Instructor: Serge Richard

Mathematics Tutorial IIa (calculus)

Homework 12

Exercise 1 Use Green's theorem to compute the integral $\int_c f$ with $f(x,y) = (y^2,x)$ when c corresponds to the following curves, taken counterclockwise:

- (i) The square of vertices (0,0), (2,0), (2,2), (0,2),
- (ii) The square of vertices $(\pm 1, \pm 1)$,
- (iii) The circle of radius 1 and centered at (0,0),
- (iv) The ellipse of equation $(x/a)^2 + (y/b)^2 = 1$ for some a, b > 0.

Exercise 2 Check the validity of Green's theorem for the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined for $(x, y) \in \mathbb{R}^2$ by $f(x, y) = (2xy, x^2)$ on the domain $\Omega = [-1, 2] \times [-1, 3] \subset \mathbb{R}^2$.

Exercise 3 Consider the function $f: \mathbb{R}^2 \setminus \{0,0\} \to \mathbb{R}^2$ defined for $(x,y) \in \mathbb{R}^2$ by

$$f(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

Let $c:[a,b] \to \mathbb{R}^2 \setminus \{(0,0)\}$ be a parametric curve of class C^1 and non-intersecting such that its interior Ω is located on the left of the curve. We also assume that $(0,0) \in \Omega$. Compute $\int_c f$, and explain your result.

Exercise 4 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be sufficiently many times differentiable and satisfying the Laplace equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

(i) Let c be a closed parametric curve oriented counterclockwise and non-intersecting. Show that

$$\int_{C} \left(\frac{\partial_{y} f}{-\partial_{x} f} \right) = 0,$$

(ii) Show that $f(0,0) = \frac{1}{2\pi} \int_0^{2\pi} f(r\cos(\theta), r\sin(\theta)) d\theta$ for any r > 0.

Exercise 5 Compute the area of the domain defined in $\mathbb{R}_+ \times \mathbb{R}_+$ by the four curves of equation

$$y = ax$$
, $y = x/a$, $y = b/x$, $y = 1/bx$ for $a > 1, b > 1$.