Homework 8

Exercise 1 Consider the map

$$
f: \mathbb{R}^{2} \ni(x, y) \mapsto \arctan (x+y)+\mathrm{e}^{x}-2 y-1 \in \mathbb{R} .
$$

(i) Show that the implicit function theorem can be applied at any point $(x, y) \in \mathbb{R}^{2}$ which satisfies $f(x, y)=0$,
(ii) Let ϕ be the function which expresses the second coordinates in terms of the first coordinate, and whose existence is justified by the point (i). Compute the Taylor expansion of ϕ up to the order 2 near $(x, y)=(0,0)$.

Exercise 2 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be of class C^{1} and let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ be a solution of $f\left(x_{0}, y_{0}\right)=0$. Suppose that $\partial_{y} f\left(x_{0}, y_{0}\right) \neq 0$. Let $\phi:\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right) \rightarrow \mathbb{R}$ be the implicit function of class C^{1} satisfying $f(x, \phi(x))=0$ for any $x \in\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right)$ and satisfying $\phi\left(x_{0}\right)=y_{0}$. Show that

$$
\phi^{\prime}(x)=-\frac{\left[\partial_{x} f\right](x, \phi(x))}{\left[\partial_{y} f\right](x, \phi(x))}
$$

whenever the denominator is not 0

Exercise 3 In the setting of the previous exercise and if the function f is of class C^{2}, compute $\phi^{\prime \prime}(x)$ whenever it is well defined.

