Homework 13

Exercise 1 Consider the parametrization of the sphere of radius $r>0$ given by $f:[0,2 \pi) \times[0, \pi) \rightarrow \mathbb{R}^{3}$ with

$$
f(\theta, \varphi):=\left(\begin{array}{c}
r \cos (\theta) \sin (\varphi) \\
r \sin (\theta) \sin (\varphi) \\
r \cos (\varphi)
\end{array}\right) .
$$

Compute the vectors $\left[\partial_{1} f\right](\theta, \varphi),\left[\partial_{2} f\right](\theta, \varphi)$, and the vector normal to the sphere at the point $f(\theta, \varphi)$.

Exercise 2 Let $g:[0,1] \rightarrow \mathbb{R}_{+}$of class C^{1} and consider the surface of revolution defined by

$$
f:[0,1] \times[0,2 \pi) \ni(x, \theta) \mapsto\binom{g(x) \cos (\theta)}{g(x) \sin (\theta)} \in \mathbb{R}^{3} .
$$

Compute the area of this surface. You can compare your result with what has been obtained in Homework 12, Exercise 3 of Calculus I.

Exercise 3 Let $\Omega \subset \mathbb{R}^{2}$ be open and let $g: \Omega \rightarrow \mathbb{R}$ be of class C^{1}. We consider the surface of \mathbb{R}^{3} parameterized by the function $f: \Omega \rightarrow \mathbb{R}^{3}$ defined by $f(x, y)={ }^{T}(x, y, g(x, y))$. Compute the area of the surface $f(\Omega)$.

Exercise 4 In the setting of the previous exercise, compute the area of the surface defined by
(i) Ω is the disc of radius 1 centered at $(0,0) \in \mathbb{R}^{2}$ and $g(x, y)=x^{2}+y^{2}$,
(ii) Ω is the disc of radius 1 centered at $(0,0) \in \mathbb{R}^{2}$ and $g(x, y)=x y$,

Exercise 5 Consider the upper half-sphere S in \mathbb{R}^{3} centered in $(0,0,0)$ and of radius R, and let Ψ : $\mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $\Psi(x, y, z)=x^{2}+y^{2}$. Compute the integral $\iint_{S} \Psi \mathrm{~d} \sigma$ of Ψ on the upper halfsphere. Same question for Ψ defined by $\Psi(x, y, z)=\left(x^{2}+y^{2}\right) z$. The result of Exercise 1 can be used.

Exercise 6 Consider the vector field Ψ in \mathbb{R}^{3} defined by $\Psi(x, y, z)=(x, y, 0)$. Compute the flux of this vector field through the sphere in \mathbb{R}^{3} centered at $(0,0,0)$ and of radius r. The result of Exercise 1 can be used.

