ∈ G and uniformly on each compact subset of µA(H). In particular, if
T is a linear operator from H to an auxiliary Hilbert space, and if T is continuous when
H is equipped with the topology induced by G∗, then T is locally H-smooth on the open
set µA(H).

Note that the notion of H-smooth operator will be introduced later on, but that
these operators play an important role for proving the existence and the completeness
of some wave operators.

Remark 6.1.3. In the above two statements, it is assumed that H has a spectral gap,
which is a restricting assumption since there also exist operators H with σ(H) = R.
For example, the operator X of multiplication by the variable in L2(R) has spectrum
equal to R. However, there also exists a version of the Theorems 6.1.1 and 6.1.2 which
do not require the existence of a gap. The main interest in the gap assumption is that
there exists λ0 ∈ R such that (H − λ0)−1 is bounded and self-adjoint. This operator can
then be used in the proofs and this fact is quite convenient. If such a λ0 does not exist
proofs are a little bit more involved.

Our main task now is to introduce all the notions such that the above statements
become fully understandable.

6.2 Regularity classes

Most of the material presented in this section is borrowed from Chapter 5 of [ABG] to
which we refer for more information and for a presentation in a more general setting.
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Let us consider a self-adjoint operator A in H which generates the strongly contin-
uous unitary group {e−itA}t∈R. We also consider a bounded operator S in H. In this
setting, the map

R 3 t 7→ Ut[S] ≡ S(t) := eitA S e−itA ∈ B(H) (6.2)

is well-defined and its regularity can be studied. In fact, Ut : B(H)→ B(H) defines a
weakly continuous representation of R in B(H).

We start by some conditions of regularity indexed by a positive integer k.

Definition 6.2.1. Let k ∈ N.

(i) Ck(A) denotes the Banach space of all S ∈ B(H) such that the map (6.2) is
k-times strongly continuously differentiable, and endowed with the norm

‖S‖Ck :=
( k∑
j=0

‖S(j)(0)‖2
)1/2

, (6.3)

where S(j)(0) denotes the jth derivative of S(t) evaluated at t = 0.

(ii) Ck
u(A) denotes the Banach space of all S ∈ B(H) such that the map (6.2) is

k-times continuously differentiable in norm, and endowed with the norm defined
by (6.3).

It can be shown that these spaces are indeed complete and that Ck
u(A) ⊂ Ck(A). An

equivalent description of the elements of Ck(A) or Ck
u(A) is provided in the following

statement, see [ABG, Thm. 5.1.3] for its proof.

Proposition 6.2.2. Let k ∈ N∗ and S ∈ B(H). Then S belongs to Ck(A) or to Ck
u(A)

if and only if limt↘0 t
−k(Ut − 1)k[S] exists in the strong or in the norm topology of

B(H).

Note now that a formal computation of d
dt
S(t)|t=0 gives S ′(0) = [iA, S]. However,

this formula has to be taken with some care since it involves the operator A which
is often unbounded. In fact, a more precise and alternative description of the C1(A)
condition is often very useful, see [ABG, Lem. 6.2.9] for its proof.

Lemma 6.2.3. The bounded operator S belongs to C1(A) if and only if there exists a
constant c <∞ such that∣∣〈Af, iSf〉 − 〈S∗f, iAf〉∣∣ ≤ c‖f‖2, ∀f ∈ D(A). (6.4)

In fact, the expression 〈Af, iSf〉−〈iS∗f, Af〉 defines a quadratic form with domain
D(A), and the condition (6.4) means precisely that this form is bounded. Since D(A)
is dense in H, this form extends to a bounded form on H, and there exists a unique
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operator in B(H) which corresponds to this form. For an obvious reason we denote this
bounded operator by [iA, S] and the following equality holds for any f ∈ D(A)

〈Af, iSf〉 − 〈S∗f, iAf〉 = 〈f, [iA, S]f〉.

However, let us stress that the bounded operator [iA, S] has a priori no explicit expres-
sion on all f ∈ H.

Let us add some rather simple properties of the class Ck(A) and Ck
u(A).

Proposition 6.2.4. (i) If S belongs to Ck(A) then S ∈ Ck−1
u (A),

(ii) If S, T ∈ Ck(A) then ST ∈ Ck(A), and if S, T ∈ Ck
u(A) then ST ∈ Ck

u(A),

(iii) If S is boundedly invertible, then S ∈ Ck(A) ⇐⇒ S−1 ∈ Ck(A), and S ∈
Ck
u(A)⇐⇒ S−1 ∈ Ck

u(A),

(iv) S ∈ Ck(A)⇐⇒ S∗ ∈ Ck(A), and S ∈ Ck
u(A)⇐⇒ S∗ ∈ Ck

u(A).

Exercise 6.2.5. Provide a proof of the above statements. Note that compared with the
general theory presented in [ABG, Sec. 5.1] we are dealing only with a one-parameter
unitary group, and only in the Hilbert space H. Multiparameter C0-group acting on
arbitrary Banach spaces are avoided in these notes.

Let us now present some regularity classes of fractional order. Consider s ≥ 0,
p ∈ [0,∞] and let ` ∈ N with ` > s. We can then define

‖S‖(`)
s,p := ‖S‖+

(∫
|t|≤1

∥∥|t|−s(Ut − 1)`[S]
∥∥pdt

|t|

)1/p

,

with the convention that the integral is replaced by a sup when p =∞. It can then be

shown that if ‖S‖(`)
s,p <∞ then ‖S‖(`′)

s,p <∞ for any integer `′ > s. For that reason, the
following definition is meaningful:

Definition 6.2.6. For any s ≥ 0 and p ∈ [0,∞] we set Cs,p(A) for the set of S ∈ B(H)

such that ‖S‖(`)
s,p < ∞ for some (and them for all) ` ∈ N with ` > s. For two different

integers `, `′ > s, the maps S 7→ ‖S‖(`)
s,p and S 7→ ‖S‖(`′)

s,p define equivalent norms on
Cs,p(A). Endowed with any of these norms, Cs,p(A) is a Banach space.

Let us state some relations between these spaces and the spaces Ck(A) and Ck
u(A)

introduced above. All these relations are proved in a larger setting in [ABG, Sec. 5.2].

Proposition 6.2.7. Let k ∈ N, s, t ≥ 0 and p, q ∈ [1,∞].

(i) Cs,p(A) ⊂ Ct,q(A) if s > t and for p, q arbitrary,

(ii) Ct,p(A) ⊂ Ct,q(A) if q > p and in particular for any p ∈ (1,∞)

Cs,1(A) ⊂ Cs,p(A) ⊂ Cs,∞(A), (6.5)
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(iii) If s = k is an integer one has

Ck,1(A) ⊂ Ck
u(A) ⊂ Ck(A) ⊂ Ck,∞(A).

Note that a very precise formulation of the differences between Ck,1(A), Ck
u(A),

Ck(A) and Ck,∞(A) is presented in [ABG, Thm. 5.2.6]. Another relation between some
of these spaces is also quite convenient:

Proposition 6.2.8. Let s ∈ (0,∞) and p ∈ [1,∞], and write s = k + σ with k ∈ N
and 0 < σ ≤ 1.

(i) If S ∈ Cs,p(A) and j ≤ k, then S(j)(0) ∈ Cs−j,p(A),

(ii) If ‖ · ‖Cσ,p is one norm on Cσ,p(A), then

‖S‖Ck + ‖S(k)(0)‖Cσ,p

defines a norm on Cs,p(A). In particular S ∈ Cs,p(A) if and only if S ∈ Ck(A)
and S(k)(0) belongs to Cσ,p(A).

Relations similar to the one presented in Proposition 6.2.4 also hold in the present
context:

Proposition 6.2.9. (i) If S, T ∈ Cs,p(A), then ST ∈ Cs,p(A),

(ii) If S is boundedly invertible, then S ∈ Cs,p(A)⇐⇒ S−1 ∈ Cs,p(A),

(iii) S ∈ Cs,p(A)⇐⇒ S∗ ∈ Cs,p(A).

Let us still mention one more regularity class with respect to A which is quite con-
venient in applications. The additional continuity condition is related to Dini continuity
in classical analysis. For any integer k ≥ 1 we set Ck+0(A) for the set of S ∈ Ck(A) and
such that S(k)(0) satisfies ∫

|t|≤1

∥∥(Ut − 1)[S(k)(0)]
∥∥dt

|t|
<∞.

Once endowed with the norm

‖S‖Ck+0 := ‖S‖+

∫
|t|≤1

∥∥(Ut − 1)[S(k)(0)]
∥∥dt

|t|

the set Ck+0(A) becomes a Banach space and the following relations hold for any k ∈ N

Ck+0(A) ⊂ Ck,1(A) ⊂ Ck
u(A) ⊂ Ck(A) ⊂ Ck,∞(A) (6.6)

with C0+0(A) := C0,1(A).
Up to now, we have considered only bounded elements S. In the next section we

show how these notions can be useful for unbounded operators as well.
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6.3 Affiliation

In this section we consider two self-adjoint operators A and H in a Hilbert space H.
The various regularity classes introduced before are defined in term of the unitary group
generated by A, and the next definition gives a meaning to the regularity of the operator
H with respect to A, even if H is unbounded. Before this definition, let us state a simple
lemma whose proof depends only on the first resolvent equation and on some analytic
continuation argument, see [ABG, Lem. 6.2.1] for the details.

Lemma 6.3.1. Let k ∈ N, s ≥ 0 and p ∈ [0,∞], and let H, A be self-adjoint operators
in H. Assume that there exists z0 ∈ C such that (H − z0)−1 belongs to Ck(A), Ck

u(A),
or to Cs,p(A). Then (H − z)−1 belongs to the same regularity class for any z ∈ ρ(H).
In addition, if H is bounded, then H itself belongs to the same regularity class.

The following definition becomes then meaningful.

Definition 6.3.2. Let k ∈ N, s ≥ 0 and p ∈ [0,∞], and let H, A be self-adjoint
operators in H. We say that H is of class Ck(A), Ck

u(A), or Cs,p(A) if (H−z)−1 belongs
to such a regularity class for some z ∈ ρ(H), and thus for all z ∈ ρ(H).

Clearly, if the resolvent of H belongs to one of these regularity classes, then the
same holds for linear combinations of the resolvent for different values of z ∈ ρ(H). In
fact, by functional calculus one can show that η(H) belongs to the same regularity class
for suitable function η : R → R. We state such a result for a rather restricted class of
functions η and refer to Theorem 6.2.5 and Corollary 6.2.6 of [ABG] for a more general
statement. Note that the proof is rather technical and depends on an explicit formula
for the operator η(H) in terms of the resolvent of H. For completeness we provide such a
formula but omit all the details and the explanations. For suitable functions η : R→ R
the following formula holds:

η(H) =
r−1∑
k=0

1

πk!

∫
R
η(k)(λ)=

(
ik(H − λ− i)−1

)
dλ

+
1

π(r − 1)!

∫ 1

0

µr−1dµ

∫
R
η(r)(λ)=

(
ir(H − λ− iµ)−1

)
dλ. (6.7)

Proposition 6.3.3. Assume that H is of class Ck(A), Ck
u(A), or Cs,p(A), and let η be

a real function belonging to C∞c (R). Then η(H) belongs to the same regularity class.

Let us now mention how the condition H is of class C1(A) can be checked. For
a bounded operator H, this has already been mentioned in Lemma 6.2.3. For an un-
bounded operator H the question is more delicate. We state below a quite technical
result. Note that the invariance of the domain of H with respect to the unitary group
generated by A is often assumed, and this assumption simplifies quite a lot the argu-
mentation. However, in the following statement such an assumption is not made.



6.3. AFFILIATION 83

Theorem 6.3.4 (Thm. 6.2.10 of [ABG]). Let H and A be self-adjoint operators in a
Hilbert space H.

a) The operator H is of class C1(A) if and only if the following two conditions hold:

(i) There exists c <∞ such that for all f ∈ D(A) ∩ D(H)∣∣〈Af,Hf〉 − 〈Hf,Af〉∣∣ ≤ c
(
‖Hf‖2 + ‖f‖2

)
,

(ii) For some z ∈ C \ σ(H) the set{
f ∈ D(A) | (H − z)−1f ∈ D(A) and (H − z̄)−1f ∈ D(A)

}
is a core for A.

b) If H is of class C1(A), then the D(A)∩D(H) is a core for H and the form [A,H]
has a unique extension to a continuous sesquilinear form on D(H) endowed with the
graph topology1. If this extension is still denoted by [A,H], then the following identify
holds on H:

[A, (H − z)−1] = −(H − z)−1[A,H](H − z)−1. (6.8)

Let us still mention how the equality (6.8) can be understood. If we equip D(H) with
the graph topology (it is then a Banach space), and denote by D(H)∗ its dual space,
then one has the following dense inclusions D(H) ⊂ H ⊂ D(H)∗, and the operator
R(z) is bounded from H to D(H) and extends to a bounded operator from D(H)∗ to
H. Then, the fact that [A,H] has a unique extension to a sesquilinear form on D(H)
means that its continuous extension [A,H] is a bounded operator from D(H) to D(H)∗.
Thus, the r.h.s. of (6.8) corresponds to the product of three bounded operators

[A, (H − z)−1] = − (H − z)−1︸ ︷︷ ︸
D(H)∗→H

[A,H]︸ ︷︷ ︸
D(H)→D(H)∗

(H − z)−1︸ ︷︷ ︸
H→D(H)

(6.9)

which corresponds to a bounded operator in H. By setting R(z) := (H − z)−1, formula
(6.9) can also re rewritten as

[H,A] = (H − z)[A,R(z)](H − z) (6.10)

where the r.h.s. is the product of three bounded operators, namely (H−z) : D(H)→ H,
[A,R(z)] : H → H and (H − z) : H → D(H)∗.

Another formula will also be useful later on. For τ 6= 0 let us set Aτ := 1
iτ

(eiτA−1),
and observe that if H is of class C1(A) one has for any z ∈ ρ(H)

[A,R(z)] = s− lim
τ→0

1

iτ

(
eiτAR(z) e−iτA−R(z)

)
= s− lim

τ→0

1

iτ

[
eiτA, R(z)

]
e−iτA = s− lim

τ→0
[Aτ , R(z)] . (6.11)

1The graph topology on D(H) corresponds to the topology obtained by the norm ‖f‖D(H) =
(
‖f‖2+

‖Hf‖2
)1/2

for any f ∈ D(H).
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In relation with formula (6.9) let us observe that if J ⊂ R is a bounded Borel
set, then EH(J) is obviously an element of B(H) but it also belongs to B

(
H,D(H)

)
.

Indeed, this fact follows from the boundedness of the operator HEH(J). By duality, it
also follows that the operator EH(J) extends to a bounded operator from D(H)∗ to H,
or in short EH(J) ∈ B

(
D(H)∗,H

)
. This fact is of crucial importance. Indeed, if H is

of class C1(A), then as shown above the operator [iH,A] belongs to B
(
D(H),D(H)∗

)
and therefore the product

EH(J)[iH,A]EH(J)

belongs to B(H). Such a product was already mentioned in Section 6.1 for the special
choice J = (λ− ε, λ+ ε) for some fixed λ ∈ R and ε > 0.

We now introduce an easy result which is often called the Virial theorem. Note that
this result is often stated without the appropriate assumption.

Proposition 6.3.5. Let H and A be self-adjoint operator in H such that H is of class
C1(A). Then EH({λ})[A,H]EH({λ}) = 0 for any λ ∈ R. In particular, if f is an
eigenvector of H then 〈f, [A,H]f〉 = 0.

Proof. We must show that if λ ∈ R and f1, f2 ∈ D(H) satisfy Hfk = λfk for k = 1, 2,
then 〈f1, [A,H]f2〉 = 0. Since f1 = (λ− i)(H − i)−1f1 and f2 = (λ + i)(H + i)−1f2 we
get by (6.10) and (6.11) that

〈f1, [A,H]f2〉 = −(λ+ i)2〈f1, [A, (H + i)−1]f2〉

= −(λ+ i)2 lim
τ→0

{
〈f1, Aτ (H + i)−1f2〉 − 〈(H − i)−1f1, Aτf2〉

}
.

We finally observe that for τ 6= 0, the term into curly brackets is always equal to 0.

In relation with the definition of µA(H) mentioned in (6.1) let us still introduce
two functions which play an important role in Mourre theory. These functions are well
defined if the operator H is of class C1(A). They provide what is called the best Mourre
estimate, and the first one is defined for any λ ∈ R by

%AH(λ) := sup
{
a ∈ R | ∃ε > 0 s.t. E(λ; ε)[iH,A]E(λ; ε) ≥ aE(λ; ε)

}
.

The second function looks similar to the previous one, but the inequality holds modulo
a compact operator, namely

%̃AH(λ)

:= sup
{
a ∈ R | ∃ε > 0 and K ∈ K (H) s.t. E(λ; ε)[iH,A]E(λ; ε) ≥ aE(λ; ε) +K

}
.

The relation between %AH and µA(H) is rather clear. By looking back to the definition
of (6.1) one gets

µA(H) = {λ ∈ R | %AH(λ) > 0}.

Many properties of these functions have been deduced in [ABG, Sec. 7.2].
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Proposition 6.3.6. (i) The function %AH : R → (−∞,∞] is lower semicontinuous
and %AH(λ) <∞ if and only if λ ∈ σ(H),

(ii) The function %̃AH : R→ (−∞,∞] is lower semicontinuous and satisfies %̃AH ≥ %AH .
Furthermore %̃AH(λ) <∞ if and only if λ ∈ σess(H).

Let us now state and prove a corollary of the Virial theorem showing that when %̃AH
is strictly positive, then only a finite number of eigenvalues can appear.

Corollary 6.3.7. Let H and A be self-adjoint operator in H such that H is of class
C1(A). If %̃AH(λ) > 0 for some λ ∈ R then λ has a neighbourhood in which there is at
most a finite number of eigenvalues of H, each of finite multiplicity.

Proof. Let ε > 0, a > 0 and K ∈ K (H) such that

E(λ; ε)[iH,A]E(λ; ε) ≥ aE(λ; ε) +K. (6.12)

If g is an eigenvector of H associated with an eigenvalue in (λ− ε, λ+ ε) and if ‖g‖ =
1, then (6.12) and the Virial theorem imply that 〈g,Kg〉 < −a. By contraposition,
assume that the statement of the lemma is false. Then there exists an infinite orthogonal
sequence {gj} of eigenvectors of H in E(λ; ε)H. In particular, w − limj→∞ gj = 0, as
a consequence of the orthogonality of the sequence. However, since K is compact, Kgj
goes strongly to 0 as j →∞, and then one has 〈gj, Kgj〉 → 0 as j →∞. This contradicts
the inequality 〈gj, Kgj〉 ≤ −a < 0.

The previous result can then be used for showing that the two functions %AH and %̃AH
are in fact very similar. The proof of the following statement can be found in [ABG,
Thm. 7.2.13].

Theorem 6.3.8. Let H and A be self-adjoint operator in H such that H is of class
C1(A), and let λ ∈ R. If λ is an eigenvalue of H and %̃AH(λ) > 0, then %AH(λ) = 0.
Otherwise %AH(λ) = %̃AH(λ).

As a conclusion of this section let us mention a result about the stability of the
function %̃. Once this stability is proved, the applicability of the previous corollary is
quite enlarged.

Theorem 6.3.9. Let H,H0 and A be self-adjoint operators in a Hilbert space H and
such that H0 and H are of class C1

u(A). If the difference (H + i)−1 − (H0 + i)−1 is
compact, then %̃AH(λ) = %̃AH0

(λ).

Note that the content of Proposition 6.3.3 for η(H) is necessary for the proof of
this statement, and that the C1

u(A)-condition can not be weakened. We refer to [ABG,
Thm. 7.2.9] for the details.
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6.4 Locally smooth operators

An important ingredient for showing the absence of singular continuous spectrum and
for proving the existence and the completeness of some wave operators is the notion
of locally smooth operators. Such operators were already mentioned in the statement
of Theorem 6.1.2 and we shall now provide more information on them. Note that an
operator T is always smooth with respect to another operator, it is thus a relative notion.

Definition 6.4.1. Let J ⊂ R be an open set, and let
(
H,D(H)

)
be a self-adjoint

operator in H. A linear continuous operator T : D(H) → H is locally H-smooth on J
if for each compact subset K ⊂ J there exists a constant CK <∞ such that∫ ∞

−∞
‖T e−itH f‖2dt ≤ CK‖f‖2, ∀f ∈ EH(K)H. (6.13)

In the next statement, we shall show that this notion can be recast in a time-
independent framework. However some preliminary observations are necessary. As al-
ready mentioned in the previous section, by endowing D(H) with its graph norm, one
gets the continuous and dense embeddings

D(H) ⊂ H ⊂ D(H)∗,

and a continuous extension of R(z) ≡ (H − z)−1 ∈ B
(
H,D(H)

)
to an element R(z) ∈

B
(
D(H)∗,H

)
, for any z ∈ ρ(H). By choosing z = λ+ iµ with µ > 0 one observes that

δ(µ)(H − λ) :=
1

π
=R(λ+ iµ)

=
1

2πi

(
R(λ+ iµ)−R(λ− iµ)

)
=
µ

π
R(λ∓ iµ)R(λ± iµ)

and infers that δ(µ)(H − λ) ∈ B
(
D(H)∗,D(H)

)
. Therefore, if T ∈ B

(
D(H),H

)
then

TR(z) ∈ B(H) and R(z)T ∗ =
(
TR(z̄)

)∗ ∈ B(H), and consequently Tδ(µ)(H − λ)T ∗ ∈
B(H). Finally, by the C∗-property ‖S∗S‖ = ‖S∗‖2 = ‖S‖2 one deduces that

‖Tδ(µ)(H − λ)T ∗‖ =
µ

π
‖TR(λ∓ iµ)‖2 =

µ

π
‖R(λ± iµ)T ∗‖2.

We are now ready to state:

Proposition 6.4.2. A linear continuous operator T : D(H) → H is locally H-smooth
on an open set J if and only if for each compact subset K ⊂ J there exists a constant
CK <∞ such that∥∥T=R(z)T ∗

∥∥ ≤ CK if <(z) ∈ K and 0 < =(z) < 1. (6.14)

The proof of this statement is not difficult but a little bit too long. The main
ingredients are the equalities

R(λ± iµ) = i

∫ ±∞
0

eitλ e−itH−µ|t| dt
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and

δ(µ)(H − λ) =
1

2π

∫ ∞
−∞

eitλ e−itH−µ|t| dt

which were already mentioned in Remark 5.1.2.

Exercise 6.4.3. Provide the proof of the above statement, which can be borrowed from
[ABG, Prop. 7.1.1].

We shall immediately provide a statement which shows the importance of this notion
of local smoothness for the existence and the completeness of the wave operators.

Theorem 6.4.4. Let H1, H2 be two self-adjoint operators in a Hilbert space H, with
spectral measure denoted respectively by E1 and E2. Assume that for j ∈ {1, 2} there
exist Tj ∈ B

(
D(Hj),H

)
which satisfy

〈H1f1, f2〉 − 〈f1, H2f2〉 = 〈T1f1, T2f2〉 ∀fj ∈ D(Hj).

If in addition there exists an open set J ⊂ R such that Tj are locally Hj-smooth on J ,
then

W±
(
H1, H2, E2(J)

)
:= s− lim

t→±∞
eitH1 e−itH2 E2(J) (6.15)

exist and are bijective isometries of E2(J)H onto E1(J)H.

Proof. The existence of the limits (6.15) is a simple consequence of the following asser-
tion: for any f2 ∈ H such that E2(K2)f2 = f2 for some compact set K2 ⊂ J , and for
any θ1 ∈ C∞c (J) with θ1(x) = 1 for any x in a neighbourhood of K2 the limit

s− lim
t→±∞

θ1(H1) eitH1 e−itH2 f2 (6.16)

exists, and

s− lim
t→±∞

[
1− θ1(H1)

]
eitH1 e−itH2 f2 = 0. (6.17)

Let us now prove (6.16). For that purpose we set W (t) := θ1(H1) eitH1 e−itH2 and
observe that for any f1 ∈ H and s < t:

|〈f1, [W (t)−W (s)]f2〉| =
∣∣∣ ∫ t

s

〈T1 e−iτH1 θ1(H1)f1, T2 e−iτH2 f2〉dτ
∣∣∣

≤
[ ∫ t

s

‖T1 e−iτH1 θ1(H1)f1‖2dτ
]1/2[ ∫ t

s

‖T2 e−iτH2 f2‖2dτ
]1/2

≤ CK1‖f‖
[ ∫ t

s

‖T2 e−iτH2 f2‖2dτ
]1/2

with K1 = supp θ1. We thus obtain that ‖[W (t)−W (s)]f2‖ → 0 as s→∞ or t→ −∞,
which proves (6.16).
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For the proof of (6.17) let θ2 ∈ C∞c (J) with θ2(x) = 1 if x ∈ K2 and such that
θ1θ2 = θ2. Then f2 = θ2(H2)f2 and [1− θ1(H1)]θ2(H2) = [1− θ1(H1)][θ2(H2)− θ2(H1)].
Hence (6.17) follows from

s− lim
|t|→∞

∥∥[θ2(H2)− θ2(H1)] e−itH2 f2

∥∥ = 0. (6.18)

In fact, we shall prove this estimate for any θ2 ∈ C0(R). Let us set rz(x) := (x−z)−1 for
any x ∈ R and z ∈ C \ R. Since the vector space generated by the family of functions
{rz}z∈C\R is a dense subset of C0(R) it is enough to show (6.18) with θ2 replaced by rz
for any z ∈ C \ R. Set Rj = (Hj − z)−1 for some fixed z ∈ C \ R and observe that for
any gj ∈ H

|〈g1, (R1 −R2)g2〉| = |〈R∗1g1, H2R2g2〉 − 〈H1R
∗
1g1, R2g2〉|

= |〈T1R
∗
1g1, T2R2g2〉|

≤ ‖T1R
∗
1‖‖g1‖‖T2R2g2‖.

Taking g2 = e−itH2 f2 we see that it is enough to prove that ‖T2R2 e−itH2 f2‖ → 0 as
|t| → ∞. But this is an easy consequence of the fact that both the function F (t) :=
T2R2 e−itH2 f2 and its derivative are square integrable on R.

As a consequence of the previous arguments, we have thus obtained that (6.16)
exists. Clearly the same arguments apply for the existence of W±

(
H2, H1, E1(J)

)
. It

then follows that W±
(
H2, H1, E1(J)

)
= W±

(
H1, H2, E2(J)

)∗
from which one deduces

the final statement, see also Proposition 5.2.3.

6.5 Limiting absorption principle

Since the utility of locally smooth operators has been illustrated in the previous theo-
rem, it remains to show how such operators can be exhibited. In this section, we provide
this kind of information, and start with the so-called limiting absorption principle.

By looking back to the equation (6.14) and by assuming that T ∈ B(H), one
observes that the main point is to obtain an inequality of the form∣∣〈f,=R(λ+ iµ)f

〉∣∣ ≤ CK‖f‖2
G (6.19)

for some compact set K ⊂ R, all λ ∈ K and µ > 0. Note that we have used the notation
G := T ∗H endowed with the norm ‖f‖G := inf{‖g‖ | T ∗g = f} for any f ∈ G.

Let us be a little bit more general. Consider any Banach space G such that G ⊂
D(H)∗ continuously and densely. By duality it implies the existence of a continuous
embedding D(H) ⊂ G∗, but this embedding is not dense in general. The closure of
D(H) inside G∗ is thus denoted by G∗◦, and is equipped with the Banach space structure
inherited from G∗. It then follows that B

(
D(H)∗,D(H)

)
⊂ B(G,G∗◦) ⊂ B(G,G∗) and

in particular

=R(z) ∈ B
(
D(H)∗,D(H)

)
⊂ B(G,G∗◦) ⊂ B(G,G∗), ∀z ∈ ρ(H).
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Definition 6.5.1. Let J be an open set, H a self-adjoint operator and G ⊂ D(H)∗.
i) The generalized limiting absorption holds for H in G and locally on J if for each

compact subset K ⊂ J there exists CK < ∞ such that (6.19) holds for all f ∈ G, any
λ ∈ K and µ > 0, or equivalently if

sup
λ∈K,µ>0

‖=R(λ+ iµ)‖B(G,G∗) <∞

for any compact subset K ⊂ J .
ii) The strong generalized limiting absorption holds for H in G and locally on J if

lim
µ↘0
〈f,=R(λ+ iµ)f〉 =: 〈f,=R(λ+ i0)f〉

exists for any λ ∈ J and f ∈ G, uniformly in λ on any compact subset of J .

Note that by an application of the uniform boundedness principle the generalized
limiting absorption (GLAP) holds if the strong GLAP is satisfied. In the next statement
we shall make the link between GLAP and locally smooth operators. For that purpose,
we first recall a consequence of Stone’s formula, see Proposition 4.4.1:

E
(
(a, b)

)
+

1

2
E({a}) +

1

2
E({b}) = w − lim

µ↘0

∫ b

a

δ(µ)(H − λ)dλ. (6.20)

Namely, for any a < b and f ∈ H one has

1

b− a
mf

(
(a, b)

)
=

1

b− a
∥∥E((a, b))f∥∥2

≤ sup
a<λ<b,µ>0

〈f, δ(µ)(H − λ)f〉 = sup
a<λ<b,µ>0

1

π
〈f,=R(λ+ iµ)f〉. (6.21)

Thus, if J ⊂ R is open and | 1
π
〈f,=R(λ + iµ)f〉| ≤ C(f) < ∞ for all λ ∈ J and

µ > 0, then mf is absolutely continuous on J and d
dλ
‖Eλf‖2 ≤ C(f) on J (recall that

Eλ = E
(
(−∞, λ]

)
) If this holds for each f in a dense subset of H then the spectrum of

H in J is purely absolutely continuous.

Proposition 6.5.2. Let G be a Banach space with G ⊂ D(H∗) continuously and densely,
and let J ⊂ R be open.

i) If the GLAP holds for H locally on J , then H has purely absolutely continuous
spectrum in J . If the strong GLAP holds for H in G and locally on J , then for each
λ0 ∈ R the function λ 7→ Eλ − Eλ0 ∈ B(G,G∗) is weak*-continuously differentiable on
J , and its derivative is equal to

d

dλ
Eλ =

1

π
=R(λ+ i0). (6.22)

ii) Assume that (G∗◦)∗ = G and that the GLAP holds in G locally on J . Let T :
D(H) → H be a linear operator which is continuous when D(H) is equipped with the
topology induced by G∗, or in other terms let T ∈ B(G∗◦,H), then T is locally H-smooth
on J .



90 CHAPTER 6. COMMUTATOR METHODS

Proof. i) Let us first note that for any f ∈ D(H)∗, the expression ‖E(·)f‖2 is a well-
defined positive Radon measure on R, since for any bounded J ∈ AB one has E(J) ∈
B
(
D(H)∗,D(H)

)
. Note that this measure is usually unbounded if f ∈ D(H)∗ \ H. As

a consequence, (6.20) will hold in D(H)∗, and by assumption (6.21) will hold for any
f ∈ G. It thus follows that mf is absolutely continuous on J for any f ∈ G. If the strong
GLAP holds, then (6.22) is a direct consequence of (6.20).

ii) By assumption one has T ∗ ∈ B(H,G). Since =R(z) maps G into D(H) ⊂ G∗◦ we
get

‖T=R(z)T ∗‖ ≤ ‖T‖G∗→H ‖=R(z)‖G→G∗ ‖T ∗‖H→G
which means that T is locally H-smooth on J , by Proposition 6.4.2.

Let us still mention that quite often, the limiting absorption principle is formally
obtained by replacing =R(λ + iµ) by R(λ + iµ). However, since R(λ + iµ) does not
belong to B

(
D(H)∗,D(H)

)
, the expression 〈f,R(z)f〉 is not a priori well-defined for f

in the space G used before. One natural way to overcome this difficulty is to consider the
space D

(
|H|1/2

)
, which is called the form domain of H. Then the following embeddings

are continuous and dense

D(H) ⊂ D
(
|H|1/2

)
⊂ H ⊂ D

(
|H|1/2

)∗ ⊂ D(H)∗.

The main point in this construction is that R(z) ∈ B
(
D
(
|H|1/2

)∗
,D
(
|H|1/2

))
for any

z ∈ ρ(H). So we can mimic the previous construction and consider G ⊂ D
(
|H|1/2

)∗
continuously and densely. Note that in the applications one often considers G ⊂ H ⊂
D
(
|H|1/2

)∗
. Then, it follows that that D

(
|H|1/2

)
⊂ G∗ continuously, and consequently

B
(
D
(
|H|1/2

)∗
,D
(
|H|1/2

))
⊂ B(G,G∗◦) ⊂ B(G,G∗).

In this context, the limiting absorption principle (LAP) or the strong LAP corresponds
to the content of (6.5.1) with =R(λ+ iµ) replaced by R(λ+ iµ). Note that the LAP is
usually a much stronger requirement than the GLAP since the the real part of R(λ+iµ)
is a much more singular object (in the limit µ↘ 0) than its imaginary part.

Let us still reformulate the strong limiting absorption principle in different terms:
Consider C± := {z ∈ C | ±=(z) > 0} and observe that C± 3 z 7→ R(z) ∈ B(G,G∗) is a
holomorphic function. The strong LAP is equivalent to the fact that this function has
a weak*-continuous extension to the set C± ∪ J. The boundary values R(λ± i0) of the
resolvent on the real axis allow us to expression the derivative of the spectral measure
on J as

d

dλ
Eλ =

1

2πi

[
R(λ+ i0)−R(λ− i0)

]
. (6.23)

6.6 The method of differential inequalities

In this section we provide the proofs of Theorems 6.1.1 and 6.1.2. In fact, we shall mainly
deal with a bounded operator S and show at the end how an unbounded operator H
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with a spectral gap can be treated in this setting. For an unbounded operator H without
a spectral gap, we refer to [ABG, Sec. 7.5].

Our framework is the following: Let A be a self-adjoint (usually unbounded) op-
erator in a Hilbert space H and let S be a bounded and self-adjoint operator in H.
We assume that S belongs to C1,1(A), as introduced in Section 6.2. Observe that this
regularity condition means∫

|t|≤1

∥∥(Ut − 1)2[S]
∥∥dt

t2
<∞

⇐⇒
∫
|t|≤1

∥∥ e2itA S e−2itA−2 eitA S e−itA +S
∥∥dt

t2
<∞

⇐⇒
∫
|t|≤1

∥∥ eitA S e−itA + e−itA S eitA−2S
∥∥dt

t2
<∞

⇐⇒
∫ 1

0

∥∥ eitA S e−itA + e−itA S eitA−2S
∥∥dt

t2
<∞.

Our first aim is to provide the proof the following theorem. In its statement, the
space G :=

(
D(A),H

)
1/2,1

appears, and we will explain its definition when necessary.

The important information is that G ⊂ H continuously and densely. We also recall that
µA(S) = {λ ∈ R | %AS (λ) > 0}.

Theorem 6.6.1. Let S be a bounded and self-adjoint operator which belongs to C1,1(A).
Then the holomorphic function C± 3 z 7→ (S − z)−1 ∈ B(G,G∗) extends to a weak*-
continuous function on C± ∪ µA(S).

As explained in the previous sections, such a statement means that a strong limiting
absorption principle holds for S in G and locally on µA(S). Some consequences of this
statement is that S has purely absolutely continuous spectrum on µA(S), that the
derivative of its spectral measure can be expressed by the imaginary part of its resolvent
on the real axis, as mentioned in (6.23), and that some locally S-smooth operators on
µA(S) are automatically available.

The proof of Theorem 6.6.1 is divided into several lemmas. Note that since S ∈
C1,1(A) ⊂ C1(A), then the commutator B := [iS, A] is well-defined and belongs to
B(H). Before starting with these lemmas, let us provide a heuristic explanation about
the approach. Since the aim is to consider 〈f, (S − λ ∓ iµ)−1f〉 and its limits when
µ↘ 0, we shall consider a regularized version of such an expression, with an additional
parameter ε, namely 〈

fε,
(
Sε − λ∓ i(εBε + µ)

)−1
fε
〉
. (6.24)

Then, it is mainly a matter of playing with the ε-dependence of all these terms...
The following lemma is really technical, but it is of crucial importance since it is

there that the assumption %AS (λ0) > 0 will play an essential role. For completeness we
provide its proof. Note that the reason for getting an estimate of the form (6.25) will
become clear only in the subsequent lemma.
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Lemma 6.6.2. Let {Sε}0<ε<1 and {Bε}0<ε<1 be two families of bounded self-adjoint
operators satisfying ‖Sε−S‖+ ε‖Bε‖ ≤ cε for some constant c as well as the condition
limε→0 ‖Bε−B‖ = 0. Let λ0 ∈ R and a ∈ R such that %AS (λ0) > a > 0. Then there exist
some strictly positive numbers δ, ε0 and b such that for |λ − λ0| ≤ δ, for 0 < ε ≤ ε0

and for any µ ≥ 0 the following estimate holds for all g ∈ H:

a‖g‖2 ≤ 〈g,Bεg〉+
b

µ2 + δ2

∥∥[Sε − λ∓ i(εBε + µ)
]
g
∥∥2
. (6.25)

Proof. Let us choose numbers a < a0 < a1 < %AS (λ0) and δ > 0 such that a1E ≤ EBE
for E = ES

(
(λ0− 2δ, λ0 + 2δ)

)
. Let us also choose ε1 > 0 such that ‖Bε−B‖ ≤ a1− a0

for any 0 < ε ≤ ε1. This implies that EBεE ≥ EBE − (a1 − a0)E ≥ a0E. Let us set
E⊥ = 1 − E and consider from now on λ and µ real with |λ − λ0| ≤ δ and µ ≥ 0.
Observe then that ‖(S − λ∓ iµ)−1E⊥‖ ≤ (µ2 + δ2)−1/2, and hence

‖E⊥g‖2 =
∥∥(S − λ∓ iµ)−1E⊥

[
Sε − λ∓ i(εBε + µ) + S − Sε ± iεBε

]
g
∥∥2

≤ 2

µ2 + δ2

∥∥[Sε − λ∓ i(εBε + µ)
]
g
∥∥2

+
2c2ε2

µ2 + δ2
‖g‖2.

We then get for ε ≤ ε1 and for any ν > 0:

a0‖g‖2 = a0〈g, Eg〉+ a0‖E⊥g‖2

≤ 〈g, EBεEg〉+ a0‖E⊥g‖2

= 〈g,Bεg〉 − 2<〈Eg,BεE
⊥g〉 − 〈E⊥g,BεE

⊥g〉+ a0‖E⊥g‖2

≤ 〈g,Bεg〉+ ν‖g‖2 + ν−1‖Bε‖2‖E⊥g‖2 + ‖Bε‖‖E⊥g‖2 + a0‖E⊥g‖2

≤ 〈g,Bεg〉+ ν‖g‖2 +
[
ν−1‖Bε‖2 + ‖Bε‖+ a0

] 2c2ε2

µ2 + δ2
‖g‖2

+
[
ν−1‖Bε‖2 + ‖Bε‖+ a0

] 2

µ2 + δ2

∥∥[Sε − λ∓ i(εBε + µ)
]
g
∥∥2
.

Since we have ‖Bε‖ ≤ c and since we may assume c ≥ 1 and ν ≤ 1, it follows that[
a0 − ν −

2c2ε2(a0 + 2c2)

νδ2

]
‖g‖2 ≤ 〈g,Bεg〉+

2a0 + 4c2

ν(µ2 + δ2)

∥∥[Sε − λ∓ i(εBε + µ)
]
g
∥∥2
.

We can finally chose ν > 0 and ε0 ∈ (0, ε1) such that the term in the square brackets
in the l.h.s. is bigger of equal to a for any 0 < ε ≤ ε0. We then get (6.25) with
b = ν−1(2a0 + 4c2).

Lemma 6.6.3. Under the same assumptions as in the previous lemma, the operators
Sε − λ ∓ i(εBε + µ) are invertible in B(H) whenever |λ − λ0| ≤ δ, 0 < ε ≤ ε0 and
µ ≥ 0. For any fixed λ and µ satisfying these conditions we set

G±ε :=
[
Sε − λ∓ i(εBε + µ)

]−1
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Then one has (G±ε )∗ = G∓ε and

‖G±ε ‖ ≤
1

aε+ µ

[
1 + bε

cε+ ‖S‖+ |λ+ iµ|
µ2 + δ2

]
. (6.26)

Moreover, for any h ∈ H

‖G±ε h‖ ≤
1√
aε
|=〈h,G+

ε h〉|1/2 +
1

δ

( b
a

)1/2

‖h‖. (6.27)

Proof. Let us set
T±ε := Sε − λ∓ i(εBε + µ)

and deduce from (6.25)

(aε+ µ)‖g‖2 ≤ 〈g, (εBε + µ)g〉+
bε

µ2 + δ2
‖T±ε g‖2

= ∓=〈g, T±ε g〉+
bε

µ2 + δ2
‖T±ε g‖2

≤ ‖g‖‖T±ε g‖
{

1 +
bε

µ2 + δ2
‖T±ε ‖

}
≤ ‖g‖‖T±ε g‖

{
1 + bε

‖S‖+ cε+ |λ+ iµ|
µ2 + δ2

}
.

It follows from this equality and from the boundedness (and thus closeness) of T±ε that
these operators are injective and with closed range, see also [Amr, Lem. 3.1]. In addition,
since (T±ε )∗ = T∓ε and since Ker

(
(T±ε )∗

)
= Ran(T±ε )⊥, one infers that Ran(T±ε ) = H.

One then easily deduces all assertions of the lemma, except the estimate (6.27).
To prove (6.27), let us set g = G±ε h in (6.25) and observe that

aε‖G±ε h‖2 ≤ 〈G±ε h, (εBε + µ)G±ε h〉+
bε

µ2 + δ2
‖h‖2. (6.28)

By taking the following identities into account,

〈G±ε h, (εBε + µ)G±ε h〉 = ±(2i)−1〈h,G∓ε (T∓ε − T±ε )G±ε h〉
= ±(2i)−1〈h, (G±ε −G∓ε )h〉
= =〈h,G+

ε h〉,

one directly obtains (6.27) from (6.28).

We keep the assumptions and the notations of the previous two lemmas, and set
simply Gε and Tε for G+

ε and T+
ε . The derivative with respect to the variable ε will be

denoted by ′, i.e. G′ε = d
dε
Gε.

Lemma 6.6.4. Assume that the maps ε 7→ Sε and ε 7→ Bε are C1 in norm, and that
for any fixed ε the operators Bε and Sε belong to C1(A). Then the map ε 7→ Gε is C1

in norm, and also Gε ∈ C1(A) for any fixed ε.
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Proof. The differentiability of Gε with respect to ε follows easily from the equality

Gε′ −Gε = Gε′(Tε − Tε′)Gε = Gε′
(
Sε − Sε′ − i(εBε − ε′Bε′)

)
Gε.

We thus get that G′ε = −GεT
′
εGε. For the regularity of Gε with respect to A, this

follows from the statement (iii) of Proposition 6.2.4. In addition, one can also infer that
[A,Gε] = −Gε[A, Tε]Gε, see [ABG, Prop. 6.1.6] for the details. Note that this equality
can also be obtained with the operator Aτ , as already used in (6.11).

Note that from the previous statement and from its proof, one deduces the following
equality

G′ε + [A,Gε] = iGε

{
Bε − [iSε, A] + ε

(
iε−1S ′ε +B′ε + [A,Bε]

)}
Gε. (6.29)

In the next lemma we provide a precise formulation of what had been mentioned
in (6.24).

Lemma 6.6.5. Let us keep the assumptions of the previous three lemmas, and let
{fε}0<ε<1 be a bounded family of elements of H such that ε 7→ fε is strongly C1 and
such that fε ∈ D(A) for any fixed ε. Set

Fε := 〈fε, Gεfε〉.

Then the map ε 7→ Fε is of class C1 and its derivatives satisfies

F ′ε = 〈fε, (G′ε + [A,Gε])fε〉+ 〈G∗εfε, f ′ε + Afε〉+ 〈f ′ε − Afε, Gεfε〉. (6.30)

In addition, if we set

`(ε) := ‖f ′ε‖+ ‖Afε‖, q(ε) := ‖ε−1(Bε − [iSε, A]) + iε−1S ′ε +B′ε + [A,Bε]‖, (6.31)

then Fε satisfies the differential inequality

1

2
|F ′ε| ≤ ω‖fε‖

[
`(ε) + ωεq(ε)‖fε‖

]
+
`(ε)√
aε
|Fε|1/2 +

q(ε)

a
|Fε|, (6.32)

with ω = a−1/2b1/2δ−1 and 0 < ε ≤ ε0.

Proof. The equality (6.30) is obvious, since the commutator can be opened on D(A).
By using (6.29) it can then be rewritten as

F ′ε =i
〈
G∗εfε,

{
Bε − [iSε, A] + ε(iε−1S ′ε +B′ε + [A,Bε])

}
Gεfε

〉
+ 〈G∗εfε, f ′ε + Afε〉+ 〈f ′ε − Afε, Gεfε〉. (6.33)

As a consequence one infers that

|F ′ε| ≤ εq(ε)‖Gεfε‖‖G∗εfε‖+ `(ε)
(
‖Gεfε‖+ ‖G∗εfε‖

)
. (6.34)

In addition it follows from (6.27) that

‖G±ε fε‖ ≤
1√
aε
|Fε|1/2 + ω‖fε‖.

By inserting these inequalities in (6.34) and by using the inequality (p+ q)2 ≤ 2p2 +2q2

for any p, q ≥ 0 one directly obtains (6.32).
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The differential inequality (6.32), from which the method takes its name, is quite
remarkable in that the spectral variable λ+ iµ does not appear explicitly in the coeffi-
cients. In fact, the only conditions on these parameters are |λ− λ0| ≤ δ and µ ≥ 0.

Let us still rewrite (6.32) in the simple form

|F ′ε| ≤ η(ε) + ϕ(ε)|Fε|1/2 + ψ(ε)|Fε|.

By using the trivial inequality |Fs| ≤ |Fε0|+
∫ ε0
s
|F ′τ |dτ , we then obtain for 0 < ε < s < ε0

|Fs| ≤ |Fε0|+
∫ ε0

s

η(τ)dτ +

∫ ε0

s

[
ϕ(τ)|Fτ |1/2 + ψ(τ)|Fτ |

]
dτ. (6.35)

We shall now apply an extended version of the Gronwall lemma to this differential
inequality. More precisely, let us first state such a result, and refer to [ABG, Lem. 7.A.1]
for its proof.

Lemma 6.6.6 (Gronwall lemma). Let (a, b) ⊂ R and let f, ϕ, ψ be non-negative real
functions on (a, b) with f bounded, and ϕ, ψ ∈ L1

(
(a, b)

)
. Assume that, for some con-

stants ω ≥ 0 and θ ∈ [0, 1) and for all λ ∈ (a, b) one has

f(λ) ≤ ω +

∫ b

λ

[
ϕ(τ)f(τ)θ + ψ(τ)f(τ)

]
dτ.

Then one has for each λ ∈ (a, b)

f(λ) ≤
[
ω1−θ + (1− θ)

∫ b

λ

ϕ(τ) e(θ−1)
∫ b
τ ψ(s)ds dτ

]1/(1−θ)
e
∫ b
λ ψ(τ)dτ .

Thus, by applying this result for θ = 1/2 to (6.35) one gets that

|Fε| ≤
[(
|Fε0 |+

∫ ε0

ε

η(τ)dτ
)1/2

+
1

2

∫ ε0

ε

ϕ(τ) e−
1
2

∫ ε0
τ ψ(s)ds dτ

]2

e
∫ ε0
ε ψ(τ)dτ

for all 0 < ε < ε0. We can then deduce the simpler inequality

|Fε| ≤ 2
[
|Fε0|+

∫ ε0

ε

η(τ)dτ +
(∫ ε0

ε

ϕ(τ)dτ
)2]

e
∫ ε0
ε ψ(τ)dτ .

Our final purpose is to get a bound on |Fε| < const. <∞ independent of z = λ+ iµ
as ε→ 0. From the above estimate we see that this is satisfied if∫ ε0

0

[η(τ) + ϕ(τ) + ψ(τ)]dτ <∞.

By coming back to the explicit formula for these functions, it corresponds to the con-
dition ∫ ε0

0

[
`(ε)‖fε‖+ εq(ε)‖fε‖2 +

`(ε)√
ε

+ q(ε)
]
dε <∞.
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In fact, it is easily observed (see also page 304 of [ABG]) that this condition is satisfied
if the following assumption holds:∫ 1

0

[ε−1/2`(ε) + q(ε)]dε <∞.

By looking back at the definitions of ` and q in (6.31) we observe that the condition
on ` corresponds to a condition on the family of elements {fε} while the condition on
q corresponds to conditions on the families {Sε} and {Bε}. For the condition on q let
us just mention that a suitable choice for Sε is given by

Sε :=

∫ ∞
−∞

e−iετA S eiετA e−τ
2/4 dτ

(4π)1/2
.

Then by setting Bε := [iSε, A] and by assuming that S ∈ C1,1(A) it is shown in [ABG,
Lem. 7.3.6] that all assumptions on the families {Sε} and {Bε} are satisfied. Note that
the proof of this statement is rather technical and that we shall not comment on it.

For the condition involving `, let us consider f ∈ H and set for any ε > 0

fε := (1 + iεA)−1f.

Then one has fε ∈ D(A), f ′ε = −i(1 + iεA)−1Afε, ‖fε‖ ≤ ‖f‖, ‖fε − f‖ → 0 as ε→ 0,

and `(ε) ≤ 2‖Afε‖. Then the condition
∫ 1

0
ε−1/2`(ε)dε <∞ holds if∫ 1

0

ε1/2
∥∥A(1 + iεA)−1f

∥∥dε

ε
<∞. (6.36)

Such a condition corresponds to a regularity condition of f with respect to A. In fact,
many Banach spaces of elements of H having a certain regularity with respect A can
be defined, and Chapter 2 of [ABG] is entirely devoted to that question. Here, the
elements of H satisfying condition (6.36) are precisely those belonging to the space(
D(A),H

)
1/2,1

, as shown in [ABG, Prop. 2.7.2]. Note that this space is an interpolation

space between D(A) and H and contains the space D(〈A〉1/2+ε) for any ε > 0.

By summing up, for any f ∈ G :=
(
D(A),H

)
1/2,1

one has
∫ 1

0
ε−1/2`(ε)dε ≤ c1‖f‖G

for some c1 <∞ independent of f ∈ G. By looking at the explicit form of the functions
η and ϕ one also obtains that there exists c2 < ∞ such that

∫ 1

0
η(τ)dτ ≤ c2‖f‖2

G and∫ 1

0
ϕ(τ)dτ ≤ c2‖f‖G. One then infers that |Fε| ≤ c‖f‖2

G for any 0 < ε ≤ ε0, |λ−λ0| ≤ δ
and µ ≥ 0 with a constant c independent of f ∈ G, ε, λ and µ. The proof of Theorem
6.6.1 can now be provided:

Proof of Theorem 6.6.1. By all the previous arguments, there exists an integrable func-
tion κ : (0, ε0)→ R such that |F ′ε| ≤ κ(ε) for all ε, λ, µ as above. Now, fix µ > 0. Since
Sε − λ − i(εBε + µ) converges to S − λ − iµ ≡ S − z in norm as ε → 0 we shall have
Gε → (S − z)−1 in norm too, and

〈f, (S − z)−1f〉 = lim
ε→0
〈fε, Gεfε〉 = 〈fε0 , Gε0(z)fε0〉 −

∫ ε0

0

F ′ε(z)dε. (6.37)
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Note that we have explicitly indicated the dependence on z = λ + iµ of Gε0 and F ′ε.
Let us set Ω := {λ + iµ | |λ − λ0| < δ, µ ≥ 0}. It follows from (6.26) that ‖Gε0(z)‖ ≤
const. < ∞ independently of z ∈ Ω. For each ε > 0 the continuity of z ∈ Ω of
F ′ε(z) follows from (6.33). By the dominated convergence theorem, with the fact that
|F ′ε| ≤ κ(ε), the equation (6.37) gives the existence of a continuous extension of the
function 〈f, (S − z)−1f〉 from the domain {z ∈ Ω | =(z) = µ > 0} to all Ω. The
polarization principle shows that this holds for 〈f, (S − z)−1g〉 for any f, g ∈ G.

Let us finally show how the two theorems stated at the beginning of the chapter
follow from the various results obtained subsequently. First of all we provide a proof of
Theorem 6.1.2.

Proof of Theorem 6.1.2. Let λ0 ∈ R \ σ(H) and set S := (H − λ0)−1. Then S is a
bounded self-adjoint operator, and the resolvents of S and H are related by the identity

(H − z)−1 = (λ0 − z)−1[S − (λ0 − z)−1]−1S, =(z) 6= 0. (6.38)

Let J ⊂ µA(H) be a compact set with λ0 6∈ J and set J̃ := {(λ0 − λ)−1 | λ ∈ J}. Note
that there is no restriction on the generality if we assume that λ does not belong to a
neighbourhood of λ0, since (H − z)−1 is holomorphic in such a neighbourhood. Then
S ∈ C1,1(A) and J̃ is a compact subset of µA(S), see Proposition 7.2.5 of [ABG]. In
addition, Theorem 6.6.1 says that the map ζ 7→ (S − ζ)−1 ∈ B(G,G∗) extends to a
weak*-continuous function on C± ∪ J̃ . Since z 7→ ζ = (λ0 − z)−1 is a homeomorphism
of C± ∪ J onto C± sup J̃ , we see that z 7→ [S − (λ0 − z)−1]−1 ∈ B(G,G∗) extends to a
weak*-continuous function on C± ∪ J . The result of the theorem now follows from the
identity (6.38) and the fact that SG ⊂ G, as a consequence of [ABG, Thm. 5.3.3].

The second part of the statement is a direct consequence of what has been presented
in Section 6.4. Note in particular that in the Definition 6.4.1 of a locally H-smooth
operator, one could have considered T : D(H)→ K with K an arbitrary Hilbert space.
It is in this generality that the statement of Theorem 6.1.2 is provided, and this slight
extension can easily be taken into account.

In the same vein one has:

Proof of Theorem 6.1.1. The first assertion about the finiteness of the set of eigenval-
ues is a direct consequence of Corollary 6.3.7. For the second statement, observe that
Theorem 6.3.8 implies the inclusion J \σp(H) ⊂ µA(H), and then use the consequences
of the limiting absorption principle, as presented in Section 6.5.
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