Homework 6

Exercise 1 Let us consider $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $f(x, y, z)=\mathrm{e}^{x y} \cos (z)$ for any $(x, y, z) \in \mathbb{R}^{3}$. Assume also that $x=t u, y=\sin (t u)$ and $z=u^{2}$ for some $t, u \in \mathbb{R}$. By setting

$$
F(t, u):=f\left(t u, \sin (t u), u^{2}\right)
$$

Compute the derivative $\partial_{2} F \equiv \partial_{u} F$ by three different methods: once by a direct computation, once as one component of the derivative of the composition of two functions (chain rule), and once with the formula often seen in the literature

$$
\frac{\partial F}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial u} .
$$

Can you explain where this formula comes from?
Exercise 2 (Spherical coordinates) Consider the map $\Phi:[0, \infty) \times[0,2 \pi) \times[0, \pi) \rightarrow \mathbb{R}^{3}$ with

$$
\Phi(r, \theta, \varphi):=(r \cos (\theta) \sin (\varphi), r \sin (\theta) \sin (\varphi), r \cos (\varphi)) .
$$

Compute the Jacobian matrix corresponding to this function.
Recall that a vector field is a function f defined on an open set $\Omega \subset \mathbb{R}^{n}$ and taking values in \mathbb{R}^{n}. For such a vector field f, if there exists a differentiable function $\phi: \Omega \rightarrow \mathbb{R}$ such that $f=\nabla \phi$ we say that ϕ is a potential function for f.

Exercise 3 For the following functions, does it exist a potential function?
(i) $f(x, y)=(y, x)$,
(ii) $f(x, y)=\left(3 x^{2} y+2 x+y^{3}, x^{3}+3 x y^{2}-2 y\right)$,
(iii) $f(x, y)=(\cos (x), \sin (y))$,
(iv) $f(x, y, z)=\left(x^{2}-y z, y^{2}-z x, z^{2}-x y\right)$.

Exercise 4 a) Let $\Omega \subset \mathbb{R}^{2}$ be open and let $F: \Omega \rightarrow \mathbb{R}^{2}$ be of class C^{1} on Ω. Let us also set $F=\left(f_{1}, f_{2}\right)$. Show that if

$$
\partial_{x} f_{2} \neq \partial_{y} f_{1}
$$

then F does not admit a potential function of class C^{2}.
b) What would be a similar statement for a function $F: \Omega \rightarrow \mathbb{R}^{3}$ if Ω is an open subset of \mathbb{R}^{3}.
c) What about the n-dimensional case, and how many conditions have to be satisfied ?

