Homework 12

Exercise 1 Use Green's theorem to compute the integral $\int_{c} f$ with $f(x, y)=\left(y^{2}, x\right)$ when c corresponds to the following curves, taken counterclockwise:
(i) The square of vertices $(0,0),(2,0),(2,2),(0,2)$,
(ii) The square of vertices $(\pm 1, \pm 1)$,
(iii) The circle of radius 1 and centered at $(0,0)$,
(iv) The ellipse of equation $(x / a)^{2}+(y / b)^{2}=1$ for some $a, b>0$.

Exercise 2 Check the validity of Green's theorem for the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined for $(x, y) \in \mathbb{R}^{2}$ by $f(x, y)=\left(2 x y, x^{2}\right)$ on the domain $\Omega=[-1,2] \times[-1,3] \subset \mathbb{R}^{2}$.

Exercise 3 Consider the function $f: \mathbb{R}^{2} \backslash\{0,0\} \rightarrow \mathbb{R}^{2}$ defined for $(x, y) \in \mathbb{R}^{2}$ by

$$
f(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right) .
$$

Let $c:[a, b] \rightarrow \mathbb{R}^{2} \backslash\{(0,0)\}$ be a parametric curve of class C^{1} and non-intersecting such that its interior Ω is located on the left of the curve. We also assume that $(0,0) \in \Omega$. Compute $\int_{c} f$, and explain your result.

Exercise 4 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be sufficiently many times differentiable and satisfying the Laplace equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

(i) Let c be a closed parametric curve oriented counterclockwise and non-intersecting. Show that

$$
\int_{c}\binom{\partial_{y} f}{-\partial_{x} f}=0,
$$

(ii) Show that $f(0,0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(r \cos (\theta), r \sin (\theta)) \mathrm{d} \theta$ for any $r>0$.

Exercise 5 Compute the area of the domain defined in $\mathbb{R}_{+} \times \mathbb{R}_{+}$by the four curves of equation

$$
y=a x, \quad y=x / a, \quad y=b / x, \quad y=1 / b x \quad \text { for } a>1, b>1
$$

