Homework 10

Exercise 1 Compute the following integrals:

$$
\begin{aligned}
& \iint_{\Omega} x^{2} y \mathrm{~d} x \mathrm{~d} y \text { with } \Omega=[1,2] \times[-3,4], \\
& \iiint_{\Omega} \sin (x) y z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \quad \text { with } \quad \Omega=[0, \pi] \times[0,1] \times[0,2]
\end{aligned}
$$

Exercise 2 1) Compute the integral $\iint_{\Omega} \mathrm{e}^{x+y} \mathrm{~d} x \mathrm{~d} y$ with Ω the subset of \mathbb{R}^{2} defined by $\left\{(x, y) \in \mathbb{R}^{2}| | x|+|y| \leq 1\}\right.$,
2) Compute the integral $\iint_{\Omega}(x-y) \mathrm{d} x \mathrm{~d} y$ with Ω the subset of \mathbb{R}^{2} defined by the three lines of equation $x=0, y=x+2$, and $y=-x$,
3) Compute the integral $\iint_{\Omega} x y \mathrm{~d} x \mathrm{~d} y$ with Ω the subset of \mathbb{R}^{2} defined by the two functions of equation $y=x^{2}$ and $y=x^{4}$.

Exercise 3 Compute the integral $\iiint_{\Omega}(x+y+z)^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$ with Ω the subset of \mathbb{R}^{3} defined by the four planes of equation $x=0, y=0, z=0$, and $x+y+z=1$.

