Homework 11

Exercise 1 Compute the integral of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, defined by $f(x, y)=x$, on the domain Ω with

$$
\Omega:=\left\{(r \cos (\theta), r \sin (\theta)) \in \mathbb{R}^{2} \mid 0 \leq \theta \leq \pi / 2 \text { and } 0 \leq r \leq 2 \cos (\theta)\right\} .
$$

Exercise 2 Find the integral of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=\frac{1}{\left(x^{2}+y^{2}+1\right)^{3 / 2}}$ on the disc of radius R and centered at the origin of \mathbb{R}^{2}.

Exercise 3 Compute the area enclosed by the curve given in polar coordinate by $r^{2}=\cos (\theta)$. Sketch first this area.

Exercise 4 Find the mass of a spherical ball of radius R if the density of the ball at any point is equal to a constant k times the distance of that point to the center of the ball.

Exercise 5 Find the integral of the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x^{2}$ over the portion of the cylinder defined by $x^{2}+y^{2}=a^{2}$ and lying between the planes defined by $z=0$ and $z=b$, with $a>0$ and $b>0$.

Let Ω be a body in \mathbb{R}^{n} and let $\varrho: \Omega \rightarrow \mathbb{R}_{+}$denote its density function (for $X \in \Omega$ the value $\varrho(X)$ denotes the density of Ω at $X)$. Let M denote the total mass of the body, and let \bar{X} denote the coordinates of its center of mass. These quantities are defined by

$$
\begin{aligned}
M & =\int_{\Omega} \varrho(X) \mathrm{d} X \\
\bar{X} & =\frac{1}{M} \int_{\Omega} X \varrho(X) \mathrm{d} X .
\end{aligned}
$$

Note that the second line represents in fact n equalities.

Exercise 6 (i) Find the center of mass of the quarter of a unit disc Ω defined in polar coordinates by

$$
\Omega=\left\{(r \cos (\theta), r \sin (\theta)) \in \mathbb{R}^{2} \mid 0 \leq r \leq 1 \text { and } 0 \leq \theta \leq \pi / 2\right\}
$$

(ii) Find the z-coordinate of the center of mass of the upper half of a unit ball centered at $0 \in \mathbb{R}^{3}$.

Exercise 7 Let X, Y be two vectors in \mathbb{R}^{2}. Check that the area of the parallelogram spanned by X and Y is equal to the absolute value of the determinant of the matrix $(X Y) \in M_{2}(\mathbb{R})$. More generally, if X_{1}, \ldots, X_{n} are n vectors of \mathbb{R}^{n}, one writes $\operatorname{Vol}\left(X_{1}, \ldots, X_{n}\right)$ for the volume of the n-dimensional box spanned by X_{1}, \ldots, X_{n}. Why is it natural to have

$$
\operatorname{Vol}\left(X_{1}, \ldots, X_{n}\right)=\left|\operatorname{Det}\left(X_{1} \ldots X_{n}\right)\right| ?
$$

