Homework 7

Exercise 1 Consider the vector field $F: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2}$ defined for $(x, y) \neq(0,0)$ by

$$
F(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)
$$

(i) Represent graphically this vector field (you can use polar coordinates),
(ii) Can you find a potential function for this vector field, and if so exhibit it.

Exercise 2 Consider the map

$$
f: \mathbb{R}^{2} \ni(x, y) \mapsto x^{3}-2 x y+2 y^{2}-1 \in \mathbb{R} .
$$

(i) Show that the implicit function theorem can be applied at the point $(1,1) \in \mathbb{R}^{2}$,
(ii) Compute the tangent at the point $(1,1)$ of the curve of equation $f(x, y)=0$, and determine the position of this curve with respect to the tangent line at this point.

Exercise 3 Consider the map

$$
f: \mathbb{R}^{3} \ni(x, y, z) \mapsto x^{2}-x y^{3}-y^{2} z+z^{3} \in \mathbb{R} .
$$

(i) Show that the implicit function theorem can be applied at the point $(1,1,1)$. We shall call ϕ the implicit function defined on $B_{\varepsilon}((1,1))$ for some $\varepsilon>0$ and which expresses z in terms of x, y for z near the value 1 ,
(ii) Determine the equation of the plane tangent to the surface defined by $f(x, y, z)=0$ at the point $(1,1,1)$.

