Homework 9

Exercise 1 Compute the curve integrals in the following situations:
(i) $f: \mathbb{R}^{2} \ni(x, y) \mapsto\left(x^{2}-x y, y^{2}-2 x y\right) \in \mathbb{R}^{2}$ and the curve defined by the parabola $y=x^{2}$ from $(-2,4)$ to $(1,1)$.
(ii) $f: \mathbb{R}^{3} \ni(x, y, z) \mapsto(x, z, x z-y) \in \mathbb{R}^{3}$ and the curve defined by the segment between $(0,0,0)$ and $(1,2,4)$,
(iii) $f: \mathbb{R}^{2} \backslash\{(0,0)\} \ni(x, y) \mapsto\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)$ and the curve defined by the circle centered at $(0,0)$ and of radius 2 , taken in counterclockwise direction.

Exercise 2 a) Consider the vector field $f: \mathbb{R}^{2} \ni(x, y) \mapsto\left(2 x y, x^{2}+y^{2}\right) \in \mathbb{R}^{2}$. Compute the curve integral along the following curves: (i) The segment between $(0,0)$ and $(1,1)$, (ii) The parabola of equation $y=x^{2}$ from the point $(0,0)$ to the point $(1,1)$. What do you observe ?

Exercise 3 Compute the curve integral

$$
\int_{C}(2 x-y) \mathrm{d} x+(x+y) \mathrm{d} y
$$

where C is the circle centered at $(0,0)$ and of radius R, taken in counterclockwise direction.

Exercise 4 Consider the vector field $f: \mathbb{R}^{2} \backslash\{(0,0)\} \ni(x, y) \mapsto\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right) \in \mathbb{R}^{2}$. Compute the curve integral for the following curves:
(i) The curve defined by the circle centered at $(0,0)$ and of radius $\sqrt{2}$, taken in counterclockwise direction, from $(1,1)$ to $(-\sqrt{2}, 0)$,
(ii) The curve defined by the unit circle centered at (0,0), taken in counterclockwise direction,
(iii) The curve defined by the circle centered at (0,0) and of radius $r>0$, taken in counterclockwise direction.

