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Preface to the Second Edition 

I had mixed feelings when I thought how I should prepare the book for 
the second edition. It was clear to me that I had to correct all mistakes and 
misprints that were found in the book during the life of the first edition. This 
was easy to do because the mistakes were mostly minor and easy to correct, 
and the misprints were not many. 

It was more difficult to decide whether I should update the book (or at least 
its bibliography) somehow. I decided that it did not need much of an updating. 
The main value of any good mathematical book is that it teaches its reader 
some language and some skills. It can not exhaust any substantial topic no 
matter how hard the author tried. 

Pseudodifferential operators became a language and a tool of analysis of 
partial differential equations long ago. Therefore it is meaningless to try to 
exhaust this topic. Here is an easy proof. As of July 3, 2000, MathSciNet 
(the database of the American Mathematical Society) in a few seconds found 
3695 sources, among them 363 books, during its search for "pseudodifferential 
operator". (The search also led to finding 963 sources for "pseudo-differential 
operator" but I was unable to check how much the results ofthese two searches 
intersected). This means that the corresponding words appear either in the title 
or in the review published in Mathematical Reviews. On the other major topics 
of the book the results were as follows: 

Fourier Integral operator: 1022 hits (105 books), 
Microlocal analysis: 500 hits (82 books), 
Spectral asymptotic: 367 hits (56 books), 
Eigenvalue asymptotic: 127 hits (21 books), 
Pseudodifferential operator AND spectral theory: 142 hits (36 books). 

Similar results were obtained by searching the Zentra1blatt database. 
And there were only 132 references (total) in the original book. So I de

cided to quote here additionally only three books which I can not resist quoting 
(in chronological order): 

1. J. Bruning, V. Guillemin (eds.), Mathematics Past and Present. Fourier 
Integral Operators. Selected Classical Articles by J.J. Duistermaat, V. W 
Guillemin and L. Hormander., Springer-Verlag, 1994. 

2. Yu. Safarov, D. Vassiliev, The Asymptotic Distribution of Eigenvalues of 
Partial Differential Operators, Amer. Math. Soc., 1997. 

3. V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics. Springer
Verlag, 1998. 
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These books fill what I felt was missing already in the first edition: treat
ment of more advanced spectral asymptotics by more advanced micro local 
analysis (in particular, by Fourier Integral operators). 

By the reasons quoted above I did not add anything to the old bibliography 
at the end of the book, but I made the references more precise whenever this 
was possible. In case of books I added some references to English translations 
and also switched the references to the newest editions when I was aware of 
the existence of such editions. 

I made some clarifying changes to the text in some places where I felt these 
changes to be warranted. I am very grateful to the readers of the book who 
informed me about the places which need clarifying. Unfortunately, I did not 
make the list of those readers and I beg forgiveness of those whom I do not 
mention. However, I decided to mention Pablo Ramacher who was among the 
most recent and most thorough readers. His comments helped me a lot. 

I am also very grateful to Eugenia Soboleva for her selfless work which she 
generously put in helping me with the proofreading of the second edition. 

I hope that my book still has a chance to perform its main function: to teach 
its readers beautiful and important mathematics. 

March 21, 2001 Mikhail Shubin 



Preface to the Russian Edition 

The theory of pseudo differential operators (abbreviated 'PDO) is compara
tively young; in its modem fonn it was created in the mid-sixties. The progress 
achieved with its help, however, has been so essential that without 'PDO 
it would indeed be difficult to picture modem analysis and mathematical 
physics. 'PDO are of particular importance in the study of elliptic equations. 
Even the simplest operations on elliptic operators (e.g. taking the inverse or 
the square root) lead out of the class of differential operators but will, un
der reasonable assumptions, preserve the class of 'PDO. A significant role is 
played by 'PDO in the index theory for elliptic operators, where 'PDO are 
needed to extend the class of possible defonnations of an operator. 'PDO ap
pear naturally in the reduction to the boundary for any elliptic boundary prob
lem. In this way, 'PDO arise not as an end-in-themselves, but as a powerful 
and natural tool for the study of partial differential operators (first and fore
most elliptic and hypoelliptic ones). In many cases, 'PDO allow us not only to 
establish new theorems but also to have a fresh look at old ones and thereby 
obtain simpler and more transparent fonnulations of already known facts. This 
is, for instance, the case in the theory of Sobolev spaces. 

A natural generalization of 'PDO are the Fourier integral operators (abbre
viated FlO), the first version of which was the Maslov canonical operator. The 
solution operator to the Cauchy problem for a hyperbolic operator provides 
an example of a FlO. In this way, FlO play the same role in the theory of 
hyperbolic equations as 'PDO play in the theory of elliptic equations. 

One of the most significant areas for applications of 'PDO and FlO is the 
spectral theory of elliptic operators. The possibility of describing the structure 
of various nontrivial functions of an operator (resolvents, complex powers, ex
ponents, approximate spectral projection) is of importance here. By means of 
'PDO and FlO one gets the theorem on analytic continuation of the ~ -function 
of an operator and a number of essential theorems on the asymptotic behaviour 
of the eigenvalues. 

This book contains a slightly elaborated and extended version of a course 
on 'PDO and spectral theory which I gave at the Department of Mechanics 
and Mathematics of Moscow State University. The aim of the course was a 
complete presentation of the theory of 'PDO and FlO in connection with the 
spectral theory of elliptic and hypo elliptic operators. I have therefore sought to 
make the presentation accessible to students familiar with the standard Anal
ysis course (including the elementary theory of distributions) and, at the same 



VIII Preface to the Russian Edition 

time, tried to lead the reader to the level of modem journal articles. All this 
has required a fairly restrictive selection of the material, which was naturally 
influenced by my personal interests. 

The most essential material of an instructional educational nature is in 
Chapter I and Appendix 1, which also uses theorems from § 17 and § 18 of 
Chapter III (note that § 17 is not based at all on any foregoing material and 
§ 18 is based only on Chapter I). We unite all of this conventionally as the 
first theme, which constitutes a self-contained introduction to the theory of 
'PDO and wave fronts of distributions. In my opinion, this theme is useful to 
all mathematicians specializing in functional analysis and partial differential 
equations. 

Let me emphasize once more that the first theme can be studied indepen
dently of the rest. 

Chapters II and III constitute the second and third themes, respectively. 
From Chapter II the reader wi1lleam about the theory of complex powers and 
the ~ -function of an elliptic operator. Apparently the theorem on the poles 
of the l; -function is one of the most remarkable applications of 'PDO. The 
derivation of a rough form of the asymptotic behaviour of the eigenvalues 
is also shown in this chapter. In Chapter III there is a more precise form of 
the theorem on the asymptotic behaviour of the eigenvalues. This theorem 
makes use of a number of essential facts from the theory of FlO, also presented 
here. Let us note that it is in exactly this way that further essential progress in 
spectral theory was achieved, using, however, a more complete theory of FlO 
which falls outside the framework of this book (see the section "Short Guide 
to the Literature"). 

Finally, Chapter IV together with Appendices 2 and 3 constitute the final 
(fourth) theme. (Appendix 3 contains auxiliary material from functional anal
ysis which is used in Chapter IV and is singled out in an appendix only for 
convenience. Advanced readers or those familiar with the material need not 
look at Appendix 3 or may use it only for reference, whereas it is advisable 
for a beginner to read it through.) Here we present the theory of 'PDO in IRn 
which arises in connection with some mathematical questions in quantum me
chanics. 

It is necessary to say a few words about the exercises and problems in this 
book. The exercises, inserted into the text, are closely connected with it and 
are an integral part of the text. As a rule the results in these exercises are used 
in what follows. All these results are readily verified and are not proved in the 
text only because it is easier to understand them by yourself than to simply 
read them through. The problems are usually more difficult than the exercises 
and are not used in the text although they develop the basic material in useful 
directions. The problems can be used to check your understanding of what you 
have read and solving them is useful for a better assimilation of concepts and 
methods. It is, however, hardly worthwhile solving all the problems one after 
another, since this might strongly slow down the reading of the book. At a first 
reading the reader should probably solve those problems which seem of most 
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interest to him. In the problems, as well as in the basic text, apart from the 
already presented material, we do not use any information falling outside the 
framework of an ordinary university course. 

I hope that this book will be useful for beginners as well as for the more 
experienced mathematicians who wish to familiarize themselves quickly with 
'PDO and their important applications and also to all who use or take an inter
est in spectral theory. 

In conclusion, I would like to thank V.1. Bezyaev, T.E. Bogorodskaya, T.1. 
Girya, A.I. Gusev, V.Yu. Kiselev, S.M. Kozlov, M.D. Missarov and A.G. 
Sergeev who helped to record and perfect the lectures; V.N. Tulovskij who 
communicated to me his proof of the theorem on propagation of singularities 
and allowed me to include it in this book; V.L. Roitburd who on my request 
has written Appendix 2; V.Ya. Ivrii and V.P. Palamodov who have read the 
manuscript through and made a number of useful comments and also all those 
who have in any way helped me in the work. 

M.A. Shubin 

Interdependence of the parts of the book 

Appendix 3 
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There are so many books on pseudodifferential operators (which was not 
the case when the Russian edition of this book appeared) that one naturally 
questions the need for one more. I hope, nevertheless, that this book can be 
useful because of its selfcontained approach aimed directly at the spectral the
ory applications. In addition it contains some ideas which have not been de
scribed in any other monograph in English. (I should mention, for instance, 
the approximate spectral projection method which is a universal method of 
investigating the asymptotic behaviour of the spectrum - see Chapter IV and 
also a review paper of Levendorskii in Acta Applicandae Mathematicae '.) 

Certainly many new developments have taken place since the Russian edi
tion of the book appeared. The most important ones can be found in the mono
graphs listed below. 

September 3, 1985 M.A. Shubin 
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Chapter I 
Foundations of 'PDO Theory 

§ 1. Oscillatory Integrals 

1.1 The Fourier transformation. The simplest example of an oscillatory 
integral is provided by the Fourier transform of a function (or distribution) of 
tempered growth. Let S(JRn) be the Schwartz space of functions u(x) E C<Xl(JRn) 
all derivatives of which decrease faster than any power of I x I as I x I ~ 00, i. e. for 
arbitrary rx, f3 

sup Ixa(oPu)(x)1 < + 00. (1.1) 
XEIR" 

As usual x here stands for (XI' ... , xn); rx and f3 are multiindices, so for example 
rx = (rxl' ... , rxn) and rxj is a non-negative integer; xa = X~I ... X~"; 0 = (01, ... , On) 

o olPI 
where OJ =~; oP = O~I ... O~" = 0 PlOP. with 1f31 = f31 + ... + f3n. The 

uXj Xl ... Xn 
left hand sides of (1.1) define a collection of semi-norms in S(JRn) which turn 
S (JR n) into a Frechet space. 

The Fourier transform of a function u(x) ES(JRn) is given by the formula 

(Fu)(O = u(O = S e-ix'~u(x)dx, (1.2) 

where ~ EJRn, X· ~ = Xl ~l + ... + Xn~n' i = V=T and dx = dX l ... dXn is 
Lebesgue measure on JRn. The integral in (1.2) is taken over the whole of JRn, 
which will always be the case unless a domain of integration is explicitly 
indicated. 

It is well known that the operator F defines a linear topological isomorphism 

F: S (JRn) ~ S (JRn) 

and that the inverse operator (the inverse Fourier transformation) is given by the 
inversion formula 

(F-lu)(x) = u(x) = Seix'~u(OdC 

where d ~ = (2rc) -n d~ 1 ... d~n' 

(1.3) 

M.A. Shubin et al., Pseudodifferential Operators and Spectral Theory

© Springer-Verlag Berlin Heidelberg 2001
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Now we are going to show how to extend the Fourier transformation (1.2) to 
continuous functions u(x) satisfying the following condition: there exist 
constants C > 0 and N > 0 such that 

(1.4) 

where (x) stands for (l + IxI2)1/2 and Ixl2 = xf + ... + x;. We will define 
u(~) E S' (JRn) , the dual space of S(JRn), i.e. the space of all continuous linear 
functionals on S(JRn). So we want to regularize the integral 

(1.5) 

with 1/1 (~) ES(JRn), an integral which we will also regard as the value of the 
functional U at the element 1/1 (~). If u (x) ES (R") it is obvious that 

since in this case (1.5) converges absolutely. 
We give two equivalent means of regularizing (1.5) both differing from the 

well-known method, based on the Parseval identity, and both extendable to 
considerably more general situations. 

. 1 (} 2 
First method. Put Dj = --:- :l' D = (Dl' ... , Dn) and <D) = (1 + Dl + ... 

I uXj 

+ D;;)l/2 (usually we will make use of <D)k with k a non negative even number so 
that <D)k becomes a differential operator). The vector D will also be used to 
indicate differentiation in the ~ variable. To avoid confusion we then denote by 
Dx the just described vector D and by D~ the same vector but acting on the ~ 
variable. We have 

- ix . ~ _ < ) -k <D)k - ix . ~ e - x ~ e . (1.6) 

To begin with, suppose that u (x) E S (R"). Then inserting this expression for 
e- ix ' ~ in (1.5) and integrating by parts, we obtain 

(1.7) 

This integral is now defined not just for u (x) E S (Rn) or for absolutely integrable 
u (x). Indeed, if u (x) satisfies (1.4) and k > N + n, then (1.7) converges absolutely 
and we can consider it as the required regularization of (1.5). 

Exercise 1.1. Verify that formula (1.7) defines a continuous linear functional 
uES'(R") for k > N + n. 

Second method. Suppose that C(J (x) E Clf (Rn) (the space of compactly 
supported infinitely differentiable functions on R") and that C(J (0) = 1. Put 
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IE = Sf e-ix'~ cp(£x) u(x) 1/1 G) dxd~, £ > O. (1.8) 

This integral converges absolutely. It turns out that there is a limit 1= lim IE 
E~O 

independent of the choice of cp (x). Indeed, carrying out in (1.8) the same 
integration by parts as before, we get 

and if k > N + n, by the Lebesgue dominated convergence theorem, the limit as 
£--+0 exist, and equals <11,1/1) as defined by formula (1.7). 

Exercise 1.2. Verify that for different values of k formula (1.7) leads to the 
same functional 11. 

1.2 Definition of the oscillatory integral and its regularization. Now consider 
an integral more general than (1.5) 

1<1> (au) = Sf ei<1>(x.O) a (x, e) u (x) dx de. (1.9) 

Here (1 EIRN , XEX, where X is an open set in IR" and U(X)ECO'(X), i.e. 
U (x) E Coo (X) and there is a compact set K c X such that U I X\K = O. To describe 
a (x, e) and cP (x, e) we introduce a number of definitions. 

Definition 1.1. Let m, e and 0 be real numbers; 0 ~ 0 ~ 1, 0 ~ e ~ 1. The 
class S;, ~ (Xx IRN) consists of functions a (x, e) E COO (X x IRN) such that for any 
multi-indices IY., f3 and any compact set K c X a constant CO. P. K exists for which 

1 8°8(1 a(x e) I ~ C <e)m- eloIHI(1I. Ox' - 0. (1. K (1.10) 

where x E K and e EIRN. 

Instead of S~. 0 (X X IRN) we simply write sm (X X IRN). Furthermore, instead 
of S;'~(Xx IRN) we will sometimes simply write S;,~. We also put s- 00 = nsm. 

m 

Definition 1.2. We call cP (x, e) a phase function if cP (x, e) E COO (X x (IRN\ 0», 
cP (x, e) is real valued and positively homogeneous of degree 1 in e (i.e. 
cP (x, te) = tCP (x, e) for any x EX, e E IRN and t > 0) and cP (x, e) does not have 
critical points for e =!= 0, i. e. cp~. o(x, e) =!= 0 for x E X and e E IRN \ 0 (CP~. 0 denotes 
the gradient of cP (x, e) with respect to x and e). 

Definition 1.3. An integral (1.9) in which a (x, e) ES;' ~(X x IRN) and cP (x, e) 
is a phase function is called an oscillatory integral. 

Exercise 1.3. Verify that if a(X,e)ES;'~(XxIRN) then 8~8ea(x,e) 
Es;,:;eloIHIPI (Xx IRN). Verify also that for b(X,e)ES;'~(XxIRN) we have 
a(x,e)· b(x,e) Es;,;m' (XxIRN). 
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Our immediate goal is the regularization of the oscillatory integral (1.9) 
which is not, generally speaking, absolutely convergent. 

The following lemma allows us to write down an equality of the type (1.6) in 
the general case. 

Lemma 1.1. There exists on X x IRN, an operator 

NOn 0 
L = j~l aj(x,B) oBj + k~l bk(x,B) OXk + c(x,B), (1.11) 

such that aj(x,B)ESO(XxIRN), bk(x,B)ES- 1(XxIRN), c(x,B) ES-l(XxIRN) 
and defining the formal adjoint I L by the formula 

we have 

(1.13) 

Exercise 1.4. The operator IL may also be written in the form (1.11) with 
other aj , bk and c, still belonging to the same classes as stated in the definition of 
L. 

Exercise 1.5. Show that if M = IL then L = 1M. 

Proof of Lemma 1.1. We have 

therefore 

( ~ ar!> 2 0 ~ or!> 0) .q, 
L.. - i ~ I B I ~ + L.. - i - - e' 

i = 1 oBj oBj k = 1 OXk OXk 

= L: IBI2 ~ + L: - eiq, = - eiq" ( 
N 1 or!> 12 n 1 or!> 12) 1 

j=l oBj k=l oXk If! 

where If! (x, B) E COO (Xx (IRN\ 0)) is positively homogeneous of degree - 2 in B. 
Therefore 

and it remains only to get rid of the singularity at B = O. Let X (B) E C[f (IRN), 
X (B) = 1 for I B I < * and X (B) = 0 for I B I > !. Let us put 

N or!> 0 n or!> 0 
M = - L: i(l - X) If! IBI2 ~ ~ - L: i(l - X) If! - - + X· 

j=l oBjoBj k=l OXkOXk 
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It is obvious that M eia> = eia> and one can easily verify that all the coefficients of 
the operator M have the required properties. The same is also true for L = 1M (cf. 
Exercise 1.4). It only remains to note that IL = M in view of Exercise 1.5. 0 

We will achieve the regularization of (1.9) using two different methods. 

First method. To begin with, let m < - N so that (1.9) converges absolutely. 
Utilizing (1.13) write in this integral CL)k eia> instead of eia> and integrate by parts 
k times. In this way we get 

fa> (au) = SJeia>(x.6) Lk(a(x, 8) u(x») dxd8. (1.14) 

Exercise 1.6. Verify that this operation is well defined. 

Putting s = min(Q, 1 - c5), from Exercise 1.3 we deduce Lk(au) ES;':;kS 
(X x IR N). If Q > 0 and c5 < 1 (so that s > 0), which will always be assumed in the 
sequel, then formula (1.14) already allows us to define the integral fa> (au) for an 
arbitrary m, if we select k so that m - ks < - N. This, of course, makes the 
integral (1.14) absolutely convergent. 

Exercise 1.7. Demonstrate that for fixed a and cf>, fa> (au) considered as a 
functional of u E C(:' (X), defines a distribution on X, i. e. is an element of ~ I (X) 
(the dual of C(:' (X». 

Second method. Picking X (8) E Cg'(IRN) such that X (8) = 1 in a neigh
bourhood of 0 EIRN, we put 

fa>.e(au) = SJX(e8) eia>(x,6)a(x, 8) u(x)dxd8, e > O. (1.15) 

Integrating by parts as in the first method, we get 

Note that 

(1.17) 

where Cy does not depend on e for 0 < e ~ 1. 

Exercise 1.B. Verify the estimate (1.17). 
We now see that using the dominated convergence theorem we may pass to 

the limit as e ~ 0 in (1.16). In this way lim fa>,e (au) exists and is equal to fa> (au) in 
e~O 

the sense offormula (1.14). In particular, it follows that the integral (1.14) does 
not depend on k (provided k is sufficiently large) and also that the limit of (1.15) 
as e ~ 0 is independent of the choice of cut-off function x. 

In what follows we will more or less freely deal with oscillatory integrals, 
assuming that they could be regularized by one of the above methods. 
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Exercise 1.9. Prove that the oscillatory integral 1<[> (au), for fixed cP 
and u, represents a continuous linear functional on the Fn!chet space 
S;, Il (X X IRN ). Here the topology is given by the semi-norms equal to the 
infima of the constants Ca•p, Kin (1.10). Verify that the closure of S- 00 (X X JRN) 
in S;'iXx JRN) contains S;'~(Xx JRN) for arbitrary m' < m. In this way we 
can view regularization as an extension by continuity of a linear functional. 

1.3 Smoothness of distributions defined by oscillatory integrals. Let us intro
duce the following important notation 

C4> = {(x,e): XEX, eEJRN\O, q,o(x,e) =O} (1.18) 

(Here q,o denotes the gradient of q, w. r. t. e, i. e. the vector (:~ , ... , :~))
The set C4> is a conic subset of X x (JRN \ 0), i.e. together with the point 

(xo, eo) it also contains all points of the form (xo, teo) with t > O. 
Denoting the natural projection by n: X x (JRN\ 0) -+ X we set 

(1.19) 

Consider the distribution A E.@' (X) defined via the oscillatory integral 
I4>(au) by 

Theorem 1.1. sing supp A c S<[> or, equivalently, A E COO(R<[». 

Proof The assertion of the theorem is equivalent to the existence of 
A (x) E Coo(R,z,) such that if u E CO'(R,z,) then 

14> (au) = S A (x) u (x) dx, (1.20) 

Put 

A (x) = S ei 4>(x,8) a (x, e) de. (1.21) 

The last integral is itself an oscillatory integral for x E R,z" depending on the 
parameter x. Differentiating w. r. t this parameter we obtain integrals of the same 
kind. Essentially here we speak about differentiating w. r. t the parameter of a 
convergent integral obtained from (1.21) by the above transformation. 
Therefore A (x) E Coo (R,z,) and (1.20) is straightforward. 0 

Theorem 1.2. If a E S;, Il (X x JR N) and a = 0 in a conical neighbourhood of C4>, 
then A E Coo (X). 

Proof Similar to the proof of Theorem 1.1, in that, since cPo (x, e) =l= 0 on the 
support of a (x, e), it amounts to a study of the oscillatory integral (1.21). 0 
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Definition 1.4. The phase function ([> (x, 0) is called non-degenerate if the 

differentials d (:~). j = 1, ... , N are all linearly independent on C(f> or, 

equivalently rank 11([>;0 ([>;x II = N (in detail; 

02 ([> 02 ([> 02 c[J 02 c[J 
--- --"'--

00 1 00 1 OOIOON OOIOX I OO IOX" 
II ([>;0 ([>;x II = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ) . 

02 ([> 02 ([> 02 ([> 02 ([> 
--- ---"'--

I'(}NOO I OONOON OONOX I OON OX" 

Proposition 1.1. If c[J is a non-degenerate phase function, then C(f> is an 
n-dimensional submanifold in X x (JRN \ 0). 

Proof A trivial consequence of the implicit function theorem. 0 

The following theorem makes theorem 1.2 more precise in the case of a 
non-degenerate phase function. 

Theorem 1.3. Let c[J be non-degenerate and let a E S;, b (X x JR N) with the 
condition: 

"either {! > (j and {! + (j = 1 or {! > (j and ([> is linear in 0" (1.22). 

Then 
1) if a has a zero on C(f> of infinite order then A (x) E C<Xl(X); 

2) if a = 0 on C(f>, we can find b ES;""i(Q-b)(X x JRN) such that I(f>(au) = I(f>(bu)for 
arbitrary u E CD (X). 

Remark. The latter statement shows, that if a I c = 0, then the distribution A 
may also be defined by substituting b (x, 0) for a (x, 0) and keeping the phase 
function. The function b (x, 0) has a lower degree of growth in 0, meaning higher 
regularity A (x). 

To prove theorem 1.3 we need a series oflemmas. The first of these concerns 
the change of variables in functions of the class S;b' First of all note, that it 
makes sense to say that a (x, 0) ES;b(U), where U is an arbitrary region in JR" 
x JRN, which is conic with respect to O. Indeed, we will write that 
a (x, 0) ES;b(U), if for any compact set K c (JR" X SN-I) 1\ U (SN-I is the unit 
sphere in JRN) and for arbitrary multi-indices tx, f3 there is a constant Ca,fi,K > 0 
such that (1.10) is satisfied for (x, 0110 I) E K and 101 ~ 1. Now assume, that we 
are given a diffeomorphism from a conical region V C IRnJ x IRNJ onto the 
conical region U c JR" X JRN, commuting with the natural action of the 
multiplicative group JR + of positive numbers, i. e. the diffeomorphism maps a 
point (y, 1/) E V to a point (x (y, 1/), (} (y, 1/» E U, where x (y, 1/) and (} (y, 1/) are 
positively homogeneous in 1/ of degree 0 and 1 respectively. Change the variables 
in a(x,(}): 

b(y,1/) = a(x(y,1/), O(y,1/». (1.23) 
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Lemma 1.2. Let a (x, 0 ES;'b(U) and assume that one of the following three 
assumptions hold: 

a) Q + 6 = 1; 
b) Q + 6 ~ 1 and x = x(y) does not depend on 11; 
c) x = x(y), ~ = ~ (11). 

Then b(y, 11) ES;'b(V)· 

Proof Differentiating b (y, 11), we obtain from (1.23) 

(1.24) 

(1.25) 

U> _ oa _ oa . oej 
where b - ::le (x(y, 11), e(y, 11)), b(k) - ;;- (x(y, 11), e(y, 11)). The functIOns ::;-, 

U j UXk u111 
oXk oe· oXk . . . 8' ~ and 8 are posItIvely homogeneous m 11 of degrees 0, -1, 1 and 0 

111 y, y, 
respectively. They belong therefore to the classes So, S-l, Sl and SO respectively 
(in V). Estimating the derivatives of a, we easily obtain for 1111 ~ 1 

1::11 ~ CK(I11lm-e+I11lmH-1), (y, I~I)EK, 

I::, 1 ~ CK(I11l m- e+ 1 + 111l mH), (y, I~I)EK, 
where K is some compact set in V. If m + 6 - 1 ~ m - Q, i.e. Q + 6 ~ 1, then . . I~I ~ from (1.24) we obtam the estImate ::;- ~ 2CK(11)m- e. If x = x(y) then 8 

u111 111 
= 0 and we obtain this estimate from (1.24) without assuming Q + (j ~ 1. 

Similarly, if m - Q + 1 ~ m + 6, i.e. Q + 6 ~ 1, it follows from (1.25) that 

I :;, 1 ~ 2CK(11)mH, and the same estimate is obtained without the extra 

assumption Q + 6 ~ 1 if e = e (11). 
The necessary estimates of the form (1.10) are thus verified when la + {31 ~ 1 

for an arbitrary function a(x, e) ES;'b(U) in all the three cases a), b), c). Now, 
inductively, assume that the estimates hold for I a + {31 ~ k and arbitrary 
a E S;'b (U). In particular, we then obtain that for the derivatives of order ~ k of 
bU> and b(j) the estimates of the classes sm-e(v) and smH(v) respectively hold. 
But then we obtain from (1.24), (1.25) by analogous reasoning, that these 
estimates hold for derivatives of order ~ (k + 1) and for arbitrary 
a ES;'b(U). 0 
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Lemma 1.3 (variant ofthe Hadamard lemma). Let thefunctions lP, (x, 0), ... 
lPk(x, 0) belong to C<Xl(U), with U a conic region in IRn x (IRN\ 0), and assume that 
they are positively homogeneous in 0 of degree 0; dlP" ... , dlPk being linearly 
independent at points of the set 

C= {(X,O)EU, lPj(x,O)=O,)= 1, ... , k}. 

Let a ES;'b(U), al c= 0 and e + <5 = 1. Then there is a representation 

(1.26) 
i =, 

where aj(x, 0) ES;';b(U),} = 1, ... , k. If the function a (x, 0) here has a zero of 
infinite order on C, then all the functions aj (x, O),} = 1, ... , k, also have a zero of 
infinite order on C. 

Proof Note, that (1.26) is a linear equation in the functions aj • It is therefore 
enough to be able to find the functions aj locally (for (x, 0/10 I) close to (xo, 
00 / I ( 0 1), (xo, ( 0 ) being a fixed point in U). A global solution could then be glued 
together in U using a partition of the unity in U consisting of functions 
homogeneous of degree zero supported in conical regions in which the required 
functions aj have already been constructed. 

Thus let (xo, ( 0 ) E u. If (xo, ( 0 ) $ C, there exists a}o such that lPjo (xo, ( 0 ) =l= O. 
For (x, 0/1(1) close to (xo, 00 /1(0 1) we can put ajo = a/lPjoand aj = 0 for} =l=}o. It 
remains to verify the existence of a)ocally for (x, 0/ I 0 I) close to (xo, 00/1 00 I) E C. 
By the implicit function theorem lP" ... , lPk can be supplemented by functions 
lPk + " ... , lPl (l = N + n - 1), homogeneous of degree zero, to form a local 
coordinate system lP" ... , lPl on the manifold {(x, 0): 101 = 1} In a 
neighbourhood of (xo, 00 / I 00 I). Therefore, the transformation 

is a diffeomorphism of a conical neighbourhood of the ray (xo, tOo) onto the 
conical set B x IR + , B a ball in IRl, and the image of C has the form {( lP, 10 I): 
lP, = ... = lPk = O}. Let us now consider the symbol 

ii(lP, 1(1) = a (x(lP, 1(1), O(lP, 1(1)), 

obtained from a (x, 0) under this diffeomorphism. It follows from lemma 1.2 that 
ii (lP, 10 I) ES;'b(B x IR+). But then, by the Newton-Leibnitz formula 

k 1 

ii (lP, 1(1) = L lPj J ii(j) (t lP" ... , t lPk' lPk + 1 , ... , lPl' 10 I) dt , 
j=l 0 

h - _ aii mH 
were a(j) - alP. ESe.b (B x IR+). It remains to carry out the Inverse 

J 
substitution. 
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Proof of Theorem 1.3. Assume that (} + b = 1. Then, if ale = 0, by 
<1> 

lemma 1.3 with cfJj = ~:., we may represent a (x, e) in the form 
) 

(1.27) 

k· . h acfJ'<J> a'<J> b' . Ho,,:ever, ta mg mto account t at a8. e' = - i a8. e' , we 0 tam, on mte-
gratmg by parts, that ) ) 

N (aa.) 
[<J> (au) = i~l [<J> i ae~ u . 

aa· But a8~ ES;,;b-Q(U), demonstrating the second statement of the theorem. From 
) 

this proof it is obvious, that if a(x, e) had a zero of infinite order in C, then 
b (x, e) could also be chosen to possess this property. So in proving the first 
statement we can assume a (x, 8) ES;'Y(XX IRN), M as large as desired. But then 
the integral (1.21) converges absolutely and uniformly in x as do the integrals 
obtained from it by differentiation of degree ~ I (M), where I (M) ~ + 00 as 
M ~ + 00, and hence the smoothness of A (x) follows. 0 

Exercise 1.10. Prove theorem 1.3 when the second of the assumptions (1.22) 
is fulfilled (cfJ (x, e) linear in 8). 

Hint. It amounts to applying of part c) of Lemma 1.2. 

§2. Fourier Integral Operators (Preliminaries) 

2.1 Definition of the Fourier integral operator and its kernel. Let X, Y be 
open sets in IRnx and IRny. Consider the expression 

Au(x) = S ei<J>(x, y,6) a (x, y, e) u (y) dy de, (2.1) 

where U(Y)ECij"(Y), XEX, cfJ(x,y,e) is a phase function on Xx YxIRN and 
a(x, y, 8) Esm(xX Yx IRN) with (} > 0 and b < 1. 

Under these conditions the integral 

<Au, v) = ISS ei<J>(x,y,6) a (x, y, e) u(y) vex) dx dy de , v E CO"(X), (2.2) 

is defined and is an ordinary oscillatory integral. It is easily verified, that for 
fixed u the expression (2.2) viewed as a functional of v, defines a distribution 
Au E §1'(X). Therefore a linear operator 
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A: C;'(Y) ~ g}'(X) , (2.3) 

is defined. We will formally write it as the integral (2.1) 

Definition 2.1. An operator A of the form (2.1) is called a Fourier integral 
operator (abbreviated FlO) with phase function q> (x, y, e). 

Definition 2.2. The distribution K A E g}' (X x Y) defined by the oscillatory 
integral 

(KA' w) = J J J ei<l>(x. y.e) a (x, y, e) w (x, y) dx dy de, WE (X X Y), (2.4) 

is called the kernel of A. 

Proposition 2.1. a) KAECJJ(R<l» where ~={(x,y): cP~(x,y,e)*o, 
eEIRN\O} 

b) If a (x, y, e) = 0 in a conical neighbourhood of the set 

C<l> = {(x, y, e): cP~ (x, y, e) = O}, 

then KA E C""(Xx Y). 

Proof This follows immediately from Theorems 1.1 and 1.2. 0 

In view of the obvious formula 

(Au, v) = (KA' u(y) v(x), U E C;'(Y), v E C;'(X) , 

the kernel KA is the usual kernel of A in the sense of L. Schwartz. 

(2.5) 

Exercise 2.1. Verify that the kernel KA is uniquely defined by the map (2.3) 
given by A and, conversely, uniquely determines this map. 

Remark. One can easily construct two different pairs consisting of a phase 
function and a function a (x, y, e), both pairs giving rise to the same operator 
(2.3). Furthermore, as a rule, a (x, y, e) is not uniquely defined by A, even with 
the same phase function cP. 

2.2 Operator phase functions. 

Definition 2.3. A phase function cP (x, y, e) is called an operator phase 
function, if the following two conditions are fulfilled; 

cP;.e(x,y,e) * 0 for e * 0, 

cP~.e (x, y, e) * 0 for e * 0 

XEX, YEY 

XEX, YEY 

(2.6) 

(2.7) 

The role of these two conditions is brought out by the following two 
propositions. 
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Proposition 2.2. Under condition (2.6) the operator (2.1) continuously maps 
COX'(Y) into COO (X). 

Proof The integral (2.1) is already defined as an oscillatory integral, 
depending on the parameter x. Its x- derivatives are of the same form. D 

In what follows, C'(Y) denotes the dual to COO(Y) (and is the set of compactly 
supported distributions in Y). 

Proposition 2.3. Under condition (2.7) the map (2.3) defined via (2.1) extends 
by continuity to a continuous map: 

A: C'(Y) ~ .@'(X). (2.8) 

Here the continuity is understood in the sense of the weak topologies on 
~'(Y) and ~'(X). Recall that the weak topology on the space E', consist
ing of the linear functionals on E, is defined by the family of semi-norms 
PIP (f) = I (f, cp) I, where fEE' and cp is any fixed element of E. 

Proof The transposed operator 

tAv(y) = H ei<1l(x,y,8) a(x,y,8) v(x)dxd8 (2.9) 

defines, by proposition 2.2, a map 

Thus, defining A by 

<Au, v> = <u, tAv> 

with u E c' (Y), v E COX' (X) we are done. D 

Exercise 2.2. Verify that the operator A, defined in this way, is indeed an 
extension by continuity of the map (2.3). 

So an FlO A with operator phase function tf> maps COX'(Y) into COO (X) and 
C'(Y) into ~'(X). We now study the change in the singular support under the 
action of A. 

Let us settle a notation. If X and Yare two sets, S a subset of X x Yand K a 
subset of Y, then So K is the subset of X consisting of the points x E X, for which 
there exists ayE K with (x, y) E S. 

Theorem 2.1. The following inclusion holds: 

sing supp Au c S<1l 0 sing supp u (2.10) 

where S<1l = (X x Y)\ R<1l consists of those pairs (x, y) for which there exists a 
8EIRN \0 with tf>~(x,y,8) = O. 
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Proof Splitting u E ~'(Y) into a sum of a function in CQ(Y) and a dis
tribution with the support in a neighbourhood of sing supp u we see that it 
suffices to demonstrate that sing supp (Au) C Sep 0 supp u. 

Let K = supp u and K' an arbitrary compact set in X not intersecting SepoK 
and so that K' x K c Rep. Since Rep is open, there are open neighbourhoods Q 
and Q' of the compact sets K and K' respectively such that Q' x Q c Rep. So 
it suffices to verify that Au E COO(Q'). But this is evident, since KA(x, y) E 
COO(Rep) and in particular, KA(x, y) E COO(Q' X Q). 0 

Exercise 2.3. Verify the statement used above that if KA E C<Xl(Q' x Q) then 
A maps C'(Q) into C<Xl(Q'). 

2.3 Example 1: The Cauchy problem for the wave equation. Consider the 
Cauchy problem 

(PI 
at 2 = tJI (2.11 ) 

Ilt=o = ° fr' It=o = u(x) (2.12) 

where x E lRn, 1= I(t, x), tJ is the Laplacian in x and to begin with -
u(x) ECO"'(lRn). We solve (2.11)-(2.12) with the help of the Fourier trans
formation in x, putting 

l(t,~) = S e- iy ' ~ I(t, y) dy. 

In this way, we have 

a21 
at 2 = _1~12 J(t,~) (2.13) 

Ilt=o = 0, l' It=o = um (2.14) 

where ii(~) is the Fourier transform of u(x). 
From (2.13) and (2.14) we easily obtain that 

j(t,~) = ii(~)Sl~;:~I. 

Therefore by the Fourier inversion formula 

f(t, x) = ff ei(X-YHI~I-l sintl~lu(y)dyd~ 
= ff ei(x-YH(2il~I)-1(eitl~l_ e-itl~l)u(y)dyd~. 

We would like to split the last integral into two parts separating the exponents 
eitl~1 and e-itl~l. However this would lead to a singularity at ~ = O. To avoid 
this singularity, let us again use a cut-off function X = X (~) E COO (IRn), such 
that X (~) = 1 near 0 and split the integral into three parts: 

f(t, x) = f+(t, x) - f-(t, x) + ret, x) 
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I+(t, x) = 11 ei[(X-yH+fll;l) (1 - X(~»)(2il~J)-ldyd~, 

I-(t, x) = 11 ei[(X-Y)HI~ll(1 - x(~»)(2il~J)-ldyd~, 

r(t,x) = IIei(X-YHx(~)I~I-l sintl~ldyd~. 

It is clear e.g. that 1+ = Au where A is a FlO with the phase function 

CP(t,x,y,~) = (x - y).~ +tlH 

This is an operator phase function. Since cP~ = x - y + t~ /I~ I, we have 

C<p = ret, x, y,~) : y - x = t~/I~I}' 
S<p = {(t, x, y) : Ix - yl2 = t2}. 

The second tenn I-(t, x) can be similarly presented as 1- = Au, where A is 
a FlO with the phase function 

cP(t, x, y,~) = (x - y) . ~ - tlH 

It has the same set SrP = S<p. 
For the third tenn we clearly have r = Ru where R has a COO Schwartz 

kernel K R (t , x, y). In fact, it is easy to see that any such operator R can be 
also presented as a FlO in the fonn (2.1) with an arbitrary choice of the phase 
function and with an amplitude a E S-oo. (See also Exercise 2.4 below.) 

So we see that each of the tenns I± (t, x), r (t , x) can be presented as a 
result of the application of a FlO to the initial condition u. In particular, by 
Proposition 2.3 we can define I (t, x) for any u E e' (IRn). By Theorem 2.1 the 
singularities of I (t , x) belong to 

{(t,x): 3u E singsuppu, Ix - yl2 = t 2}. 

This is the classical statement that singularities propagate with the speed of 
light (which is equal to 1 in this case). In particular, the singularities of the 
fundamental solution (the case u(y) = 8(y» belong to the light cone Ixl2 = 
t 2• 

Note also that if we fix the time to, then CPfo (x, y, 0 = cP (to, x, y, 0 re
mains an operator phase function. Therefore the mapping of u into I (to, .) is 
a FlO. 

2.4 Example 2: Linear differential operators. Let 

A = L a.(x)D·, 

o 
where a.(x) E COO (X), X an open set in IR" and D = i -1 ox' 

Using the Fourier transformation, we may write 

(2.16) 
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hence 

(2.17) 

where (J A (x, ~) = L ao (x) ~- is called the symbol of the operator A. Since 
I-I;:;om 

(J Ax,~) Esm(xX IRn), we see from (2.17) that A is an FlO with phase function 
cP (x, y, 0 = (x - y) . ~. 

2.5 Example 3: PseudodifferentiaI operators 

Definition 2.4. Let nx = ny = N = n and X = Y. Then an FlO with the 
phase function <P (x, y, 0 = (x - y) . ~ is called a pseudodifJerential operator 
(briefly: 'PDO). The class of'PDO, defined by a(x, y, 0 E sms(X x X x IRn) 
is ~enoted by L;.s(X) or simply by L;'s' We also put Lm instead of Li.o and 
wnte L -00 = n Lm. 

m 

As demonstrated in the previous example, any linear partial differential op
erator is a 'PDO. 

We now display the properties of 'PDO, which follow from the already 
shown properties of FlO. 

Proposition 2.4. Let A be a 'PDO given by the formula 

Au (x) = J J ei(x- y)· ~ a(x, y,~) u(y) dyd~ 

Let KA be the kernel of A and LI the diagonal in Xx X. 
Then a) KA E COO«Xx X)\LI»; 

and 

b) A defines continuous linear maps 

A: CO"(X) -+ COO (X) 

A: 6"'(X)-+!!C'(X) 

sing supp Au c sing supp u 

for u E 6'" (X) (this property is called pseudolocality of A); 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

c) if the function a(x,y,~)ES:'o(XxXxIR") vanishes for x=y and (j < (l 

then we can write A in the form (2.18) with b(x,y,~)ES:'i(q-O)(XxXxIR") 
instead of a (x, y, ~). 

d) if a(x,y,~) has a zero of infinite order at x = y, then KA E COO(Xx X) and 
the operator A transforms @"'(X) into Coo (X). 

Proof Left to the reader as an exercise. 0 

Exercise 2.4. Let K(x, y) E Coo(Xx X) and A be an operator from CO"(X) to 
Coo(X) with kernel K(x, y). Prove that A is a 'PDO and that in the represen
tation (2.18) we can take a(x, y, 0 E S-oo(X x X x IR"). 

Hint. IfX(~) ECO"(IR"), Xm ~ 0 and Jx(~)d~ = 1 we can take 

a(x,y,O = e-i(x-yHK(x,y) xm· 
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Note that linear differential operators enjoy the locality property: 

supp (Au) c supp u, U E Cf{' (X) (2.22) 

The following exercise shows that in general this is not the case for '1'00. 

Exercise 2.5. Show that an operator whose kernel K (x, y) E COO (X X X) is 
not identically zero does not obey (2.22) 

Problem 2.1. Given a linear continuous operator 

A: Cf{'(X) -+ Cf{'(X) 

satisfying (2.22), then for any subdomain X' c X, whose closure is compact in X, 
we get a linear differential operator by restricting A to Cf{' (X'). 

Hint. Verify that for any fixed Xo E X the linear functional given by (A <p) (xo) 

for <p E Cf{' (X), is supported at Xo and thus can be written as 

Derive from the continuity of A the local finiteness of this sum and the 
smoothness (in xo) of the coefficients a~ (xo). 

§3. The Algebra of Pseudodifferential Operators 
and Their Symbols 

3.1 Properly supported pseudodifferential operators. Let A be a '1'00 with 
kernel K A and let supp K A denote the support of K A (the smallest closed subset 
Z C X x X such that KA !<xxX)\Z = O. Consider the canonical projections 
n l , n2 : supp KA -+ X, obtained by restricting the corresponding projections 
of the direct product X x X. Recall that a continuous map / : M -+ N 
between topological spaces M, N is called proper if for any compact KeN 
the inverse image /-1 (K) is a compact in M. 

Definition 3.1. A '1'00 A is called properly supported if both projections 
n l , n2 : supp K A -+ X are proper maps. 

Example. Linear differential operators (cf. item 2.4) are properly supported 
'1'00 (in this case supp KA = L1, the diagonal in X x X). 

Proposition 3.1. Let A be a properly supported '1'00. Then A defines a 
map 

A: Cf{'(X) -+ Cf{'(X) 

which extends to continuous maps 

A: @"'(X)-+@"'(X) 

(3.1) 

(3.2) 
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A: COO (X) --+ COO (X) (3.3) 

A : ~'(X) --+ ~'(X) (3.4) 

Proof For u (y) E CO" (X), we have the inclusion 

supp (Au) c (supp KA) 0 (supp u) (3.5) 

Indeed, if v E CO" (X) is such that supp v n (supp K A ) 0 (supp u) = 0, then 
suppKAnsupp[u(y)v(x)] =0 and therefore (Au,v)=O by (2.5). Further
more, from the obvious formula 

it follows that the right hand side of (3.5) is compact, so that Au E CO" (X), which 
establishes (3.1). The continuity is easily verified. 

Since the kernel K, A of the transposed operator f A is obtained from K A by 
permuting x and y (more precisely: (K'A, w(x, y») = (KA, w(y, x»)): then fA 
also defines a continuous map 

fA: CO" (X) --+ Cooo (X) , 

which yields (3.4) by duality. Finally, as is easily verified, formula (3.5) also 
applies for u E ,ff' (X) which gives (3.2). Since this can also be said oftA, by duality 
we obtain (3.3). 0 

Exercise 3.1. Let Xn be a sequence of open subsets of X such that 
1) X1 cX2 C ... cXnc ... , 

2) UXn = X 
n 

3) the closure Xn of Xn in X is compact in X. 

Let Xn(X)ECO"(X) and Xn(x) = 1 for XEXn. Finally let A be a properly 
supported 'PDO in X. Show that if u E~' (X), then for arbitrary m one can 
find N = N(m) such that the distribution [A (Xn u)]Ix does not depend on n for 
n ~ N. In this way, we can define Au E~' (X) by th~ formula 

Au = lim A (Xnu) (3.7) 
n~ 00 

Show that this definition coincides with the one given above in proving 
Proposition 3.1. 

Exercise 3.2. Show that all the three definitions of a properly supported 
'PDOgiven above, coincide on COO(X): 

a) by duality from the map tA: ,ff' (X) --+ ,ff' (X); 

b) as a restriction to COO (X) of the mapA: ~'(X) --+ ~'(X), constructed by 
duality from the map tA: qc (X) --+ CO" (X), 

c) by formula (3.7). 
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Exercise 3.3. Verify that the operator A is properly supported if and only 
if tA is. 

The importance of properly supported 'PDO lies in the fact that they form 
an algebra where multiplication is the ordinary multiplication (composition) 
of operators. This statement will be proved below, but presently it is clear from 
Proposition 3.1, that the composition AI oA2 of two properly supported 'PDO is 
defined as a linear continuous operator on the spaces C;(X), ~'(X), C<Xl(X) or 
2)' (X). 

Note that it is not immediately clear that (2.18) which determines A via 
a (x, y,~) applies for u E 2)' (X) (or even for u E C<Xl(X». This is not surprising, 
since the function a (x, y,~) is not uniquely defined by the operator A. However, 
utilizing this arbitrariness, we can make a better choice of a (x, y, n 

Definition 3.2. We say that a function a (x, y,~) is properly supported if both 
the projections 

Ill' lIz: SUPPx,y a (x, y,~) ~ X 

are proper maps (by sUPPx, y a (x, y,~) we denote the closure of the projection of 
supp a (x, y,~) in Xx X). 

In this case the corresponding 'PDO A is obviously properly supported. 

Proposition 3.2. If A E L~.b(X) is properly supported, then A can be put in the 
form (2.18) with a(x,y,~)ES:'b(XXXxIRn) being properly supported. 

Proof Let X(x,y) E C<Xl(Xx X), X(x,y)=1 in a neighborhood ofsuppKA 
and let both projections II l' lIz: supp X ~ X be proper (verify that such a 
function exists !). Then, substituting in (2.18) X (x, y) a (x, y, ¢) for a (x, y, 0, the 
kernel KA and hence the operator are unchanged while X (x, y) a (x, y,~) is 
properly supported. 0 

Note that if a (x, y, 0 is properly supported then (2.18), viewed as an iterated 
integral, is defined for u E C<Xl(X). 

Proposition 3.3. Any 'PDO A can be written in the form A = Ao + A I 
where Ao is a properly supported 'PDO and A I has kernel KA\ E Coo (X x X). 

Proof Given A in the form (2.18) with function a (x, y, ~), we obtain Ao and 
A1 by substituting ao (x, y,~) = X (x, y) a (x, y,~) and a1 (x, y,~) = (1- x(x, y» 
a (x, y,~) respectively instead of a (x, y,~) where X (x, y) equals 1 in a 
neighborhood of the diagonal Ll c X x X and is such that both projections Ill, 
II 2 : supp X ~ X are proper. 0 

Proposition 3.4. Let A be a 'PDO. Then A is properly supported if and only 
if the following two conditions are fulfilled; 

a) for any compact set K c X we can find a compact set K1 c X such that 
supp u c K implies supp (Au) c K1; 

b) the same condition with tA instead of A. 
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Proof The necessity of a) and b) is clear from (3.5). So we are left with 
proving the sufficiency. For instance let us verify that the projection II 2: 
supp KA -+ X is a proper map. Let K be an arbitrary compact set in X. Find a 
compact set Kl as in a) and verify that ll;l(K)nsuppKAcKlxK. If 
(xo, Yo) E (X\KI ) x K and if a smooth function w(x, y) = u(y)v(x) is sup
ported in a neighbourhood of this point, then by a) (KA' w) = O. By linearity 
and continuity this then also holds for an arbitrary function w E C(j(X x X), 
supported in a neighbourhood of (xo, Yo) from which the desired inclusion 
follows. D 

3.2 The symbol of a properly supported pseudodifferential operator. We 
would like to define the symbol of an arbitrary properly supported 'PDO A by 
analogy with example 2 of § 2. 

Let us point out that in this example the following holds 

(3.8) 

where e~ (x) = eix'~, and that the right hand side of this expression also makes 
sense for a properly supported 'PDO. 

Definition 3.3. Let A be a properly supported 'PDO. Its symbol (or complete 
symbol) is the function (TA(X, 0 on X x IRn , defined by (3.8). 

Since e~ (x) is an infinitely differentiable function of ~ with values in Coo (X) 
and A is a continuous linear operator on Coo (X), it is clear that (J A (x, ~) is also an 
infinitely differentiable function of ~ taking values in Coo (X), therefore 
(J A (x, ~) E Coo (X x IRn). 

Writing u (x) E CQ',,{X) as the inverse Fourier transform 

u(x) = J e~(x) u(~)d~ 

where the integral converges in the topology of COO (X), we see that 

(3.9) 

or 
Au (x) = J ei(x-y)' ~ (JA(X,~) u(y) dyd~ (3.10) 

(where the integral is viewed as an iterated one), which coincides with the 
corresponding formulas for differential operators. 

As is demonstrated by the formulas (3.8) and (3.9), the symbol (J A (x, ~) 
defines A and is also defined by A. 

Below it will be shown that if A EL~,tI(X) and b < (2, then we will have 
(JAx,~) ES;'tI(XX IRn) implying that (3.10) can also be viewed as an oscillatory 
integral «3.9) is absolutely convergent). 

Remark. If A is an arbitrary 'PDO on X, then its symbol is frequently 
defined as the symbol (TAl (x,~) of a properly supported 'PDO Al on X such 
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that ~ - AlE L -00. In this case the symbol is not uniquely defined although, 
as wIll be seen later, any two such symbols differ by a function r (x, 0 E S-oo. 

3.3 Asymptotic expansions in S;',c5 

Definition 3.4. Let aj (x, e) E S;',iJ (X x IRN ), j = 1, 2, ... , mj --+ - 00 as 
j --+ + 00, and let a (x, e) E coo (Xx IRN). We will write 

00 

a(x,e) ~ L a/x, e) , 
j=1 

if for any integer r ~ 2 we have 

,-1 

a(x,e) - L a/x, e) ES:"o(XxIRN), 
j=1 

where m, = max mj • 
g, 

From this it follows, in particular, that a ES:,..,(XX IRN). 

(3.11 ) 

Proposition 3.5. For a given sequence ajES:;:'J(XxIRN),j= 1,2, ... , with 
mj--+ - 00 as j--+ + 00, we can always fi'nd a function a(x, e) such that 

00 

If, furthermore, another function a' has the same property a' ~ L aj , then 
a-a'ES-oo(XxIRN). j=1 

Proof The second assertion is obvious so let us prove the first one. We can 
assume that m 1 > m2 > m3 > .... In fact, if this is not the case, we can always 
achieve this situation by a simple rearrangement and gathering the terms 

00 

of the same order. Let X = U Xj , where Xj are open subsets of X and such 
j=1 

that Kj = ~ cc X (i.e. Kj is compact in X). Let q> (e) E CC(IRN) and 

Put 

q>(e) = {O for lei ~ 1/2 
1 for lei ~ 1 . 

where tj approaches + 00 so quickly as j --+ + 00 that 

I o~o~ [q> (~) aj (x, e)] I ~ 2 - j<e>mi -,- Q lal H IPI 

for x E Kl and I a I + 1131 + I ~ j. Let us show that this is always possible. 

(3.12) 

(3.13) 



§3. The Algebra of Pseudo differential Operators and Their Symbols 21 

First observe that 

(3.14) 

where Ca does not depend on t, that is for cp (Olt) and t ~ 1 we have uniform in t 
estimates of class S? o. In fact 

for 0 Esuppoocp(Olt), from which we obtain (3.14). 
Further from (3.14) follows that 

I 090~ [cp (Olt) aj(x, 0)11 ~ c/o)mj-/I lal H IPI, 

if x EKI , t ~ 1 and lexl + IPI + I ~j. Let us observe now that 

for <o)mJ-,-mi ~ I/f.. Thus, by the choice of tj we can achieve (3.13) which implies 
the convergence of (3.12), together with all its derivatives, uniformly on any 
compact K c X, and for arbitrary fixed ex, P and I we obtain 

, 
Thus, a - L aj ES;',o(Xx IRN) and since a, ES;',o(Xx ~), we obtain from this 

j= 1 
,-I 

that a - L aj ES;',o(Xx IRN), as required. 0 
j=1 

00 

The following proposition facilitates the verification of a'" L aj • 

j=l 

Proposition 3.6. Let aj E S;'iO (X X IRN), mr-+ - 00 as j --+ + 00 and let 
a E COO (X X IRN) so that for each compact K c X and arbitrary multi-indices ex, P 
there exist constants II = II (ex, p, K) and C = C (ex, p, K) with 

I09o~a(x,0)1 ~ C<O)I', XEK. (3.15) 

Furthermore assume that for any compact K c X, there exist numbers 
III = III (K), 1= 1, 2, ... , and constants Cl = Cl (K), such that 111--+ - 00 as 
1--+ + 00 and the following estimate holds 

la(x,o) - :~: aj(x, 0) I ~ CI <O)I'I, XEK. (3.16) 
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00 

Then a '" I aj. 
j=l 
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The point of this proposition is that instead of (3.11) one has to verify the 
remainder estimates only for the functions themselves (and not for all the 
derivatives) provided the fairly weak estimates (3.15) are guaranteed. 

The proof is based on the following well-known lemma. 

Lemma 3.1. Let afunctionf(t) have continuous derivatives f' (t) and!" (t)for 
t E [-1,1]. Put Aj = sup IfU)(t)!,j = 0, 2. Then 

-1;:;;1;:;;1 

(3.17) 

Proof By the intermediate value theorem we have 

11'(t) - 1'(0)1 ~ A21tl· 

Therefore II'(t)I~1/211'(0)1 for A2Itl~1/211'(0)1, Itl~1. Denoting 

. {II'(O) I } ,1 = mm ~' 1 , we have II'(t) I ~ 1/211'(0)1 for tE[-L1,L1]. We have 

2Ao ~ If(L1) - f( - ,1) I ~ 2,1 II'~O) I , 

and consequently, 

This implies that either 11'(0)1 ~ ~;(~I or 11'(0)1 ~ 2Ao, i.e. either 11'(0)1 2 

~ 4AoA2 or II'(OW ~ 4A~ and thus (3.17). 0 

Lemma 3.2. Let Kl and K2 be two compact sets in lIP so that Kl C Int K2 (the 
set of interior points in K2)' Then there exists a constant C> 0, such that for any 
smooth function f on a neighborhood of K2 , the following estimate holds 

(:~f. la~l 'Daf(X),r 

~ C ~~f, If(x) I (~~f, If(x) I + ~~f, la~2lDa f(x) I). (3.18) 

Proof Immediate from Lemma 3.1. 0 
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00 

Proof of Proposition 3.6. Let b ~ L: aj (such a function exists by Proposition 
j=l 

3.5). Putting d (x, 8) = a (x, 8) - b (x, 8), we have for every compact set K eX 
the estimate 

I080~d(x,8)1 ~ C(8)1', xEK, (3.19) 

where C and Il depend on IX, {J, K, and additionally 

(3.20) 

where Cr = Cr(K). 
Setdo(x,~) = d(x,8+0. Then 

o~o~do(x,~) I~=o = o8o~d(x,8), 

and applying Lemma 3.2 with Kl = Kx 0, K2 = Kx {I~ I ~ 1}, where K is a 
compact set in X such that Int K :::>K, we obtain from (3.20) 

( SUP L: I080~d(X,8)1)2 ~ C(8)-r «8)-r+<8)1'). 
XEK 1.1+IPI;;;l 

Here r can be choosen arbitrarily, JL depends on a, f3, K and C depends on 
a, f3, K and also on r. Thus it follows that for x E K and lal + 1f31 ~ 1 
the function a: at d (x, e) ---+ 0 faster than any power of (e) as Ie I ---+ +00. By 
induction we obtain the same for arbitrary a, f3 which gives d E S-OO(X x IRn) 
as required. 0 

3.4 An expression for the symbol of a properly supported 'I'DO in terms of 
a (x, y, ~). In this and the following subsections we assume that (j < fl. 

Theorem 3.1. Let A be a properly supported 'PDO given by (2.18), and 
(J A (x, ~) its symbol. Then 

(3.21 ) 

where the asymptotic sum runs over all multi-indices IX. 

Remark. Obviously o~D;a(x,y,~) ly=xES;:;j(Q-b)!.! and the asymptotic 
sum (3.21) is therefore meaningful. 

Proof of Theorem 3.1. Observing that by Proposition 3.2 we can assume that 
a (x, y, ~) is properly supported, then (3.8), defining the symbol (J A (x, ~), can be 
rewritten in the form 

(JA(X,~) = J J a(x, y, 8) ei(x-y)'o ei(y-x)' ~ dyd8, (3.22) 
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Here the integral is regarded as an iterated one and the integral makes sense since 
for each fixed x, the y-integration is over a compact set. In this way, if K is a 
compact set in X, the oscillatory integral given by (3.22) depends on a parameter 
x E K. Making the change of variables z = y - x, '1 = () - ~ to simplify the 
exponent we obtain 

(3.23) 

Expanding a (x, x + z, ~ + '1) in '1 near '1 = 0, using the Taylor formula, we 
have: 

a(x,x+z,~+'1)= L a~a(x,x+z,~)'1~!IX!+rN(X,X+Z,~,'1), (3.24) 
I.I;:>N-I 

where 

Now observe that 

by Fourier inversion formula, this gives the finite terms in formula (3.21). 
We would now like to use Proposition 3.6. Let us first get a rough estimate 

for ITA (x,~) of the type (3.15). For this we rewrite (3.23) by integrating by parts 

where v is even and non-negative. 
Taking into account the inequality <~+'1) ~ 2<0' <'1), we obtain 

from (3.27) that la~a~ITA(X,~)1 ~ C<~)pHV J<'1)r(1-b)vd'1, where p = max 
(m-ellXl+JIPI,O), XEK and v is sufficiently large. This gives the desired 
estimates for the derivatives of IT A (x, ~) of the type (3.15). It remains to estimate 
the remainder term. 

Inserting in (3.23) the expression rN (formula (3.25» for a (x, x + z, ~ + '1) and 
interchanging the orders of integration over t and over z, '1, we see that it is 
necessary to have a uniform in t E (0, 1] and x E K estimate of the integral 

where IIX 1 = N. Integrating by parts, we obtain 

R.,t (x, 0 = J S e- iz ' ~ a~D: a (x, x + z, ~ + t'1) dz d'1. (3.28) 

Let us decompose the integral in (3.28) into two parts: 

(3.29) 
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where in R~.I the integration is over the set {(z,1]): 11]1 ~ 1~1/2} and in R~'.I it is 
over the complement to this set. Note that if 11] I ~ I ~ 1/2 then I ~ 1/2 ~ I ~ + 11] I 
~~I~I and moreover in R~.I the volume of the domain of integration for 1] 
doesn't exceed C I ~ In, hence 

(3.30) 

where C doesn't depend on ~ and t. 
Let us next estimate R:. 1 • Integrating by parts and using the formula 

where v is an even and non-negative number, we see that R~'.I can be written as a 
finite sum of terms of the form 

Ra.p,/(X,~) = IS e-iz~<1]>-va~D:+fJa(x,x+z, ~+11])dzd1], (3.31) 
I~I> 1~1/2 

where 1131 ~ v, For 11]1;;; 1~1/2 the expression a~D:+fJa(x,x+z,~+11]) is 
estimated in absolute value by C < 1] >m - (e - b)N Hv for m - «(! - b) N + bv ;;; ° and 
by C for m - «(! - b) N + bv < ° (in both cases C is independent of ~, 1] and t). 
Taking into account the factor <1]> -v we obtain from (3.31) that for sufficiently 
large v 

IRa.fJ./(X,~)1 ~ C S <1]>P-(l-b)vd1], 
I~I> 1~1/2 

where p = max {m - «(!- b)N, o}. If p - (1- b)v + n + 1 < 0, it follows that 

where C doesn't depend on x, ~ and 1 (for xEK, tE(0,1]), Selecting a large 
enough v we can make the exponent in (3.32) p - (1 - b) v + n + 1 negative and 
as large as we like in absolute value. 

Taking (3.29) and (3.30) into account, we obtain for Ra•1 the estimate 

which ensures the applicability of Proposition 3.6 and so finishes the proof. 0 

Remark. The method of proof of Theorem 3.1 is very typical for the theory 
of \fDO and the corresponding arguments are to be found in all versions of 
this theory independently of the mode of presentation. We therefore strongly 
urge the reader to carefully study the proof of this key theorem. 
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3.5 The symbol of the transposed operator and the dual symbol. The 
transposed operator 'A is defined by 

(Au, v) = (u, 'Av) (3.33) 

for any u, v E CO' (X), where 

(u, v) = J u(x) v(x)dx. 

Therefore, if A E L~.o(X) is given by (2.18), where a (x, y, 0 ES;o(X x IRn), 

the transpose 'A is given by 

'Av (y) = H ei(x- y).; a (x, y,~) v (x) dx de 

which with the change of variable IJ = - ~ gives 

'Av(y) = Hei(Y-X)'; a(x,y,-IJ) v(x)dxdlJ. (3.34) 

It is therefore obvious that 'A E L~.o(X). 

Theorem 3.2. Let A be a properly supported 'PDO with symbol a A (x, n 
and a~ (x,~) the symbol of' A, then 

(3.35) 
a 

Proof Note that 'A is also properly supported (cf. Exercise 3.3). Also, 
instead of a (x, y,~) in the formula (2.18), giving the action of A, we can 
substitute (J A (x, ~) (cf. (3.10». Then (3.34) can be written 

(3.36) 

This is the standard form for a 'PDO (cf. (2.18» where the role of a (x, y,~) is 
played by (JA(y, -n It remains only to apply Theorem 3.1. 0 

Exercise 3.4. Let A be a properly supported 'PDO with symbol aA(x, n 
and let A * be the "adjoint" operator, defined by 

(Au, v) = (u, A*v), u, v E CO' (X) 

where (u, v) = f u(x)v(x) dx. Prove that A* is a properly supported 'PDO 
whose symbol satisfies 

(JA'(X,~) ~ L8~D~(JA(X,~)/cx! (3.37) 
a 

where the bar denotes the complex conjugation. 
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We now introduce the dual symbol by setting 

(3.38) 

Taking into account that rCA) = A, we obtain from (3.36) that A can be 
expressed via the dual symbol a A (x, ~) in the form 

or 

(3.39) 

Theorem 3.3. The dual symbol a A (x, ~) is connected with the symbol (J A (x, ~) 
via the asymptotic formula 

(3.40) 

Proof Obvious from (3.38) and (3.35). 0 

3.6 The composition formula 

Theorem 3.4. Let A and B be two properly supported 'PDO in a domain 
X c JR." and let their symbols be (J A (x, ~) and (J B (x, ~) respectively. The composition 
e = B . A is then a properly supported'I'DO, whose symbol satisfies the relation 

(3.41) 

Proof Using formula (3.39) for A and applying formula (3.9) to B, we 
obtain 

It follows that if A E L;.'a(X) and BE L;:a(X) then e E L;"tm,(X). Analogously 
we obtain 'e = 'A . 'B E L;.,t m,(X). The fact that the 'PDO e is properly 
supported now follows from Proposition 3.4 and it remains to compute (J BA (x, ~) 
using Theorems 3.1 and 3.3. 

We have 

(JBA(X,~) "" L O~D~[(JB(X,~) O'A(y,m/a! Iy=x 
o 

(3.42) 

"" L 0H(JB(X,~) (-o~)p D~+p(JA(X,m/a!f3!. 
o. P 
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Next we state two well-known algebraic lemmas. 

Lemma 3.3 (Leibniz' rule). Let f(x) and g (x) be two smooth functions in an 
open set Xc JR" and IX a multi-index. Then 

IXI 
oa (I(x) g (x» = Y +~=a y! ~! [oY f(x)] W g (x)] . (3.43) 

Lemma 3.4 (Newtons binomial formula). Let x, y E JR" and IX a multi-index, 
then 

(3.44) 

Exercise 3.5. Prove Lemmas 3.3 and 3.4. 

Hint. (3.44) can be shown by induction or by using the Taylor formula for 
polynomials. (3.43) is obtained from (3.44) by noting that 

Conclusion of the proof of Theorem 3.4. Rewrite (3.42) using Lemma 3.3. 

<TBA(X,~) '" L [O~<TB(X,~)] [(-o~)P(o~D~+P<TA(x,~»]/y!P!b! 
a. P. Y. b 
y+b=a 

= L (-l)IPI [o~<TB(x,m [ogHDe+YH<TA(x,~)]/P!y!b! (3.45) 
P. Y. b 

We then obtain from (3.44) with x = - y = e, where e = (1,1, ... ,1) and 
with IX = x; 

Xl (-l)IPI 
b'''1 = (e-e)" = L 111 ~I eb( -e)P = x! L ~, 

P+b=" p.u. P+b=" p.u. 

here bl"l is the Kronecker symbol, equal to 1 for x = 0 and 0 for I x I > O. Because 
of this relation, in (3.45) there only remain terms with x = 0, which proves 
(3.41). 0 

Corollary 3.1. Let A E L;'HX), B E L;'HX), 0 ~ 8 < p ~ 1, and 
assume that B is properly supported. Then the operators AB and B A viewed 
as operatorsJrom Co(X) to COO(X) belong to L;,~+m2(X). 

Proof Decompose A into sumA = Al + R, where A 1 is properly supported 
and R has a kernel R (x, y) E COO (X X X). It is easily verified that the operators 
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BR and RB have smooth kernels equal to Bx R (x, y) and IByR (x, y) respectively, 
where Bx operates on x keeping y fixed and analogously for IBy. The assertion of 
the corollary now follows from Theorem 3.4. D 

3.7 Classical symbols and pseudodifferential operators. It is sometimes 
convenient to consider narrower classes of'PDO. Here we describe one of this 
classes, closed under the majority of the necessary conditions. 

Definition 3.5. By a classical symbol we mean a function a (x, e) E Ceo 
(X X IRN) such that for some complex m these is an asymptotic expansion 

eo 
a(x,e) ~ L l/f(e) am-j(x, e), 

j=O 

where l/f E COO (IRN), l/f (e) = 0 for Ie I ~ 1/2, l/f (e) = 1 for I e I ~ 1, and am- j(x, e) 
is positive homogeneous of degree m - jin e, i.e. am- /x, te) = tm- j am- j(X, e) for 
all t> 0 and (x, e) E x x (IRN\ 0). Denote the class of all symbols fulfilling these 
requirements by csm(xX IRN). Furthermore, denote by CLm(x) the class of 
'PDO which can be written in the form (2.18) with a (x, y, ~) E C sm (X X X x 
IR"). These operators will be called classical 'PDO. 

If ak(x, e) is positive homogeneous of degree k in 0, then a%atak(X, e) is 
positive homogeneous of degree k - I Il( I in e. Therefore it is clear that 
csm(xx IRN) C SRem(Xx IRN). 

Proposition 3.7. 

a) If A E CLm(x) and is properly supported, then O'A(X,~) E csm(xx IRn). 

b) If A E CLm, (X) and BE CLm, (X) and both are properly supported then 
BA E CLm, +m,(x). 

c) If A E CLm(x), then IA E CLm(x) and A* E CLm(x). 

Proof Follows immediately from Theorems 3.1-3.4. D 

Thus the class of all classical 'PDO is closed under composition, taking the 
adjoint, and the transpose. In what follows we will show that it is also closed 
under changing variables, taking the parametrixes (cf. §5) and complex powers 
of an elliptic operator. 

3.8 Exercises and problems 

Exercise 3.6. Show the following generalization of Leibniz's rule (3.43): if 
p (x,~) = L a.(x) ~', and p (x, D) is the corresponding differential operator, 
then lal::im 

p (x, D) (f(x) g (x» = L [p(a) (x, D) f(x) J [Da g (x) J/Il(! , (3.46) 

where pI·)(x,~) = a~p (x, ~). 
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Exercise 3.7. Derive theorem 3.4 for differential operators from the result of 
Exercise 3.6. 

Exercise 3.B. Let x I, x 2 , .•• , X k be n-vectors and a an n-dimensional multi
index. Prove that 

(3.47) 

Deduce from this that for any smooth functions II, ... , Ik 
a! 

aa [II (x) ... J,;(x)] = I I I (aa'lI)(x) ... (aa,J,;)(x). 
a,+ ... +a,=. a l · .. , ak • 

(3.48) 

Exercise 3.9. Given a function a (x, ~) ES;'o(XX JR"), X an open set in IR", 
show that there exists a properly supported 'I'DO A in X, such that a 
-aA E S-OO(X x rn"). 

Hint. Consider the operator given by (2.18) with a(x, y,~) = X (x, y) a (x, 0, 
where X (x, y) is the same as in the proof of Proposition 3.3. 

Exercise 3.10. Derive from Exercises 2.4 and 3.9 that the operation of 
taking the symbol defines (for (j < Q) an isomorphism 

Problem 3.1. Consider the following operator in IR" 

Au (x) = IS ei(x-y)·~ a(x,~) u(y)dydC (3.49) 

where a (x,~) satisfies 

(3.50) 

Assume that Q > 0 and (j < 1. Attach a meaning to the integral (3.49) in the 
following two situations; a) u(x) ES(IR"); b) u(x) E qXl(IR") i.e. la~u(x)1 ~ Ca 

for an arbitrary multi-index a. Show that A defines a continuous transformation 
of the spaces S(IR") and qO(IR") into themselves. Show that the symbol a (x,~) is 
uniquely defined by the action of A on S(IR") or Ct' (IR"). 

Problem 3.2. Show that the operators of the form described in Problem 3.1 
form an algebra with involution and obtain an asymptotic formula for the sym
bols of the composition of two operators, of the transpose and of the adjoint 
operator. 

Problem 3.3. Let K (x, z) E Coo (X x (IR"\ 0)) be positive homogeneous in z of 
degree - n and let 

J K(x,z)dSz=O 
Izl = I 

(3.51 ) 
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(integral over the sphere I z I = 1). Show that for u E CO' (X), the following limit 
exists 

Au(x)=lim J K(x,x-y)u(y)dy, (3.52) 
E~O Ix-yl!1:' 

defining a 'PDO A E CLo(X). 
The operator A, defined by (3.52) (under condition (3.51», is called a singular 

integral operator. We see that such operators are just special cases of 'PDO. 
Remark. The solution of Problem 3.2 can be found in one of the works of 

Kumano-go [1 ]-[3], and the solution of Problem 3.3 can be extracted from the 
book of Mihlin [1]. The solutions of these problems are rather laborious but very 
useful for understanding 'PDO theory. 

§4. Change of Variables and Pseudodifferential Operators on 
Manifolds 

4.1 The action of change of variables on a 'PDO. Given a diffeomorphism 
x: X ~ Xl from one open set Xc JR" onto another open set Xl C IRn, the induced 
transformation X*: COO (Xl) ~ Coo (X), taking a function u to the function u 0 x, 
is an isomorphism and transforms CO' (Xl) into CO' (X). Let A be a 'PDO on X 
and define AI: CO'(Xd~ cro(XI ) with the help of the commutative diagram 

(4.1) 

Let A be given by (2.18), then 

Al u(x) = S S ej(x,(x)-y)~ a(xi (x), y,~) u(x(y» dya~ 

and, setting y = Xl (z), we obtain 

where xi is the Jacobi matrix of the transformations Xl. It follows from this 
that A I is a FlO with phase function cP (x, y, 0 = (Xl (x) - Xl (y» . (J. We 
will show, that for I - Q ;;; 8 < Q the operator Al is a 'PDO. This fact can be 
obviously derived from the following more general theorem. 
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Theorem 4.1. Let cfJ be a phase function in X x X x JR.", such that 
1) cfJ (x, y, 0) is linear in 0; 
2) cfJ~ (x, y, 0) = 0-= x = y. 
Let AI be a FlO with phase function <P(x, y, 0) and a(x, y, 0) E S;, 

(Xx Xx JR.") (cf.Jormula (2.1», where 

1 - (l ~ b < (l (4.3) 

Then A1 EL~.b(X), 

For the proof we need 

Lemma 4.1. Let the phase function <P satisfy conditions 1) and 2) of theo
rem 4.1. Then there exists a neighbourhood D of the diagonal L1 C X x X and 
a Coo-map l/r : D -+ GL(n, IR) (non-degenerate matrix-function l/r(x, y»), 
such that 

cfJ(x,y,tf/(x,y)~)=(x-y)'~, (x,Y)ED, (4.4) 

where 

dettf/(x,x) . detcfJ;B(x,y,O) Iy=x = 1. (4.5) 

Proof We have 

" 
cfJ (x, y, 0) = L cfJj (x, y) OJ, (4.6) 

i= 1 

where cfJj (x, x) = ° and if cfJj (x, y) = 0, j = 1, 2, ... , n, then x = y. Further 

Note that differentiation of the relation cfJ (x, x, 0) = ° with respect to x 
shows that cfJ~lx=y= -cfJ~lx=y. Now, by definition of the phase function 
cfJ~.Y.B =1= ° for 0 =1= 0, so in order that cfJ~(x, x, 0) = 0, it is necessary that 
cfJ ~ (x, x, 0) =1= 0, i. e. for arbitrary 0 =1= ° there exists k, 1 ~ k ~ n, such that 

f iJcfJj I . OJ =1= ° . 
j=1 iJxk x=y 

It follows that 

det (iJcfJj (x, y») I =1= ° . 
iJxk x=y 

(4.7) 

By the Hadamard Lemma we have 

" 
cfJj (x, y) = L cfJkj (x, y) (Xk - Yk), 

k=1 
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for close x and y, f/Jkj E Coo(D'), D' some neighbourhood of the diagonal in 
X x X and 

m.( ) = ocfJ/x,y) I 
'l'kJ x, X ~ 

UXk x=y 
(4.8) 

Denoting by f/J(x, y) the matrix (f/Jkj(X, Y»~,j=\' we see from (4.7) and (4.8) 
that there exists a neighbourhood Q of the diagonal in X x X such that 
det cfJ (x, y) * 0 for (x, y) E Q. Put 

(4.9) 

Since 
n 

cfJ (x, y, 8) = L cfJk/x, y) 8j (Xk - Yk) = (x - y) . (cfJ (x, y) 8), 
j, k = j 

and putting cfJ (x, y) 8 = ~, we clearly obtain (4.4). The formula (4.5) follows 
from (4.8) and (4.9). 0 

Proof of Theorem 4.1. In view of Proposition 2.1 and Exercise 2.4 we may 
assume that A is given by (2.1), where a (x, y, 8) = 0 for (x, y)$ Q' with Q' any 
neighbourhood of the diagonal. Making the change of variables 8 = 1/1 (x, y) ~ in 
the integral (2.1), we obtain 

Aju(x)= JJei(x-y).~ a(x,y,l/I(x,y)~) Idetl/l(x,y) I u(y)dyd~. (4.10) 

It remains only to remark that for a j (x, y,~) = a (x, y, 1/1 (x, y)~) condition (4.3) 
guarantees that a j (x,y,~) ES;'Ii(XX Xx IRn), in view of Lemma 1.2. 0 

4.2 Formulae for transformations of symbols 

Theorem 4.2. Given a diffeomorphism x: X -+ Xj and a properly supported 
\{IDO A E L~J(X) with I - Q ;;:; 8 < Q, let Al be determined by (4.1). Then 

x; (z) = x (z) - x (x) - x' (x) (z - x) . ( 4.12) 

Proof Note first of all that the function x; (z) has a zero of second order for 
z = x. Therefore, denoting 

( 4.13) 



34 Chapter I. Foundations of 'PDO Theory 

we have that <P a (x, 1]) is a polynomial in I] of degree no higher than IIX 1/2. Taking 
Lemma 1.2 into consideration, we see that 

But from the condition 1 - (} ;£ J < (} it follows that (} > 1/2, so the asymptotic 
sum (4.11) is well defined. 

To prove formula (4.11), we utilize formula (4.2) with a (x, y, 8) = (j A (x, 8). 
Using the transformation described in the proof of Theorem 4.1, we get 

where D(x,y) = Idetx;(x)lldetlf!(x,y)l. By Theorem 3.1, we have 

From the terms with multi-index IX, we obtain (before substituting x = y) a 
sum of terms of the form 

(4.16) 

where c(x, y) depends only on the diffeomorphism (but not on A). For the multi
indices y and fJ in (4.16) we have the estimates 

1f31~211X1, 

Iyl + IIXI ;£ IfJl· 

(4.17) 

(4.18) 

Here, (4.17) is obvious and (4.18) follows from the fact that applying Dy to 
expressions of the type (4.16) does not change I fJ I - I y I and a~ increases I fJ I - I y I 
by 1. 

From (4.17) and (4.18) we have 

Iyl;£ IfJl-llXl;£ IfJl-lfJl/2 = IfJ1/2. (4.19) 

Note now, that applying (4.5) to <P (x, y, 8) = (Xl (x) - Xl (y» . 8 gives If! (x, x) 
= ex; (x» -1. Also, rearranging in (4.15) the terms of the form (4.16), collecting 
together all the terms with the same fJ, we obtain 

(jA,(X,I]) '" L(j~fl(X1(X), Cx;(X»-l1]) 'Pp(x,I])lfJ!, (4.20) 
Ii 

where 'Pp(x, 1]) is a polynomial in I] of degree no higher than I fJ 1/2 (with coo (X1)
coefficients) and independent of A. Here 'Po == 1. 
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Replacing x by x(x) in (4.20) we easily obtain the equivalent fonnula 

ITAJx(x),1/) ~ IIT~)(x, tx'(x) 1/) fPp(x,1/)I13!, 
p 

(4.21) 

where fPp (x, 1/) is a polynomial in 1/ of degree no higher than 113112 (with Coo (X)
coefficients) independent of A and where fPo == 1. It remains to show that these 
polynomials are given by (4.13). 

We will compute the polynomials fPp (x, 1/) with the help of differential 
operators. For the differential operator A we have 

IT Al (y, 1/) I y =x (x) = e - iy . ~ Al e iy . ~ I y =x (x) 

= e-i){(z)' ~ ITA (z,DJ ei){(z)' ~ Iz=x (4.22) 

(here ITA (z,Dz) denotes the operator A, acting on the variable z). We write now 

x (z) = x (x) + x' (x) (z - x) + x; (z), 

from which 

x (z) . 1/ = x (x) . 1/ + z . tx' (x) 1/ + x; (z) . 1/ - x . tx' (x) 1/ . 

Putting this into formula (4.22), we obtain 

Now use the Leibniz rule (3.46) (Exercise 3.6) to differentiate the product of two 
exponents in (4.23). We then obtain clearly 

(we have used here yet another obvious formula for differentiating a linear 
exponent: ITA(z,Dz)eiz'~= eiz·~ITA(Z,~». 

Formula (4.24) signifies the validity for differential operators of (4.13) for 
the polynomials fPa (x,1/) in (4.21). But in view of the universality of the 
polynomials fPa (x, 1/), then (4.13) is valid also in the general case. 

Examples. fPo==l, fPp=O for 1131=1, fPp(x,1/)=D~(ix(x)·1/) for 1131=2. 
Corollary 4.1. 

ITAJy,1/) -ITA(X1(y), Cx~(y»-l1/) ES;'.l2(e- 1/2)(XI x]R"). (4.25) 

This statement shows, that modulo symbols of lower order, the symbols of all 
operators obtained from A by a change of variables form a well-defined function 
on the cotangent bundle T* X. 
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Proof Obvious from formula (4.11). 0 

4.3 Pseudodifferential operators on a manifold. Let M be a smooth n
dimensional manifold (of class COO). We will denote by Coo (M) and COO (M) the 
space of all smooth complex-valued functions on M and the subspace of all 
functions with compact support respectively. Assume that we are given a linear 
operator 

A: CQ(M) --. C'X)(M). 

If X is some chart in M (not necessarily connected) and x: X --. XI its 
diffeomorphism onto an open set XI c JR", then let A I be defined by the diagram 

(note, in the upper row is the operator rx o A ° ix, where ix is the natural 
embedding ix: COO (X)--. Cooo(M) and rx is the natural restriction rx: 
Coo (M) --. Coo (X); for brevity we denote this operator by the same letter A as the 
original operator). 

Definition 4.1. An operator A: COO (M) --. Coo (M) is called a pseudo
differential operator on M if for any chart diffeomorphism x: X --. XI the 
operator A 1 defined above is a 'PDO on XI. 

Theorem 4.1 shows that the 'PDO on an open set X c JR" for I-Q ;; 8 < Q 

are 'PDO on the manifold X. 
Furthermore, from Lemma 1.2, we see that the class of symbols S;, b (T* M), 

as well as the class of operators L~.b(M), are well-defined for 1 - Q ~ J < Q, and 
Lemma 4.1 shows that the principal symbol is well-defined as an element of the 
quotient space S;'b(T*M)/s;,{,2(a- I /2) (T*M). 

Also, in view of Theorem 4.2 the class of classical 'PDO CLrn(M) is well
defined on M. If A E CLrn(M), then the principal symbol of A can be considered 
as a homogenous function (J A (x, ¢) on T* M with degree of homogeneity equal 
to m, since two functions al (x, ¢) and a2 (x, 0, positively homogeneous in ¢ for 
I ¢ I ~ 1 of degree m, which define the same equivalence class in srn (X x JR") 
modulo srn - I (X x JR"), must coincide for I ¢ I ~ 1. 

In conclusion note, that it is essential to allow the use of non-connected 
charts in definition 4.1, since otherwise we would have to consider the reflection 
f(x) --. f( -x) in COO(JR\ {On as a pseudo-differential operator. 
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Exercise 4.1. Show that a 'PDO A on a manifold M can be extended by 
continuity to a mapping 

A: C'(M) ----+ ~'(M) 

where C' (M) and ~' (M) denote the spaces dual to the spaces of smooth sections 
and smooth sections with compact support respectively of the line bundle of 
densities IA"(T*M)I. (This bundle can be defined for instance, by choosing a 
covering of M by charts, regarding the bundle as trivial on each chart and setting 
the transition functions equal to the absolute values of the Jacobians of the 
coordinate transformations. The sections of the density bundle can be integrated 
on the manifold, which cannot be said of exterior n-forms, where one needs an 
orientation, i. e. essentially an isomorphism between A"(T* M) and IA"(T* M) I. 
Ifwe fixed a smooth positive density on M, then this gives us an isomorphism of 
the bundle IA"(T*M)I and MxIR1 , which allows us to consider functions as 
densities and therefore to view the elements in C' (M) and ~' (M) as functionals 
on functions.) 

The inclusion COO (M) ~ (!2' (M), inducing the inclusion CO" (M) ~ C' (M), 
is defined in a natural way by the formula 

<U,<p) = S U' <p, (4.26) 
M 

where U E COO(M) and <p is a smooth density with compact support (so that U· <p 
is also a smooth density with compact support). Verify the property of 
pseudolocality for the operator A. 

Exercise 4.2. Let E and Fbe smooth vector bundles on the manifold M; let 
n: T* M ----+ M be the natural projection; n* E and n* Fthe induced vector bundles 
over T* M. Define a 'PDO A : C't'(M, E) -* COO(M, F) (C't'(M, E) the 
space of smooth compactly supported sections of E and COO(M, F) that of 
the smooth sections of F) and show that its principal symbol is a well-defined 
element in the space 

S;'J (Hom (n* E, n* F»/S;'"i 2(e -1/2)(Hom (n* E, n* F». 

Problem 4.1. Let A be a differential operator of order m on a manifold M 
(an operator A: CO" (M) ----+ Cow (M), such that any operator AI: 
CO"(X1) ----+ CO"(X1), as defined before, is a differential operator of order m). Give 
an invariant definition of the principal symbol am (x, ~) as a function on T* M 
which is a homogeneous polynomial of order m in ~ (i.e. along the fibres). 

Hint. Use the formula 

am(x,<p~)= lim A-me-iJ."'A(ei.l·",), <p E COO(M). (4.27) 
)._+(1) 
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Problem 4.2. Compute the principal symbol of the (de Rham) exterior 
differentiation operator: 

where Ak(M) denotes the space of smooth exterior k-forms on M (k = 0, 
1, ... , n). 

Problem 4.3. Prove that the one-dimensional singular integral operator on 
a smooth closed curve rCa: 

Au(t) = aCt) u(t) + lim J _K(_t,_t) u(t)dt 
O t- t ' £-+ II-TI~£ 

t, t Er, 

for aCt) E COO(r), K(t, r) E co(r x r), is a classical 'PDO and belongs to 
the class CLo(r). 

§5. Hypoellipticity and Ellipticity 

5.1 Definition of hypoelliptic symbols, operators and examples 

Definition 5.1. A function (1 (x, ~) E COO (X x JR"), where X is an open set in 
JR", is called a hypoelliptic symbol if the following conditions are fulfilled: 

a) there exist real numbers mo and m, such that for an arbitrary compact set 
K c X one can find positive constants R, eland C 2 such that 

b) there exist numbers {! and~, with 0 ~ ~ < (! ~ 1, and for each compact set 
K c X a constant R such that for any multi-indices IX and P 

with some constant Ca,(J,K' 

Denote by Hs;~mo(X x JR") the class of symbols satisfying (5.1) and (5.2) for 
fixed m, mo, {! and fJ. Sometimes we will denote this space simply by 
H S;,~mo, if the domain X is obvious (or irrelevant). From (5.1) and (5.2) it 
obviously follows that 

We will denote by H L;:smo(X), X open, the class of properly supported 
'PDO A for which (T A (x, ~) E H S;'jmO (X x IR"). 
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Definition 5.2. A 'PDO A is called hypoeUiptic if there exists a prop
erly supported 'PDO Al E H L;"t°(X) such that A = Al + RI, where 
RI E L -""(X), i.e. RI is an operator with infinitely differentiable kernel. 

Note, for any representation of the hypoelliptic operator A in the form 
A = Al + R 1 , where A 1 is a properly supported 'PDOand Rl is an operator with 
smooth kernel, it is true that AlE H L~: :;'0 (X). 

Example 5.1. Let A be a differential operator, i.e. A = L a,(X)D', with 
a, E coo (X). Denote by am(x,~) the principal symbol 1,I;:;;m 

am(x,~) = L a,(x)~'. (5.3) 
!,!=m 

Definition 5.3. A differential operator A is called elliptic, if 

(5.4) 

Proposition 5.1. The following conditions are equivalent for a differential 
operator A: 

a) A is elliptic; 

b) A EHL~:o(X). 

Proof The implication b) = a) is obvious. To show the converse impli
cation, we introduce the complete symbol of the operator A 

a (x,~) = L a, (x) ~' (5.5) 
!,!;:;;m 

and notice that, if a) is fulfilled, then 

a (x, ~) 
( J:) = 1 + b_l(X,~) + ... + b_m(x,~), 

am x,,> 

where the functions b _ j(x, ~) E COO (X x (IRn\ 0» are homogeneous in ~ of degree 
- j. From this (5.1) follows with m = mo and (5.2) is obtained similarly. 0 

Examples of elliptic operators: 

a2 a2 
the Laplace operator L1 = ;-z + ... + ;-z in IRn; 

uX1 uXn 

the Cauchy-Riemann operator 

Example 5.2. The heat operator 

a a a 2 a2 

at - L1 = at - ax~ - ... - ax; 

is hypo elliptic in IRn + 1, although it is not elliptic. 
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Exercise 5.1. Verify the hypoellipticity of the heat operator and find the 
corresponding m, mo, {l, (j. 

Example 5.3. Let A be a classical 'l'DOwith principal symbol am (x, O. Then 
the following definition makes sense. 

Definition 5.3'. An operator A E CLm(x) is called elliptic, if its principal 
symbol am (x,~) satisfies condition (S.4). 

As in the proof of Proposition 5.1 it is easy to verify that if A E C L m (X) 
is properly supported then its ellipticity is equivalent to the inclusion A E 

H L~:;(X). Generally, A E CLm(x) is elliptic if and only if A = Al + R 
where Al E H L~.';(X) and R E L -OO(X). 

Examples S.1 and 5.3 motivate the following 

Definition 5.3". An operator A E L;'8(X) is called elliptic if A = Al + R 
where Al E H L;,nX) and R E L -OO(X). 

Proposition 5.1'. For a properly supported A E L;'8(X) to be elliptic it is 
necessary and sufficient that the condition a) in Definition 5.1 is satisfied for 
its symbol with mo = m. Generally A E L;'8(X) is elliptic if and only if 
A = A I + R where A I is properly supported and the condition a) in Definition 
5.1 is satisfied for the symbol of Al with mo = m. In this case this is truefor 
any presentation A = A I + R as above. 

Proof The proof is left to the reader as an excercise. 0 

5.2 Basic properties of hypoelliptic symbols. First of all, say that 
(J (x, ~) E s;, dar large ~, if for any compact set K c X there is an R = R (K), such 
that (J (x, ~) is defined for x E K, I ~ I ~ R (K) and for these (x, ~) all the necessary 
estimates of type (1.10) are fulfilled. If, in addition, the estimates (S.1) and 
(S.2) are fulfilled, we say that a(x,~) E H S;8mo for large ~. 

Note that if (J (x, ~) belongs to S;, b or HS;"bmo for large ~ then, multiplying 
by a smooth cut-off function tf! (x, ~), equal to 1 "for large C (e. g. for x E K, 
I ~ I ~ R (K) + 2 for any compact set K) and equal to 0 in a neighbourhood of 
the set where the symbol (J is not defined (e. g. for x E K, I':: I ~ R (K) + 1), we 
obtain a symbol al (x, 0 E S;'8(X x JRn) or H S;amo (X x JRn) respectively, 
which coincides with a (x, ~) "for large ~". 

Lemma 5.1. If (J (x, ~) E HS;,'to for large ~, then (J - 1 (x,~) E HS q~ ;0' -m for 
large ~. Furthermore, for arbitrary multi-indices IX, f3 we have for large ~, that 

Proof Let y = (x, ~) and y, (j be 2n-dimensional multi-indices. By induction 
in I (j lone verifies that 
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(5.6) 

Obviously, setting y = (/3, IX) we obtain from the definitions all the necessary 
estimates for the proof of the lemma. 0 

Lemma 5.2. If a' EHS':'Jm~ and a" E HS::,''o mo then a' 0 a" E HSm'-i- m", m~+mO. 
.. ., Q,O 

Proof Direct from the Leibniz rule. 0 

Lemma 5.3. If a(x,~)EHS;"omo and r(x,~)ES;''a, where m1 < mo, then 
a + r E HS;"omo. 

Proof Writting a + r = a (1 + ria) and using Lemmas 5.1 and 5.2, we see 
that it suffices to consider the case a == 1 and rna = m = 0, i.e. m 1 < 0. But then 
the assertion of the lemma is trivial. 0 

Lemma 5.4. Let a (x,~) E HS;"ro for large ~ and let a 1 (y, '1) = a (x (y), 
~(y, 11)), where the map (y, 11) ~ (x(y), ~(x, 11)) is a Coo map from XI x 
OR" \ 0) into X x (IR" \ 0) and where ~(y, 11) is positive homogeneous of 
degree 1 in 11. Assume that l-g ~ 8 < g. Then al (y, 11) E H s;,~mo for large 11. 

Proof Completely analogous to the proof of Lemma 1.2 and is left to the 
reader. 0 

5.3 Basic properties of hypoelliptic operators 

Proposition 5.2. If A' EHL;:-bm~ (X) and A" EHL;:'~mo (X), then 
A' 0 An EHL;:tm".mb+mo(X). 

Proof By theorem 3.4 

and from Lemmas 5.1 and 5.3, we see that the series in square brackets is an 
asymptotic sum which (in the sense of Proposition 3.4) belongs to HS~}. It 
remains to use Lemma 5.2. 0 

Proposition 5.3. If A EHL~:'l:0(X), then both fA and A* belong to HL~:'l:0(X). 

Proof Similar to the proof of the preceeding proposition. 0 

Proposition 5.4. If A EHL~:bo(X) and R EL~,lb(X) with m l < rna, where R is 
properly supported, then A + R EHL~:bo(X). 

Proof The statement follows immediately from Lemma 5.3. 0 

Proposition 5.5. Ifl - e ~ b < e, then HL;:';o(X) is invariant with respect to 
changes of variables i. e. if we are given a diffeomorphism )e X --* Xl and an 
operator AI is defined as in §4 (formula (4.1)), then AI E H Lm,mO(Xd. 
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Proof By Lemma 5.4 

O"A (Xl (y), Cx;(y»-l1/) EHS;"bmo(X) 

(here XI = x-I), But then, by Theorem 4,2 and Lemma 5,1, it is obvious that 

O"A, (y, 1/) = O"A (Xl (y), CX; (y» -11/) (1 + r(y, 1/», 

where r(Y,1/)ES~~~(~-1/2) for large 1/, The assertion of the proposition now 
follows from Lemmas 5,2 and 5,3, 0 

Proposition 5,5 allows us to define the class H L;,Jmo (M) of hypo-elliptic 
\{IDO to an arbitrary manifold M provided 1 - Q ~ 8 < Q, 

5.4 The parametrix and the rough regularity theorem 

Theorem 5.1. Let A E HL~:';o(M), with either 1 - {! ~ 8 < {! or 8 < (! and M a 
domain in JR", Then there exists an operator BEHL;.~o.-m(M), such that 

BA = 1+ R1 , AB = 1+ R2 , (5.7) 

where Rj E L - 00 (M), j = 1, 2, and I is the identity operator. If,furthermore, B' is 
another \{IDO for which either B'A = 1+ R; or AB' = 1+ R; (where 
R; ECOO(M», then B' - BECOO(M). 

Corollary 5.1. If A is a hypoeUiptic \{IDO on M (not necessarily properly 
supported), then there exists a properly supported \{IDO B, such that (5.7) 
holds. 

Proof of Theorem 5. I. First let M be a domain X in IR" and a A the symbol of 
A. Consider a function bo(X,~)EHSe~ro.-m(XxJRn) such that bo(x,~) 

= 0"; 1 (x,~) for large ~. Next choose a properly supported operator 
BoEHL;,~o' -m(x) such that O"Bo - boES-OO(XXJR"). Let us verify that 

(5.8) 

with Ro E L;,<g-b)(X). 
In fact, by Theorem 3.4 we have for large ~ 

and it remains to use Lemma 5.1. Now let Co be a properly supported \{IDO 
such that 

00 

Co~L(-1)iRb, (5.9) 
j=O 

i.e. 
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From (5.9) we clearly have 

00 

(J Co ~ L (- l)j (J R~ . 
j=O 

so that putting B J = Co Bo, we have 
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(5.9') 

(5.10) 

where R J EC ro(X). From the construction it is clear that BJ EHL;,~o' -m(x). 
Further, we can similarly construct an operator B2 E H L;,~o' -m(x), such that 

(5.11) 

where R,EL-ro(X). 
Let us now verify, that if BJ and B2 are two arbitrary 'PDO, for which (5.10) 

and (5.11) hold, then BJ - B2 E L -OO(X). This will then also demonstrate 
the existence of the required B (for which we may take either of the operators BJ 

and B2) and its uniqueness (modulo L - 00 (X». Note, that BJ and B2 can be taken 
to be properly supported. Multiplying (5.10) on the right by B2 and using (5.11), 
we obtain BJ - B2 = R J B2 - BJ R2 and it only remians to note that BJ R2 and 
R J B2 both belong to COO (X). 

Now let M = U XY be an arbitrary manifold with a covering by charts XY. 
Y 

Then, (by the results just shown) there is a properly supported operator BY in XY, 
such that 

Bl' . A = I + Rr , A . Bl' = I + Ri , 

where Ri and Ri are operators with smooth kernels. 
Now let CPj, j = 1,2, ... , be a partition of unity subordinate to the covering 

of M by the XY. This means that the following conditions are fulfilled: 

1) CPj E C'O(M), CPj :::: 0, supp CPj C XY for some y = y(j); 
2) for any x EM, there exists a neighbourhood UUx of x in M, such that 

Phx intersects only a finite number of sets supp CPj; 
3) L CPj = 1. 

j 

(See e.g. Theorem 6.20 in Rudin [1].) Now let us construct functions 1{!j E 

C'O(M) such that they still satisfy the conditions 1) and 2) above (with the 
same y (j» and in addition 1{!j = 1 in a neighbourhood of supp CPj. 

Denote by IPj and ~ the multiplication operators by CPj and 1{!j respectively. 
We set then 

B - '" IP BY (j) If! - ~ J J' 
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where necessary operations of restriction and extension by zero are under
stood. We claim that then B satisfies all the required conditions. 

Clearly B is properly supported. Note also that on the intersection xy n X y' 

the operators BY and BY' differ by an operator with a smooth kernel, so modulo 
operators from L -00 they may be given by the same symbol. This allows us to 
calculate the compositions BA and AB modulo L -00 using the composition 
formula (3.41). For example, the symbol of BA will locally have the form 

1 
UBA(X,~) rv L ,<Pj (XHa;UB (x, ~»D;(UA(X, ~)tJtj(x» . 

. a. 
J,a 

Ifwe apply a derivative in x to tJtj , then the resulting term will vanish because 
<Pj D;~ == 0 for any a =1= O. Therefore we conclude that 

which is equivalent to the first relation in (5.7). The proof of the second rela
tion is not different. 0 

Remark. The formula for the parametrix B above can be simplified if we 
add small neighbourhoods of supp ({Jj to the set of all XY. In this case we can 
simply write 

Y 

where ({Jy satisfy the same properties as ({Jj above and it is understood that some 
of the functions ({Jy can be identically O. 

If M is a closed manifold then we can also assume the covering {XY} to be 
finite, so the formula for B will be a finite sum. 

Definition 5.4. An operator B satisfying the condition (5.7) is called a 
parametrix of the operator A. 

Corollary 5.2. Any elliptic operator A E L~, Ii (M) has a parametrix 
BEHL;,b' -m(M). 

Theorem 5.2. If A is a hypoelliptic'PDO, then 

sing supp Au = sing supp u, U E C' (M). (5.12) 

In other words, ifQ is an open submanifold of M, then Au I DE Coo (Q) if and only if 
u I DE COO(Q). 

If A is a properly supported hypo elliptic 'PDO. then (5.12) is true for an 
arbitrary distribution u E Ij)' (M). 
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Proof It obviously suffices to prove the first part of the theorem. For this, 
the inclusion sing supp Au c sing supp u follows from the pseudolocality of A (cf. 
Proposition 2.4) and it only remains to show the inclusion 

sing supp u c sing supp Au (5.13) 

Let B be a properly supported parametrix of A. Then, from the formula 
u = B (Au) - Rl u and the pseudolocality of B, it follows that 

sing supp u c sing supp (Au) v sing supp Rl U, 

and since Rl u E CO') (M), we have that sing supp Rl u = 0 proving (5.13). 0 

Theorem 5.2 is a rough regularity theorem for solutions of hypoelliptic 
equations of the form Au = f More precise theorems will be proved after we 
have introduced exact regularity classes of functions, i. e. the scale of Sobolev 
spaces. 

5.5 A parametrix for classical elliptic pseudo-differential operators. In this 
case a parametrix can be constructed in a much more explicit way. 

Let A be a classical 'PDO in an open set X C IR", whose symbol for large s 
admits the asymptotic expansion 

00 

a(x,~) "-' L am-/x,O, (5.14) 
j=O 

where am-j (x, S) E CDO(X x (IRn \ 0», am-j is positive homogeneous of degree 
m - j in ~ and also satisfies the ellipticity condition (5.4). 

Let B be a parametrix of A. We will show that B is a classical 'PDO, whose 
symbol h(x, s) for large s admits an asymptotic expansion 

'" 
b(x,() ~ I b_m-j(x,O, (5.15) 

j=O 

where b -m- j (x,~) E Coo (X x (IR"\ 0» and b -m _ j (x, ° is positive homogeneous 
of degree -m-jin (. 

The composition formula shows that the symbol b (x, ~) must satisfy the 
condition 

or 

I o~am-k(X,~) D~b_m_j(x,~)/a! "-' 1. (5.16) 
a, k,j 
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Clearly, regrouping the tenns in (5.16) by their homogeneity degree we 
make (5.16) into just an equality of the corresponding homogeneous compo
nents, i.e. 

L a~ am- k (x,~) D~b_m_j(x, ~)/cx! = bg, p = 0, 1, ... , (5.17) 
k+)+I.I=p 

or, more explicitly 

(5.17') 

am' b_m- j + L (a~am-k) (D~b_m_/)/cx! = 0, j = 1, 2, ... (5.17") 
k+i+I·I=) 

/<j 

Clearly, from (5.17) the functions b_m_j(x, ~), positive homogeneous of de
grees -m - j (j = 0, 1, ... ), are uniquely defined. If we now define b(x,~) 
by (5.15) and find a properly supported 'PDO B such that aB (x, ~) - b(x,~) E 
S-OO(X x JR"), then this operator B is a parametrix of A. 

Formula (5.17) defines a parametrix of A also in the case when A is a matrix 
PD~: in this case a_m_j(x,~) are square matrix functions and the ellipticity 
condition takes the form 

detam (x,~) '* 0, (x, 0 E(XX (IR"\O) (5.18) 

Problem 5.1. Show that the terms b_m_j(x,~) U>O) in the parametrix of 
the classical elliptic operator A in the scalar case can be expressed via am-k(x,~) 
by 

2j+ 1 

b_m_/x,~) = L CI(X,~) (am(X,m- l , (5.19) 
/=2 

where C/ (x, e) is a function positive homogenous of degree m (1- 1) - j 
in e, polynomial in the functions am' am _ 1, ... , am _ j and their derivatives of 
order ~j. 

The analogous fonnula in the matrix case is of the fonn 

2j+ 1 1 

b_m_j(x,e)=a,;;-l(x,e) L o [Ck,I(X,e)a,;;-l(x,e)]. (5.20) 
1=2 k=l 

§6. Theorems on Boundedness and Compactness of 
Pseudodifferential Operators 

6.1 Formulation of the basic boundedness theorem. Let A be a 'PDO in JR". 
Consider A as a map 

A: CO"'(IR") ~ C<Xl(IR"). 
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Let KA be the kernel of A in the sense ofL. Schwartz. Ifsupp KA is compact in 
JR" x JR", then A defines a map 

A: C;'(JR") --+ C;'(JR"). 

Is it possible to extend the operator A to a continuous linear operator 

Clearly, this is so if and only if the following estimate holds 

IIAull ~ Cllull, U E C;'(JR"), (6.1) 

where C> 0 does not depend on u and 11'11 denotes the norm in L2(JR") 

Theorem 6.1. Let A E L~,8(JR"), 0 ~ 8 < Q ~ I, and let supp KA be 
compact in JR" x JR". Then (6.1) holds and A can be extended to a linear 
continuous operator on L 2 (JR"). 

6.2 Auxiliary results and proof of Theorem 6.1. In the sequel we will use the 
notation 

lim la(x,~)I=lim supla(x,~)I. 
I~I~C() 
XEK 

Hoo 1~I~t 
XEK 

Theorem 6.2. Let A be a properly supported 'PDO in L~.8(X), with 0 ~ 
8 < Q ~ I and X an open set in JR". Suppose there exists a constant M such 
that 

lim I(JA(X,~)I < M 
1~I~oo 
XEK 

(6.2) 

for any compact set K eX. Then there exists a properly supported integral 
operator R with hermitean kernel R E COO(X x X), such that 

(Au, Au) ~ M 2 (u,u) + (Ru,u), UEC;'(X). (6.3) 

If, in addition, supp KA is compact in X x X, then supp R is also compact in X x X. 

Proof that Theorem 6.2 =;. Theorem 6.1. It suffices to show the boundedness 
in L2(JR") of an operator R with smooth compactly supported kernel. This, 
however is well known (one can show for instance that IIRI12 ~ f IKR(x, y)1 2 

dxdy, where IIRII is the operator norm of R in L 2(JR") and KR(x, y) is the 
kernel of the operator R). 0 

To prove Theorem 6.2 it suffices, in view of the relation (Au, Au) = 
(A * Au, u), to construct a properly supported operator BEL ~,.! such that 

A*A + B*B - M2 = R (6.4) 
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where R has a smooth kernel (in which case R is properly supported since the 
left hand side of (6.4) is a properly supported operator). Rewriting (6.4) in the 
form B* B = M2 - A* A + R, we note that the symbol of M2 - A* A is equal to 
M2 -iaA(x, ~W modulo symbols of class Se~~e-b)(x), from which we infer 

lim Re [a(M'_A*A)(X, OJ> 0 
1~I~oo 

XEK 

(6.5) 

for an arbitrary compact set K c X. Therefore we derive Theorem 6.2 from the 
following proposition. 

Proposition 6.1. Let C E L~. o(X) and be properly supported, 0 ~ b < e ~ 1 
and let C* = C and assume 

lim Reac(x,~) > 0 
1~I~oo 

XEK 

(6.6) 

for arbitrary compact sets K c X. Then there exists a properly supported operator 
B E L~ . .s(X) such that R = B* B - C has a COO kernel. 

Lemma 6.1. Let a(x,~)ESg.b(XxIRn) and let a(x,~), for arbitrary 
(x, 0 E X x IRn, take values in a compact set K c <C. Let a complex-valuedfunction 
fez) be defined on a neighbourhood of K and be infinitely differentiable as 
a function of two real variables Re z and 1m z. Then 

f(a(x, ~» E S~8(X X IRn) 

Proof Denote u = Rez and v = 1m z. Then we evidently have 

a~f(a(y» = 
Xl + "',+Xp + 

+Wt+···+Wq=Y 

(6.7) 

x a;I(Rea) ... a;,(Rea) a~I(lma) ... a~.(lma), (6.8) 

from which (6.7) follows, since I (a~~~q)f) (a (y» I ;::;; Cpq . D 

Proof of Proposition 6.1. It follows from Lemma 6.1 that vRe a cCx,~) 
belongs to sg.o for large ~. Therefore there exists a properly supported 'PDO 
Bo E L~. o(X), such that if bo (x,~) is its symbol then 

From this it follows that 

C- B*B EL-(e-o)(x) o 0 e.O . (6.9) 

The operator Bo serves as the "zero order approximation" to B. We will seek a 
first order approximation in the form Bo + BJ , where BJ EL;.<g-O)(X). 
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We have 

The point is to reduce the order of the operator on the left-hand side, taking BI 
to be properly supported with symbol hI (x, ~), such that for large ~ 

(6.11 ) 

which is obviously possible, since by Lemma 6.1 b;; 1 (x,~) ES~.o for large ~. It 
follows from (6.10) and (6.11), that 

(6.12) 

Arguing by induction, we may in exactly the same way construct properly 
supported 'PDO Bj E L;'~(Q-J) (X), j = 0, 1,2, ... , such that 

Now let bj (x,~) be the symbol of Bj . It only remains to construct a properly 
supported operator B, such that 

00 

O"B(X,~) ~ L bj(x,~). 
j=O 

It follows easily from (6.13), that this operator will be the one we are looking for. 
Thus Proposition 6.1 is proved and together with it Theorems 6.1 and 6.2. 0 

6.3 The compactness theorem. We will derive the compactness theorem 
from the following much more general statement. 

Theorem 6.3. Let A E L~.o(1Rn), 0 ~ J < (l ~ 1, let the kernel KA have compact 
support in IRn x IRn and let the symbol 0" A (x, ~) satisfy 

lim IO"A(X,~) 1< M. (6.14) 
1~1~00 

Then there exists an operator A 1 such that A - AlE L - 00 (IRn), the kernel KA has 
compact support and . 

(6.15) 

Proof Let X E Co (IRn) be such that X (x) ~ 0, J X (x) dx = 1, 0 ~ X m ~ 1. 
Such a function can be found. Indeed, to begin with let the function Xo (x) be such 
that Xo (x) E Co (IRn), Xo (x) ~ 0 and J Xo (x) dx = 1. Then obviously I Xo (~) 1 ~ 1. 
Put now X (x) = Jxo (x+ y}xo (y) dy. In view of the fact that X (~) = I Xo (~) 12 the 
function X (x) fulfills all the requirements. 
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Now put X,(x) = 6-"X(X/6) and define the operator A, by 

A,u = Au - A (X, * u), (6.16) 

where (X, * u) (x), the convolution of X, and u, is defined by 

(X, * u)(x) = Jx,(x- y) u(y)dy = J u(x- y) X,(y) dy. 

Now, in view of Theorem 6.2 

where R is an operator with kernel R (x, y) E Cg' (IR" x JR"). 
Note that the Fourier transform of u - X. * u is (1 - X (6m u (~) and from the 

condition 0 ~ X ~ 1, it follows that 

(6.18) 

Further, denote by R, the operator which maps u into R (u - X, * u), then its 
kernel is given by the formula 

( Z-y) R,(x,y)=R(x,y)-JR(x,Z)6-"X -6- dz, 

or 

R,(x,y) = R(x,y) - JR(X,Y+6Z) X(z)dz, 

from which it is obvious, that suppR,(x,y) lies in some fixed compact set K 
(independent of 6 for 0 < 6 ~ 1) and, in addition, 

sup IR.(x,y)I-+O for 6-+0. 
X,Y 

It follows that IIR.II-+0 for 6-+0. We now obtain from (6.17) and (6.18) that 

(6.19) 

From the conditions of the theorem it is evident that we may replace M by 
M -b, where b is sufficiently small. But then it follows from (6.19), that for 
sufficiently small 6> 0 

Put Al = A,. Since the symbol of the convolution operator with X, is 
i.(60 ES-OO(IR" x IR"), it is evident that A-AJECOO(IR"). It is also easily 
verified, that the kernel KA , of A J has compact support. 0 
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Theorem 6.4. Let A E L~. o (IR") , 0 ~ fJ < (! ~ 1, let the kernel KA have 
compact support and 

(6.20) 
x 

Then A extends to a compact operator in L2(IR"). 

Proof By Theorem 6.3 there exists a decomposition A = A. + R. for 
arbitrarye > 0, where II A. II < e and R. has a smooth compactly supported kernel 
(and is thus compact). Therefore lim II A - R. II = 0 and the compactness of A 
follows. 0 .~o 

Corollary 6.1. Let A E L~. 0 (JR"), 0 ~ fJ < (! ~ 1, m < 0 and KA have compact 
support. Then A extends to a compact operator on L2 (JRn). 

6.4 The case of operators on a manifold. Consider first the case of a closed 
manifold M (a compact manifold without boundary). Using a partition of unity 
on M, it is easy to introduce a measure, having a smooth positive density with 
respect to the Lebesgue measure in any local coordinates. If df1 is any such 
measure, the Hilbert space L2 (M, df1) is defined. Note, that the elements and the 
topology in L2 (M, df1) do not depend on the choice of df1. It is therefore 
meaningful to talk about the space L2 (M) as a topological vector space in which 
the topology can be defined using some non-uniquely defined Hilbert scalar 
product. Theorems 6.1 and 6.4 obviously imply 

Theorem 6.5. Let M be a closed manifold, A E L~, oeM), 1 - (! ~ fJ < (!. Then 

1) operator A extends to a linear continuous operator 

2) if the principal symbol O"A(X,~) ESg.fJ(T*M)/Se~:Q+l(T*M) satisfies 
condition (6.20) (it is the same for all representatives of an equivalence class in 
S~.o(T*M)/s;,le+l(T*M», then the operator so obtained is a compact 
operator L2(M) ----+ L2(M). 

Corollary 6.2. If A E L~. 0 (M), 1 - (! ~ fJ < (! and m < 0, then A extends to a 
compact operator 

We now formulate a version of the boundedness theorem, adequate for non
compact M. For this we introduce the spaces LToc(M) and L~omp(M). 

Let f be a complex-valued function on M, defined everywhere except, 
perhaps on a set of measure O. 

In the sequel, we consider functions J; and h. as equivalent if they coincide 
outside some set of measure O. Indeed, the elements of the spaces L~omp(M) and 
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Moc(M) are not functions but equivalence classes, although we will write 
f E LToc(M) for a function f, by abuse of language. 

We will write thatfE Moc(M) iffor an arbitrary diffeomorphism x: X ---+ Xl of 
an open set X c JR." into an open set Xl c M and an arbitrary open subset X 0 c X, 
such that Xo is compact in X, we have [x* (f I x)] I Xo E L2 (X 0, dx), where dx is the 
Lebesgue measure on Xo induced by the Lebesgue measure on JR.". The topology 
of Moc(M) is given by a family of seminorms 

1If11 x. Xo = II [x* (fl x)] I x.ll L'(Xo• dx)' 

If M has a countable basis, then Lfoc(M) is a Frechet space (a complete 
metrizable and locally convex space or, what is the same thing, a complete 
countably normed space). 

Further, we will denote by L~omp(M) the linear subset of Lfoc(M), consisting 
of those elementsfE LToc(M) for which suppf is compact in M. Given x: X ---+ Xl 
and Xo c X as described above, define the inclusion 

ix. xo: L2 (Xo, dx) ---+ L~omp(M), 

mapping a functionfo E L2(XO' dx) into the functionJ(y) on M, equal to f(x) at 
the point x (x) of M and to 0 at y E M\ x (Xo). The topology of L~omp(M) is 
defined as the inductive topology, i.e. the strongest locally convex topology for 
which all the inclusions ix x are continuous. From this it follows that the linear 
operator A: L~omp(M) ---+ E, E any locally convex space, is continuous if and only 
if all the compositions A 0 ix. Xo are continuous. This circumstance being taken 
into account, we clearly get the following 

Theorem 6.6. If A E L~.,j(M), where 1 - () ~ (j < (), then A extends to a linear 
continuous operator 

A: L~omp(M) ---+ Lfoc(M) . 

Exercise 6.1. Prove that if A EL~.,j(M), 1 - () ~ (j < (), and if A is properly 
supported, then it extends to a linear continuous operator 

A: L~omp(M) ---+ L~mp(M) 

and also to a linear continuous operator 

§7. The Sobolev Spaces 

7.1 Definition of the Sobolev spaces 

Lemma 7.1. Let M be an arbitrary manifold. Then for any real s there 
exists on M a properly supported, classical elliptic 'PDO A., of order s with 
positive principal symbol (for I; =1= 0). 
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Proof To begin with let M = X, a domain in JR". Then we may take as As an 
arbitrary properly supported '1'00 As E CLS(X) with principal symbol I ~ IS. Next 

let M be arbitrary and let there be given a covering of M by charts M = U Xi. 
Y 

We will denote by xY any coordinate diffeomorphism xY: XY ---+ Xi , where XY is 
an open set in JR". We construct on XY operators AL having the required 
properties and transport these to Xi by the standard procedure (cf. §4) using the 
diffeomorphisms x Y, producing a properly supported,ciassical 'l'DOA~.l on Xi 
with positive principal symbol. The operator As on M can be glued together from 
the operators AI, 1 by the process used to construct B from BY in the proof of 
theorem 5.1. 0 

Definition 7.1. We write uEHI'oc(M), if uE~'(M) and AsuELroc(M). 
Further set H~mp(M) = H,~JM) i\ S' (M). (Concerning ~' (M) and Iff' (M), see 
Exercise 4.1.) If M is a closed manifold, we denote HI~c(M) = H~mp(M) simply 
by HS(M). 

If K is a compact in M, we denote by H'(K) the set of all u E H~omp(M) 
for which supp u c K. 

There is a well-defined topology in the spaces Hi~c(M), H~~mp(M) and 
H' (K), but for the time being only the set of elements in these spaces is es
sential to us. 

Below we will show that these spaces do not depend on the choice of the 
operator As. 

7.2 The action of 'PDO on Sobolev spaces. The precise regularity theorem. 

Theorem 7.1. If A EL~,b(M), 1 - (! ~ b < (!, or b < (! and M = X, an open set 
in JR", then A defines a map H~omp(M) ---+ m;;;m(M). If A, in addition, is properly 
supported, then A defines maps 

A: H~omp(M) ---+ H~o~;(M), 

A: HI~c(M)---+Ht;;m(M). 

Proof Without loss of generality, we may assume that the operator A ~ s is a 
parametrix of As for arbitrary s E JR, i. e. 

lL.1 0 A., = I + R." (7.1) 

where Rs is a properly supported operator with smooth kernel and therefore 
transforming S'(M) into C;{'(M) and ~'(M) into COO(M). 

If uEH~omp(M), then, setting Asu = uo, we will obtain from (7.1), that 
U = A~suo + v, where Uo E L~mp(M), v E C;{'(M). Therefore 
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and in view of the fact that As-mAA-s E L~.b(M), we obtain from Theorem 6.6, 
that As-mAA-sUoELroc(M), AsAvEC<Xl(M), from which As-mAuELroc(M), 
i.e. Au EHt",;;m(M). Thereby we have proved the first assertion of Theorem 7.1. 
The remaining ones follow from this one or are shown similarly. 0 

We are now in a position to give a definition of Sobolev spaces, not 
depending on the choice of As. It clearly suffices to define HI'oc(M). 

Definition 7.1'. We will write U E HI~c(M), if U E 22'(M) and Au E L~c(M) for 
any properly supported A EL~,o(M). 

The equivalence of Definitions 7.1 and 7.1' follows in an obvious manner 
from Theorem 7.1. 

Theorem 7.2. Let A EHL~:;o(M), where 1 - (! ~ (j < (2, or (j < (2 and M = X, 
an open set in 1R". Then, ifuE22'(M) and AUEHI~c(M) we have uEHI~~mo(M). 

Proof Let B be a parametrix for A, B EHL;,~o. -m(M). Then, by 
Theorem 7.1 we have BAu EHI~mo(M). But BAu = u + v, where v E COO(M) so 
u E HI~~ mo(M). [J 

Corollary 7.1. a) If A is elliptic of order m, u E Iff' (M) and Au E HI~c(M), then 
u EH~o~;(M). 

b) If A is properly supported (in particular if A is a differential operator) and 
elliptic of order m, uE22'(M) and AUEHI~c(M), then uEHI~~m(M). 

7.3 Localization. Theorem 7.1 clearly implies that if uEHI~c(M) and 
a(x) E COO (M), then au EHI~c(M). 

If, in particular, a (x) E C~ (M), then au E H:"mp(M). The following is a 
precise version of the converse. 

Proposition 7.1. Let the distribution u E 22' (M) be such that for any point 
Xo EM one can find a function CPxo E C~(M), such that CPxo(xo) '*' 0 and 
cP Xo U E H~omp(M). Then u E HI~c(M). 

Proof We may select from the functions CPxo a system of functions {cpy}, such 
that some neighbourhoods of supp CPy form a locally finite covering of M and for 
any point Xo EM one can find y such that CPy (xo) '*' O. Put now 

cpy . CPy 
I/fy = L Icpy l2 • 

y 

Then obviously I/fy has the same properties as CPy and, in addition, I/fy ;:;; 0 and 
L I/fy == 1. We now have 
y 

because, by the fact that As is properly supported, the sum LAs (I/f y u) is locally 
finite. 0 y 
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Corollary 7.2. Let M = U Xy be an open covering of M, u E~' (M). Then the 
y 

condition U E H,'oc(M) is equivalent to u I x E H,'oc(Xy) for any y. , 

Proposition 7.1 shows that it is essentially sufficient to study H' (K) for K 
compact in IRn. 

7.4 The space H' (IRn). 

Definition 7.2. Let sEIR, UES'(IRn). We will write uEHs(IRn), if 
u(~) E L~(IRn) and 

(this also serves as a definition of the norm II . lis). 

Exercise. Show the completeness of HS(IRn) (with the norm II' lis). 
The following Hilbert scalar product can be introduced in HS(IRn) 

(7.2) 

(7.3) 

and the map (D)", mapping U E S'(IRn) into F- i (H\u(~) (F is the Fourier 
transformation), provides an isometric isomorphism 

(7.4) 

Lemma 7.2. Let K be compact in IRn. Then 

HS(K) = Iff' (K) 1\ HS(IRn) (7.5) 

Iff' (K) denotes the set of all U E Iff' (JRn), such that supp U c K). 

Proof 1. Since <D)S E L~ 0 (JRn) and is elliptic, then by Corollary 7.1 
it is clear that U E Iff' (K) . and <D)Su E L2 (IRn) implies U E HS(K), i. e. 
Iff' (K) 1\ HS(IRn) c HS(K). 

2. Now let U E HS(K). We must verify that <D)Su E L2(IRn) ifit is known that 
<D)Su E L~(IRn). Indeed, a stronger result is valid: if cp (x) E Cg' (IRn), cp = 1 in a 
neighbourhood of K, then (l-cp) <D)sUES(IRn). Let us prove this. 

Let IJI E Cg' (IRn) be such that cp = 1 in a neighbourhood of supp IJI (in 
particular (1- cp) IJI == 0) and moreover IJI = 1 in a neighbourhood of K. 
Then IJIU=U and (l-cp)<D)'u = (l-cp)<D)'lJIu. Let us study the operator 
(l-cp)<D)'IJI. Clearly its kernel K(x,y) belongs to C'''(IRnx IRn). It suffices 
to verify that K(x,y) ES(JRnx IRn). But K(x,y) is given by an oscillatory 
integral: 
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which can be rewritten as 

since Ix - yl ~ e > 0 for x Esupp(l-q»,Y ESUpPljl. For 2N> s + n we obtain a 
convergent integral, which can be estimated by C(l + Ixl + lyl)-2N. The 
derivatives of the kernel K(x, y) are estimated in a similar way. D 

Noting that HS(K) is a closed subspace of HS(JRn), we see that the scalar 
product (u, v)s induces a Hilbert space structure on HS(K). 

Lemma 7.3. Let k be a compact set in JRn such that K c Int k. Then for 
u E HS (K), there exists a sequence un E Co'X) (JRn), supp un c k, such that 
II Un - ulls-+O for n-+ + 00. 

Proof Let q>(X)ECO'(JRn), Jq>(x)dx = 1 and q>,(x) = e-nq> (X/e). We put 

u,(x) = (q>, * u) (x) = (u (y), q>.(x- y», e> o. 

It is clear that u, (x) E CD (JRn) so let us prove that lim II u, - u lis = O. Since 
,->0+ 

cjJ,(O = cjJ(e~) and cjJ(O) = 1, the question reduces to establishing the relation 

which is evident from the dominated convergence theorem. D 

7.5 Topology in the Sobolev spaces on a manifold. Let M = U Xi be a locally 
y 

finite covering of a manifold M by relatively compact coordinate neighbour-
hoods Xr, x Y : X Y --+ Xr the coordinate diffeomorphisms (XY an open set in 
JR") and cpY a partition of unity on M subordinate to {Xn. Let K be a compact 
set in M. Introduce a scalar product in H" (K), setting 

(u,v)s= L«xY)*(q>Y u), (xY)*(q>Yv»s' u, vEHS(K). (7.6) 

Proposition 7.2. The scalar product (7.6) induces a Hilbert space structure on 
HS(K). 

Proof Clearly we only need to verify the completeness of H" (K) in the 
norm II . 11." defined by the scalar product (7.6). Let the sequence {u m}m=1.2 .... 
of elements in H' (K) be a Cauchy sequence with respect to II . 11.,. Then 

(7.7) 

in the HS(JRn) norm (here xi =(Xy)-l). We may take vY= (xD*vi, thus 
vi = (xY)*vY. Then vYEHS(suppq>Y) and we put u = LVY (which is obviously a 
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finite sum). It is clear that U E H'(K) since vY E H'(K). It remains to prove 
that lim lIu rn - ull., = O. This means in view of(7.6), that 

rn-+oo 

rn-+oo 

for any y. But it is evident from (7.7) that it suffices to verify vY = cpY u, which 
is clear since Urn --+ U in §Y;'(M), hence cpYu rn --+ cpYu in !YJ'(M), and (7.7) 
implies cpY un --+ vY inM'(M) (convergence in M'(M) in the weak sense). 

D 

We now want to prove that the topology, induced on HS(K) by the norm 
II' lis, is independent of the choice of arbitrary elements in (7.6) (the covering, the 
partition of unity and the coordinate diffeomorphisms). For this it is 
appropriate to give another definition of this topology. 

Let As be as in Lemma 7.1 so that A -s is a parametrix for As (relation (7.1) is 
satisfied). Then we have 

(7.8) 

Let p > S be a positive integer and Q 1, ... , QN differential operators, generating 
the left COO (M)-module of all differential operators of order not greater than p 
on M. We then set 

N 

(u, v); = (Asu, Asv) + L (QkRs u, QkRsV) , (7.9) 
k=l 

where u, v E HS(K), (', .) the scalar product in L;omp(M) induced by any smooth 
positive density on M. From (u, u); = 0 it follows that Asu = 0 and Rsu = 0 and 
then, in view of (7.8), we have u = O. Therefore the scalar product (7.9) is 
well defined and we will denote the corresponding Hilbert norm by II . II". 

Proposition 7.2', The scalar product (7.9) induces a Hilbert space structure on 
HS(K). 

Proof Once again, we need only verify the completeness. For the begin
ning note, that from the convergence of a sequence Urn E H' (K) with respect 
to the norm II . II; the weak convergence in §Y;'(M) follows. If a sequence 
U m E H" (K) is a Cauchy sequence 'Yith respect to 11 . 11;, then this means, that 
the following limits exist in the L2(K)-topology (K some compact set in M) 

lim A.,um = v, lim QR,um = wQ, (7.10) 
m.....:,.oo m~oo 

where Q is any differential operator of order;;; p. In particular A.,um and 
R,um converge in the topology of Lfoc(M), so that weak convergence of Um in 
9!J'(M) results from (7.8). Denoting the limit of U m (in the weak topology of 
M'(M») by u, we obviously have 
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(7.11 ) 

where WI = lim R.,.u m • If as Q in (7.l0) we take an elliptic operator of order 
m_oo 

p, we have 

from which WI E HI~cSM), therefore WI E Hi~c(M), but then WI E HI~c(K) 
for some compact set K since the operators A.,. and R." are properly supported. 
Therefore U E H'(K). 

It remains to verify that 

lim lIum - ulI;. = o. 
m_oo 

We have 

hence 

Um - U = Um - A_.I·v + WI = A_.,A"um - R.,um - A_.lv + WI 

= A_.,(A",um - v) - (Rsu m - WI), 

N 

lIum - ulI;. ~ IIA.,.A_"(A,,Um - v) II + L II Qk R.I·A_.I·(A",u m - v) II 
k=1 

N 

+ IIAs(R.,.um - wI)1I + L II QkR,(R"um - wdll (7.12) 
k=1 

(here the nonn II . II is induced by the same scalar product (', .) as in fonnula 
(7.9». 

The convergence to 0 of the first, second and last tenns in (7.12) follows 
from the boundedness of the operators A"A_." QkR,A_I· and QkR." as opera
tors from L2(K) into L 2CK), and in the case of the third tenn from the fol
lowing argument. Take an elliptic differential operator Q of order p and its 
properly supported parametrix QI. Then 

A.,(R"um - WI) = AsQI Q(Rsum - WI) + A"R(R",um - wd, 
where R EL - 00. The desired result now follows from the fact that AsQl is a 
properly supported PD~ of order s - p ~ 0 continuously mapping L2(K) into 
L2 (K). 0 

There also exists a third way to introduce a topology on HS(K), via the 
seminorms 

(7.13) 

Proposition 7.3. The three topologies introduced on HS(K) above (i.e. via 
II' lis, 11'11; and the seminorms (7.13» coincide. 
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Proof The equivalence of the topologies determined by the norms 11·11., and 
II . II~ is clear from the closed graph theorem. The topology given by the 
seminorms (7.13) is obviously stronger than the one given by the norm II· II;, 
since the latter can be estimated by a sum of N + 1 semi norms of the type (7.13), 
where the corresponding operator A is equal to As and QkRs. To verify the 
equivalence of the two topologies, it therefore sufficies to establish that if 
A E Lt 0 (M) and K, K are compact in M, then the following estimate holds 

u EHS(K). (7.14) 

Now, writing u in the form (7.8) we obtain 

Au = (AA-s)Asu - ARsu, 

and, since AA_sEL?o(M), ARsECOO(M), (7.14) follows from Theorem 
6.6. 0 

Corollary 7.3. The topology defined in HS(K) by the norms II . lis and II . II~, 
does not depend on arbitrary elements entering the definition of these norms. 

Proposition 7.4. Let K be a compact set in M, such that K c Int k. Then if 
uEHS(K), there is a sequence <PnEC(f(K), such that <Pn-+U as n-++oo in the 
topology of HS(K). 

Proof Follows from Lemma 7.3 taking into account the definition of the 
norm II· lis· 0 

Proposition 7.5. Let K be a compact set in M and let A EL;.b(M), where 
either 1 - (! ~ <5 < (! or <5 < (! and M = X an open set in JRn. Then, provided A is 
properly supported, it defines a linear continuous operator 

where K is a compact set in M depending on K. Without assuming that A is properly 
supported, the same holds for the operator <pA, <P E C(f (M). 

Proof It is most convenient to use the norm II· II~. Then, to verify the 
continuity of A acting from HS(K) into HS-m(K), we have to estimate IIAs-mAu II 
and IIQRs-mAull by CIlAsull and CIIQ'Rsull (here Q and Q' are differential 
operators). But from (7.8) we have 

from which 

Au r= (AA -s) (Asu) - ARsu, 

As-mAu = (As-mAA-s) (Asu) - (As-mARs) u, 

QRs_mAu = QRs-mA-sAsu - QRs-mRsu, 

and the required estimate follows from Theorems 6.1 and 6.6, if we take into 
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consideration that As-mAA-sEL~.o(M) and that the operators As-mAR., 
QRs-mA- s and QRs- m belong to L-OO(M). D 

We now introduce topologies in H,"oc(M) and H:omp(M). 
The topology of H,"oc(M) is defined as the weakest locally convex topo

logy making all the mappings M'fJ: H,"oc(M) --+ HS(suppcp), cp E C; (M) and 
M'fJu = cpu, continuous. In other words, this topology is given by the system 
of seminorms 

cp E Cooo (M) . (7.15) 

The topology on H:omp(M) is defined as the strongest locally convex 
topology, making all the embeddings iK : HS(K) --+ H:omp(M) continuous. The 
most important characteristic of this topology (called the inductive topology) is 
that a linear map f: H:.omp(M) --+ E to any locally convex space E is continuous if 
and only if all the compositions f 0 iK : HS(K) --+ E are continuous. 

These definitions and Proposition 7.5 imply the following 

Theorem 7.3. Let A EL;.o(M) with either 1 - Q ~ J < Q or J < Q and M = X, 
an open set in JR". Then A is a linear continuous operator for any s EJR 

If A is properly supported it extends to linear continuous operators 

and 

7.6 Embedding theorems. First, note the completely trivial (and already 
used) fact, that for s> Sf, we have the embed dings 

HS(K) c HS' (K), 

which are continuous. Less trivial is the following 

Theorem 7.4. Let s> Sf and K a compact set in M. Then the embedding 
operator 

is a compact operator. 

Proof By the equality (7.8), we obtain 



§7. The Sobolev Spaces 61 

As'u = (As,A-s) (Asu) - (As,Rs)u 

= (A"A -s) (Asu) - (As,A -s) (AsRsu) + (As,R.) (Rsu). 

Since As,A_sEL~,(~-s')(M) (hence from Corollary 6.1 for any compact set K J 

one can find a compact set K 2 , such that As' A _ s is a compact operator from 
L2 (K J) to L2 (K2» it is clear that ifu runs through a bounded set in HS(K) (and, 
consequently Asu and Rsu run through a bounded set in L 2 (KJ» then As' u runs 
through a precompact set in L 2(K2). Similarly one shows that in this case 
QR"fU runs through a precompact set in L 2(K2) for any differential operator 
Q, But this, in view of the equality (7.8) and the definition of the norm, implies 
the compactness ofthe corresponding set in Hs' (K2), hence in HS' (K), since, 
actually, it belongs to H" (K) and the topology in Hs' (K) is induced by the 
one in H" (K2) provided K C K 2. 0 

A generalization of Theorem 7.4 is 

Theorem 7.5. Let A EL;,J(M), A properly supported, either 1 -11 ~ () < 11 
or () < 11 and M = X, an open set in JR". Let the numbers s, Sf E IR. be such that Sf < s 
- m. Let K be a compact set in M and I: a compact set in M (depending on K) such 
that A Sf (K) C Sf (1:). Then the operator 

A: HS(K) -+ HS' (I:) 

is compact. 

Proof Theorem 7.5 is a consequence of Proposition 7.5 and Theorem 7.4, since 
the operator A: HS(K) -+ HS' (I:) can be viewed as a composition 

HS(K) _ HS-m(l:) ~ HS' (1:). [] 
A l,-m 

Denote by CP(M) the space offunctions on M having continuous derivatives 
of order ~p in any local coordinates. The topology in CP(M) is defined by the 
seminorms 

lIuIlA.K= supIAu(x)l, (7.16) 
XEK 

where A is any differential operator of order ~p. We denote by C8(K) the 
subspace of the functions u E CP(M) with supp u c K. It is clear that the topology 
of CP(M) induces a topology on C8(K), which can be given by a Banach norm. 

Theorem 7.6. If s > nl2 + p, then HI~c(M) c CP(M) is a continuous em
bedding. If K is a compact set in M, then the embedding HS(K) c q(K) is a 
compact operator under the same assumption s > nl2 + p. 

Proof Since differential operators of order p are continuous maps 
HS(K) -+ HS- P(K), it is obvious that it suffices to consider the case p = O. 
Further, it suffices to verify that for s > n12, we have a continuous embedding 
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HS(K) c Cg(K), since the compactness of this embedding is obtained by writing 
it as a composition 

(i: > 0 such that s - i: > n12) and using Theorem 7.4. Finally, it is clear that it 
suffices to consider the case of K lying inside a chart, i. e. the question reduces to 
the case M = IRn. 

Thus, let K be a compact set in IRn and s > n12. It follows from Lemma 7.3, 
that it suffices to prove the estimate 

sup lu(x)1 ~ Cllull s ' uECcf(K), (7.17) 
xelR." 

where C does not depend on u. We will prove this estimate with C even inde
pendent of K. We have 

lu(x)1 = IS eix · ~ u(~) d~ I ~ S lu(~) I d~ = S I u(~) I <Os<O -sd~ 
~ U lu(~) 12 <02s d~F/2 U <0 -2s dn1/2 = C lIulls' 

where C = (S <0 -2s d~)1/2 < + CX), as required. 0 

Corollary 7.4. nHI~c(M) = C"(M). 
s 

This corollary is obvious. Let us also note the dual fact: U HS(K) = tt'(K) 
S 

for any compact set K eM. This fact follows from the well-known statement of 
distribution theory, that if u E tt' (K), then u can be written as u = L QjVj' 

15.j5.N 

where Vj E L2 (K), K is compact and Qj are differential operators. If m is the 
greatest order of the Qj' then u E H-rn(K). 

7.7. Duality. Let there be given a smooth positive density dp on M. This 
defines a bilinear form 

<u,V) = Su(x) V (x) dp(x) , (7.18) 

for instance, if u E Ccf (M) and v E COO (M). 

Theorem 7.7. The bilinear form (7.18) extends for any s E IR to a pairing 
(separately continuous bilinear mapping) 

(7.19) 

which we will denote as before by < ., .). The spaces H~mp and HI~c are dual to each 
other with respect to this pairing, i. e. any continuous linear functional I (u) on 
H~omp(M) can be written in the form <u,v) for some vEHI~cS(M), and any 
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continuous linear functional I(v) on H(-;"'S(M) can be written as <u, v), where 
u E H~mp(M). If the manifold M is closed, then the transformation which attaches 
to any v EH-S(M) the linear functional Iv(u) = <u, v) is an invertible linear 
continuous operator from H-S(M) into (HS(M»* (where the latter space is 
endowed with the natural Banach space topology). 

Proof 1. First let us verify that the fonn (7.18) extends to the pairing (7.19). 
Note that the operator A." appearing in the definition of the Sobolev space 
can be chosen symmetric with respect to the given density, i.e. such that 
<Asu, v) = <u, Asv) for arbitrary u, v E C~(M). Indeed, we may replace As by 
1/2 (As + lAs)' without changing the principal symbol. Further, we may suppose 
that Ao = I and A-s is a parametrix of As (this can be achieved, if initially we 
construct all the An S ~ 0, as symmetric operators, and then consider their 
parametrices A~s and take for A_.I the symmetrization of A~.,,: 

From the definition of the topology on H~omp(M) it follows, that it suffices to 
extend (7.18) to a pairing 

HS(K) x H(-;"'S(M) --+ <C (7.20) 

where K is any compact set in M. Clearly this is possible for s = O. For s =f: 0, we 
take u E C~(K), v E COO(M) and write u in the form (7.8). Then 

from which the extendability of <. , .) to the pairing (7.20) follows since As and 
A-s are continuous linear mappings 

2. Now let I ( . ) be a linear continuous functional on Hl~cS(M). We will show 
that it can be written in the form I(v) = <u,v), with uEH:Omp(M). First of all, 
since COO(M) c H(~cS(M) is a continuous embedding, the restriction of I(v) to 
COO(M) can be written in the form <u, v), u E S'(K) for some compact Kin M. 
The distribution u is thereby uniquely defined and it only remains to verify that 
uEHS(K), i.e. AsuEL2 (K). 

But 

<Asu, v) = <u, Asv) = I(Asv), 

and therefore the desired statement can be derived from the fact that As is a 
continuous mapping L~c(M) --+ H(~cS(M) and also from the Riesz theorem, 
which guarantees the assertion for s = O. 
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Similarly one shows the representability of the functional I ( . ) on H~omp(M) 
in the form I(u) = (u,v), where vEH,-:x,S(M). 

3. Now let M be a closed manifold and let us verify that the map v -+ Iv (') 

= (', v) is a topological isomorphism between H-S(M) and (HS(M»*. 
Obviously this is true for s = 0 by the Riesz theorem. Consider the case of an 
arbitrary s E IR. Since the bijectivity of the map v -+ Iv ( .) has already been 
established in 2., it suffices to verify its continuity. But this follows at once from 
(7.21). 0 

7.8 Exercises and problems 

Exercise 7.1. Verify that c5 (x) E HS(IR") for s < - n12. 

Exercise 7.2. Show that the embedding operator HS(IR") c Hs' (IR") is not 
compact for any s, s'(s>s'). 

Exercise 7.3. Let lfn = IR" 12rr lL" be the n-dimensional torus (lL" is the 
lattice of points with integer coordinates in IR"). If f E COO(lf") (= CO'(lf"»), 
then f decomposes into a Fourier series 

f(x) = L h.e ik ' x , (7.22) 
kEZ" 

where h. are the Fourier coefficients, given by the formula 

h. = (21lr" J f(x) e- ik ' x dx. (7.23) 
11'" 

The same formula also applies to fE.@' (lfn) (= @'''(If")), if as the integral in 
(7.23) we take the value of the functionalf at the function e- ik ' x (in this case the 
series (7.22) converges in the weak topology of .@'(If")). 

Show that if f E.@' (If"), then the condition f E HS(lf") is equivalent to 

L 1h.12(1+lkI2)s<+OO, (7.24) 
kEZ" 

where the left-hand side of (7.24) defines the square of a norm in HS(lfn), 
equivalent to any of the previous norms. 

Exercise 7.4. Show that if A satisfies the conditions of Theorem 6.4, then A: 
HS(K) -+ HS(K) is a compact operator for any s E IR. 

Exercise 7.5. Show that the spaces HS(IRn) and H-s(IRn) are dual to each 
other with respect to the bilinear form (f, g) = Jf(x) g (x) dx. 

Problem 7.1. Verify that if N is a submanifold of M of codimension d, then 
the restriction map f -+ fiN (defined a priori for f E COO (M» extends for s > dl2 
to a linear continuous map 
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Problem 7.2. Show that the map defined in Problem 7.1 is surjective. 

§8. The Fredholm Property, Index and Spectrum 

8.1 The basic properties of Fredholm operators 

Definition 8.1. Let EI and E2 be Banach spaces and A: EI -+ E2 a linear 
continuous operator. It is said to be Fredholm if dim Ker A < + 00 and dim 
Coker A < + 00 (recall that Ker A = {x EEl: Ax = O}, Coker A = E2/lm A, 
where 1m A = AEI and the quotient space is meant in the algebraic sense, i. e. 
regardless of a topology). The index of a Fredholm operator is the number 

index A = dim Ker A - dim Coker A . (8.1) 

We will denote by ff (EI' E2) the set of all linear continuous operators A: 
EI -+ E2 and the set of all Fredholm operators A E ff (EI' E2) will be denoted by 
Fred (EI' E2)' 

Lemma 8.1. Let A E ff (EI ,E2) and let dim Coker A < + 00. Then 1m A is a 
closed subspace in E2 . 

Proof Clearly, Ker A is a closed subspace of EI and therefore the quotient 
space EI/Ker A has a natural Banach space structure. The operator A induces a 
continuous map A I: EdKer A -+ E2 with 1m A I = 1m A and Ker A I = O. Now 
let C denote any finite-dimensional subspace of E2 for which E2 = 1m A EB C 
(direct sum in the algebraic sense). Define the operator 

(8.2) 

mapping a pair {x, c} into A I X + c E E 2 • Obviously A is bijective and 
continuous, if the space on the left hand side is considered as a Banach direct sum 
(e. g. with the norm II {x, c} \I = II x II + II c II, wher~ II c \I is defined by any norm on 
C). By the Banach inverse operator theor:em, A is a topological isomorphism 
implying that 1m A is closed in E2 since A -1 (1m A) = E J/Ker A E9 0 is closed 
in EJ/Ker A E9 C. 0 

Corollary 8.1. If dim Coker A < + 00 and LI is a closed subspace in EI such 
that EI = LI EB Ker A, then A defines a topological isomorphism A: LI -+ 1m A. 

Note that in the case A E Fred (EI' E2) there always exists a subspace LI of 
this type, since by the Hahn-Banach theorem, we may extend the identity map 
Ker A -+ Ker A to a continuous linear operator PI: EI -+ Ker A and then put LI 
= Ker PI' 
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Corollary 8.2. If A Eff (E1' E2 ) and dim Coker A < + 00, then dim Coker A 
= dim Ker A *, where A * is the adjoint operator A *: E{ -t Ei . 

Proof It is known (and trivial) that 

KerA*= {fEE!: (f,lmA)=O}. 

From the closedness of 1m A and the Hahn-Banach theorem it follows that 

ImA = {xEE2 :(KerA*,x)=O}, 

implying the desired formula. 0 

Lemma 8.2. Let E be a Banach space and let T E ff (E, E) be of finite rank, i. e. 
dim 1m T < + 00. Then the operator 1+ T is Fredholm and index(I+ T) = O. 

Proof It is easily seen that there exists a decomposition E = Lo EB L1 , 
where Lo is a closed subspace, Lo c Ker T, L1 :::J 1m T, dim L1 < + 00. Then 
(I + T) I Lo = I I Lo' (I + T) L1 c L 1, because TL1 c 1m Tc L 1· Therefore Lo and 
L1 are invariant subspaces for (I + T) with 1m (I + T) :::J Lo, Ker (I + T) C L1 . 
Therefore 1+ T is Fredholm and index (I + T) equals the index of (I + T), viewed 
as an operator from L1 into L 1, which means that the whole matter reduces to a 
trivial statement from linear algebra. 0 

Lemma 8.3. If A E Fred (E 1, £2), then there exists an operator B E 
Fred (£2, £1) such that 

BA = I - P1 , AB = 1- P2 (8.3) 

where P1 is a projection onto Ker A and (I - Pz) a projection onto 1m A (so that 
P1 and Pz are of finite rank). 

Proof Let L1 be a closed complement to Ker A in E1 and L2 any 
complement to 1m A. Define the operator B such that 

From Corollary 8.1 it is clear that BE ff (E2' E 1) and Ker B = L 2 , 1m B = L1 , 
from which the Fredholm property of B follows. The relation (8.3) is 
immediately verified. 0 

(8.4) 

where T1, Tz have finite rank. Then A is Fredholm. 
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Proof The statement follows from the obvious inclusions 

Ker A c Ker(BIA) = Ker(I+ TI), 

1m A :::dm (AB2) = 1m (I + T2) 

and from Lemma 8.2. 0 
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Lemma 8.5. Let A EFred(EI ,E2), BEFred(E2,E3)' Then BA EFred(EI ,E3) 
and 

index BA = index A + index B (8.5) 

Proof We show first of all, that there exist closed subspaces Lj C Ej , 
j=1, 2, 3, such that KerAIL,=O, AL1 =L2, KerBIL2=0, BL2 =L3, 
where codim Lj < + 00, j = 1, 2, 3. (The codimension of a subspace L of E is 
co dim L=dim(E/L). Here, in particular we have codim Lj=dim(E)L), 
j= 1,2, 3.) Indeed, if L~ is a closed complement of Ker A in E I , L; a closed 
complement of Ker B in E2 , we may put 

Let us now note the following fact: Let L I , L2 be closed subspaces in E I , E2 
respectively, A E Fred (EI' E2), Ker A I L = ° and ALI = L 2. Then, denoting by 
A: EdLl--+E2/L2 the map induced by A, we have AEFred(EdLI' E2/L2) 
and index A = index A. Therefore, using the above constructed subspaces 
Ljc Ej reduces the proof of (8.5) to the case dimEj < + 00, j = 1, 2, 3, which 
is evident, since if AE5£(EI ,E2) and dimEj<+oo, j=1, 2, then 
index A = dimE I - dimE2 . 0 

Proposition 8.1. Fred (E1, E2 ) is an open subset of 5£ (EI' E2) (in the uniform 
operator topology, i. e. the topology defined by the operator norm) and thefunction 

index: Fred (EI' E2) --+ 7l. 

is continuous 0. e. constant on each connected component of Fred (E1, E2»' In 
particular, if At is a continuous (in the norm) operator-valuedfunction, oft E [0, 1], 
with values in Fred (E1' E 2 ) then index Ao = index A I . 

Proof Let A E Fred (EI' E2)' We have to prove the existence of e > ° 
such that if DE 5£ (EI' E 2 ) and liD II < e then A + D E Fred (EI ,E2) and 
index (A + D) = index A. 

Let BE5£(E2,EI) be an operator such that 

BA = 1+ T{ , AB = I + T~ (8.6) 

with T{, T~ of finite rank (which is always possible by Lemma 8.3). We will verify 
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that one may takee = IIBII-'. Indeed, let liD II < e. We have B(A+D) = 1+ BD 
+ T; and if we put B, = (I+BD)-' B, then B, (A+D) = 1+ T" where T, is of 
finite rank. Note that index B = index B,. Analogously, there is an operator B2 
such that (A + D)B2 = 1+ T2, with T2 of finite rank. By Lemma 8.4, the operator 
A + D is Fredholm and by Lemmas 8.5 and 8.2 we have 

index(A+D) = -indexB, = -indexB = indexA. 0 

In what follows we will denote by C (E" E2 ) the set of all compact linear 
operators from E, into E2 . 

Lemma 8.6. Let E be a Banach space and let R e C (E, E). Then 
1+ R eFred(E, E) and index(/+R) = o. 

Proof Since I I Ker(I+R) = - R I Ker(l+R)' the unit ball in Ker (I + R) is compact 
and therefore dim Ker (/ + R) < + 00. Further, since R* is also 
compact, dim Ker (I + R)* < + 00 and to show the Fredholm property of (/ + R) 
it only remains to verify the closedness of 1m (I + R) (since then dim Coker 
(/ + R) = dim Ker (/ + R)*). 

Let xn eE, n = 1,2, ... , andYn = (/+R)xn~ yas n~ + 00. We need to verify 
the existence of an xeE, such that (I+R)x = y. Let L be any closed subspace 
complementary to Ker (/ + R) in E. Adding to Xn vectors from Ker (/ + R) (which 
does not change Yn), we may assume that Xn e L for all n. 

Let us show that the sequence Xn is bounded. Indeed, if this is not 
the case, taking a subsequence of {xn}, we may assume that II Xn II ~ + 00 as 
n~ +00. But then, putting x~ = xn/llxnll, y~ = (/+R)x~ we have y~~O as 
n ~ + 00, and since IIx~1I = 1 we may assume that lim Rx~ exists. But then 

n-+ + 00 

also lim x~ = -limRx~ = x and clearly Ilxll = 1, x eL, (I+R)x = 0, contra-
n-+ + 00 n 

dieting the choice of L. 

Thus the sequence {xn} is bounded and we may assume that lim RXn exists 
n-+ + 00 

and, consequently so does lim xn = Y - lim Rxn. Denoting x = lim Xn, 
n-+ + 00 n-+ + 00 n-+ + 00 

we clearly have (1+ R) x = y, proving the closedness of 1m (I + R), i. e. the Fred
holm property of (I + R). By Proposition 8.1, we have index (/ + tR) = const for 
t e [0, 1] implying index (I + R) = Index 1=0. 0 

Proposition 8.2. Let A eft' (E" E2) and let there exist B, and B2 such that 

B,A = 1+ R" AB2 = 1+ R 2, (8.7) 

where RjeC(Ej,E),j= 1,2. Then A eFred (E, , E2). 

Proof It immediately follows from Lemma 8.6 in a similar way to the proof 
of Lemma 8.4. 0 

Proposition 8.3. Let AeFred(E"E2)' ReC(E"E2). Then A+Re 
Fred (E" E2) and index (A + R) = index A. 
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Proof Obvious from Proposition 8.2 and Lemmas 8.5 and 8.6. 0 

8.2 The Fredholm property and the index of elliptic operators on a closed 
manifold 

Theorem 8.1. Let M be a closed manifold and A EHL~::;(M), 1 - e ~ J < e. 
For any s E JR construct the operator As E fE (HS(M), HS -m(M» the extension of 
A by continuity. 

Then, 
a) As EFred (HS(M), Hs-m(M»; 
b) Ker As c Coo(M), therefore Ker As does not depend on s and will be denoted 

simply by Ker A; 
c) index As does not depend on s (so we will denote it simply by index A) and is 

expressed by the formula 

index A = dim Ker A - dim Ker A*, (8.8) 

where A' is the formal adjoint tpDO (cf. § 3) in the sense of a scalar product 
determined by any smooth density. 

d) if D E L~:b(M), where m' < m, then index (A +D) = index A. 

Proof By Theorem 5.1 we may construct a parametrix BEHL;."J,· -m(M) of 
the operator A. In view of Theorem 7.5, the operators R j E L - 00 (M) can be 
extended to operators Rj . sEC (HS(M), HS(M» for arbitrary s E JR. But now, 
the Fredholm property for all the operators As follows from proposition 8.2. 

Further, from Theorem 5.2 statement b) of the theorem follows and since 
A* EHL~::;, we also obtain c). 

Finally, d) follows from Proposition 8.3 since if D E L~:o(M), m' < m, then 
DE C(HS(M), Hs-m(M» by Theorem 7.5. 0 

Remark 8.1. The assertion of this theorem is clearly true not only for scalar 
operators, but also for operators acting on the sections of vector bundles. 

Remark 8.2. For classical elliptic tpDO, d) says that the index depends only 
on the principal symbol. It is easy to deduce from Theorem 6.2 that the index 
does not change with arbitrary continuous deformations of the principal symbol 
within the class of homogenous elliptic symbols. This is important in the index 
theory of elliptic operators. 

8.3 The spectrum (basic facts). Let M be a closed manifold, A E HL~:om(M), 

1 - e ~ J < e, m > O. In the space L2(M) consider the unbounded linear 
operator defined by A by taking as domain the space Hm (M). We will denote this 
unbounded operator by Ao, or sometimes just by A if there can be no confu
sion. So the domain of Ao is DAo = Hm(M). 

Proposition 8.4. The operator Ao is closed, i. e. if for Un E Hm (M), n = 1,2, ... , 
the limits u = lim un and f = lim AUn exist in L2 (M) then u E H m (M) 
and Au=f n~+oo n~+oo 
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Proof Since convergence in L2(M) implies convergence in ~'(M) and 
since A is continuous in ~'(M) (in the sense of, e.g. the weak topology), we 
obtain Au = f, and then u EHm(M) in view of Theorem 7.2. 0 

From the fact that Coo(M) is dense in Hm(M) (in the Hm(M)-topology), we 
have 

Corollary 8.3. The operator Ao is the closure (in L2(M» of the operator 
Alc~(M)' 

Definition 8.2. The spectrum of A is the subset a (A) of the complex plane, 
defined as follows: for A. E ce, A. ~ a (A) is equivalent to (Ao - U) having a 
bounded everywhere defined inverse (A o -..1.I)-1 in L2(M). 

It is easy to verify that a (A) is a closed subset of ce and that (Ao - ..1.1) -1 is a 
holomorphic operator-valued function of A. on ce\ a (A) with values in 
.P (L2(M), L2(M». The function R. = (Ao - ..1.1)-1 is called the resolvent of A. 

Proposition 8.5. Let a fixed positive smooth density dp,(x) befixed on M. 
Then the conditions A fj. a (A) and Ker (A - AI) = Ker (A· - II) = 0 are 
equivalent. 

Proof The statement follows from Theorem 8.1, since (A -U) EHL;:;(M) 
because m > O. 0 

Theorem 8.2. (the inverse operator theorem) Let A EHL;:;(M), 1 - (J ~ () 
< (J, m > 0 and let Ao be constructed as before. Let also A. ~ a (A). Then 
(Ao -A.I) -1 is an extension by continuity (from Coo (M» or restriction 
(from .@'(M» of an operator from HL;,6' -m(M) (we denote it by (A-H)-I). 
In particular, (Ao - U) -1 is compact in L2 (M). 

Proof It suffices to consider the case ..1.=0. Let BEHL;,6,-m(M) be a 
parametrix for A. More precisely 

AB=/-R (8.9) 

where R is an operator with smooth kernel R (x, y) (for simplicity we assume that 
a smooth, positive density on M is fixed, so the kernel R (x, y) is an ordinary 
function on M x M). It follows from (8.9) that 

(8.10) 

and it remains to verify that A-I R is an operator with smooth kernel. But by 
Theorem 7.2, A-I maps HS(M) into Hs+m(M) for any s EIR, and, moreover, is 
continuous by the closed graph theorem. By the embedding Theorem 7.6, A-I 
maps Coo (M) into Coo (M). But then A-I R is given by the smooth kernel 
Rdx, y) = [A -1 R(· ,y)](x). 0 
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Theorem 8.3. Let ajixed smooth positive density df.L(x) on a closed man
ifold M be fixed. Let A* = A E HL;,~m(M), 1 - Q ~ 8 < Q, m > O. Then 
AD is a self-adjoint operator in L 2 (M) and there exists in this space a com
plete orthonormal system {<pj}, j = 1,2,.,. of eigenfunctions of AD. Here 
<pj E CCO(M), A<pj = Aj<pj and the eigenvalues Aj are real, with IAjl ~ +00 
as j ~ +00. The spectrum a (A) coincides with the set of all eigenvalues. 

Proof Note first of all that (J (A) c lR. in view of Proposition 8.5, since A is 
symmetric on CCO(M) and can thus have no non-real eigenvalues. 

Next, we want to show that (J (A) =!= lR.. Assuming (J (A) = lR. then we could 
for any A E lR. find a function <P'\ E C co (M), such that A <P'\ = A<P,\ and \I <P'\ \I = 1. 
But then (<p,\' <p I,) = 0 for A =!= f1 by the symmetry of A, contradicting the 
separability of L2 (M). 

Now take ..10 ElR.\(J(A). By Theorem 8.2, R'\o=(A-AoI)-1 is a compact 
self-adjoint operator in L2 (M). By a known theorem from functional analysis 
there is an orthonormal basis {<pJr~ 1 of eigenfunctions, where the eigenvalues rj 
tend to 0 as j~ + 00. 

Now note that rj =!= 0 (since Ker (A - ..10/) -I = 0). The condition R,\o <Pj = rj<pj 
can therefore be rewritten in the form 

or 
(8.11 ) 

It is obvious from (8.11) that <Pj E CCO(M) and the <Pj are eigenfunctions of A with 
eigenvalues Aj = rj - I + ..10 , It is also clear that IAjl ~ + 00 as j~ + 00. The 
remaining assertions of Theorem 8.3 are obvious. The fact that the spectrum 
dA) coincides with the set of all eigenvalues {AJ follows from Proposition 8.5 
and the self-adjointness from the representation A = R;ol + Ao/. 0 

The following theorem extends one of the statements of Theorem 8.3 to the 
non-selfadjoint case. 

Theorem 8.4. Let A EHL;:;'(M), 1 - (} ~ 6 < (} and m > O. Then for the 
spectrum (J (A), there are two possibilities: 

a) (J(A) = <C (which, in particular, is the case if index A =!= 0); 
b) (J (A) is a discrete (maybe empty) subset of<C (subset without limit points). 
If b) holds and ..10 E(J(A) then there is a decomposition L2(M) = E,\o EB E~o 

such that the following conditions are satisfied: 
1) E,\o c CCO(M), dim EAo < + 00, and E,\o is an invariant subspace of A such 

that there exists a positive integer N> 0 with (A - ..10 /)N E,\o = 0 (in other words, 
the operator A I £'\0 has only the eigenvalue ..10 and is equal to the direct sum of 
Jordan cells of degree ~ N); 

2) E; is a closed subspace of L2(M), invariant with respect to Ao (i.e. 
A (D Ao(\E;) c E;) and if we denote by A~o the restriction Ao I £~o (understood as 
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an unbounded operator in E~o with domain D Ao n E~j. then A~o - AoI has a 
bounded inverse (or, in other words, AO ~ a(AIE' )). 

).0 

Proof 1. Let <T(A) =f <C. Let us prove that <T(A) is a discrete subset in <C. 
There is a point AoE <C\ <T (A) and we may, without loss of generality, assume 
that .10 = 0, so that by Theorem 8.2 Ao has a compact inverse A(; 1. Then since 
Ao - A.I = (/ - AAo 1 )Ao the inclusion A E <T (A) is equivalent to A =f 0 and 
A-I E <T (A(; 1). Discreteness of <T (A) follows from the fact that <T (Ao 1) may have 
only 0 as an accumulation point. 

2. Let <T (A) =f <c, .10 E <T (A). Once again, without loss of generality, we may 
assume that .10 = O. Let To be a contour in the complex plane, encircling 0 and 
not containing any other points of <T (A) (e. g. a circle, sufficiently small and with 
centre at the origin). Consider the operator 

(8.12) 

Standard arguments (cf. Riesz, Sz.-Nagy [1], Chapter XI) show that Po is a 
projection, of finite rank in view of the compactness of R A, commuting with 
all the operators RA (and with Ao in the sense that PoAoc AoPo) and such that 
if EAo = Po (L2 (M)), E~o = (/ - Po) (L2 (M)), then conclusions 1) and 2) of 
Theorem 8.4 hold. 

We leave it as exercise for the reader to take care about the details. We note 
only that the inclusion EAo C COO(M) follows from A~ EAo = 0 if we take into 
account the ellipticity of A and utilize the regularity Theorem 5.2. D 

8.4 Problems 

Problem 8.1. Let E be a separable Hilbert space, no (Fred (E, E)) the set of 
connected components of Fred (E, E) provided with the semigroup structure 
induced by the multiplication. Show that taking the index gives an isomorphism 

index: no (Fred (E, E)) :::::: 7l. 

Hint. An operator A of index 0 can be written in the form A = Ao + T, 
where Ao is invertible and T has finite rank. Show (by use of the polar decom
position) the connectedness of the group of all invertible operators in E. 

In all the following problems M is a closed manifold and 1 - Q ~ b < Q, 
m>O. 

Problem 8.2. Let A E HL;:to(M). Prove that A is a Fredholm operator in 
COO(M), i.e. that dim KerA < +00, ACOO(M) is closed in COO(M) and dim 
Coker A < + 00, where Coker A = COO(M)jACOO(M). Show that ACOO(M) 
consists of allfE COO(M) for which (f, g) = 0 for any g E Ker A* (here (', .) is a 
scalar product determined by some smooth positive density and A * is the adjoint 
\fIDO with respect to this scalar product). 
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Problem 8.3. Let A EHL;::,o(M) and mo > O. Let there be given on M a 
smooth positive density defining the scalar product ( " .) and the formal adjoint 
'PDO A*. Assume A = A*. Let Ao be the closure of the operator Alcoo(M)' 
Then Ao is self-adjoint in the Hilbert sense in the space L 2 (M). 

Problem 8.4. Let A EHL;::'o(M), let A* be the formal adjoint operator and 
Ao, A(\' the closures of A I C~(M) and A * I cro(M) in L2 (M) respectively. Show that Ao 
and A(\' are adjoint to each other in the sense of the Hilbert space L2 (M). 

Hint. Consider the matrix of 'PDO 'll = (~ ~ * ). 

Problem 8.5. Find an example of an operator A EHL~:?;(M) for which 
<T(A) = <C. 

Problem 8.6. A sequence of Hilbert spaces Ej and linear continuous 
operators dj : 

(S.13) 

is called a complex if dj+ 1 dj = 0 for all j = 0, 1, ... , N - 2. Put 

(if (S.13) is a complex, Bj c Zj). The spaces Hj are called the cohomology 
of the complex (S.13). The complex is called Fredholm if dim Hj < 00 for all 
j=O, 1, ... , N. 

a) show that if the complex (S.13) is Fredholm, then the Bj are closed 
subspaces of zj. 

b) Let L1 j =bA+dj- 1 (jj-l' where (jj=dt. The operators L1j are called 
the Lapladans of the complex (S.13) (or the Laplace-Hodge operators). Put 
r j = Ker L1 j' Show that for the complex (S.13) to be Fredholm it is necessary 
and sufficient that all L1 j are Fredholm operators in Ej , j = 0, 1, 2, ... , N. In 
this case 

More precisely, rjczj and the map rL '4Hj induced by the canonical 
projection zj -+ Hj is an isomorphism (in the case of a Fredholm complex). 

c) Put now 
N 

X (E) = L (-l)idimHj 
j=O 

(the Euler characteristic of the Fredholm complex E). Prove that if N = 1, then 
the Euler characteristic of the complex 
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is simply the index of do. 
Prove that if dim Ej < +00, j = I, 2, ... , N, then 

N 

X (E) = L (-l)jdimEj . 
j=O 

d) Show that X (E) does not change under a uniform deformation of all the 
operators dj if under this deformation the sequence (8.13) remains a Fredholm 
complex. 

Problem 8.7. Let T-j U = 0, 1, ... , N) be vector bundles on a closed manifold 
M and HS(M, T-j) the Sobolev spaces of sections. Let d j : Coo (M, T-j) ---+ Coo 
(M, \If+l) be classical 'PDO ofthe same order m. Let To"(M) be the cotangent 
bundle over M without the zero section and ]fo: To(M) -+ M the natural 
projection. Assume that the operators 

o ~ Coo(M, Vo) ~ Coo(M, VI) ~ ... ~ Coo(M, VN ) ~ 0 

(8.14) 

form a complex. Let (}~j: n6 T-j---+ n6 T-j+ I be the principal symbols of the 
operators dj (homogenous functions in ~ of order m). The complex (8.14) is 
called elliptic if the sequence of vector bundles 

is exact (i. e. an exact sequence of vector spaces at every point (x, ~) E Tti (M». 
a) Show that ellipticity of the complex (8.l4) is equivalent to ellipticity 

of all the Laplacians .1j = 8j dj + dj-l8 j _ l , where 8j is the 'PDO adjoint to 
dj with respect to some density on M and a Hermitean scalar product on the 
vector bundles \If. 

b) Show that if (8.14) is an elliptic complex, then for any S E 1R, the complex 

is Fredholm and the dimension of its cohomology (and thus the Euler 
characteristic) does not depend on s. The cohomology itself can be defined also 
as the cohomology of the complex (8.14), i.e. putting 

Problem 8.8. Show that the de Rham complex on a real n-manifold M 

o did 2 d d 
O~A (M)~A (M)~A (M)~"'~An(M)~O 
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(Ai (M) is the space of smooth exterior j-forms on M, d is the exterior differential) 
and the Dolbeault complex on a complex manifold M, dima:: M = n, 

(AP·q(M) is the space of smooth forms of type (p, q) on M and (jis the Cauchy
Riemann-Dolbeault operator) are elliptic complexes. 

Derive from this the finite-dimensionality of the de Rham and Dolbeault 
cohomology in case of a closed M. 



Chapter II 
Complex Powers of Elliptic Operators 

§9. Pseudodifferential Operators with Parameter. The Resolvent 

9.1 Preliminaries. Let A be a subset of the complex plane (in the 
applications this will, as a rule, be an angle with the vertex at the origin). In 
spectral theory it is useful to consider operators depending on a parameter A E A 
(an example of such an operator is the resolvent (A - AI) - 1). 

To begin with, we introduce some symbol classes. 
Let X be an open set in JR" and let a (x, e, A) be a function on X x IRN X A, 

XEX, eEIRN, AEA. 

Definition 9.1. Let m, (}, b, d be real numbers with 0 ~ b < (} ~ 1, 0 < d < 
+00. The class S;'b;iXxIRN,A) consists of the functions a(X,e,A) such that 

1) a(X,e,Ao)ECOO(XxIRN) for every fixed AoEA; 

2) For arbitrary multi-indices ex and fJ and for any compact set K c X 
there exist constants C, •. {3.K such that 

for xEK, BEIRN, AEA. As usual we put 

S-OO(XxIRN,A) = n S;'b;d(Xx IRN, A) 
mEJR 

(the right-hand side does not depend on (}, b and d). 

If a(x, y,~, A) E S;.;d(X x X x IRn , A), we may construct a 'YDO A,l" 
depending on the parameter A E A: 

(A,u)(x) = Hei(x-y).~ a(x,y,~,A) u(y) dydC (9.2) 

for u E C({' (X). In this case we will write 

Note that A, E roo (X, A) if and only if the operator A, has a smooth kernel 
K, (x, y) for any fixed A E A and there exist constants C!~~K (K a compact set in X, 

M.A. Shubin et al., Pseudodifferential Operators and Spectral Theory

© Springer-Verlag Berlin Heidelberg 2001
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IX and (J multi-indices and N a positive integer) such that the following estimate 
holds 

x, YEK. (9.3) 

Many of the statements about 'PDO without a parameter (cf. §§3-7) can 
also be proved for the case with a parameter A. We indicate now some of these 
statements, which are necessary in what follows. 

First, note that the whole theory of asymptotic summation (Definition 3.4 
and Propositions 3.5 and 3.6) carries over to symbols depending on a parameter. 
The corresponding formulations are obtained by changing S:'b(XxIRN) to 
S:'b;d (Xx IRN, A) and the proofs are almost verbatim repetitions of the 
arguments in 3.3 and are left for the reader as an exercise. We only state 
that the role of (8) in these proofs (as in the following) is now played by 
(1+181 2 + I,W'd) 1/2. 

Further we will call an operator A). E L;, b;d(X, A) properly supported if it is 
uniformly properly supported in A, i. e. there exists a closed set LeX x X, having 
proper projections on each factor in X x X, such that supp K Al C L for all A EA. 

Note that any operator A EL;,b;d(X, A) can be decomposed into a 
sum A = Al + R I , where Al (depending on a parameter) is properly supported 
in the sense described and RI EL;,~;d(X,A). For properly supported 'PDO AI. 
depending on a parameter, the symbol O'Al(X,~) = O'A(X,~,A) is defined and 
a theorem of type 3.1 is valid. Naturally, we have to interpret formula (3.21) 
taking the parameter into account, i. e. 

1 
O'A(X,~,A)- L ,a~D~a(x,y,~,A.)ly=xE 

I.I~N-I IX. 

ES:,;;<:-b)N (Xx IRn, A). 

In an analogous way Theorems 3.2-3.4 on the transpose and adjoint operators 
and composition can be generalized. 

Exercise 9.1, Prove all the statements in sec. 3 in the case of operators and 
symbols depending on a parameter. 

Further, repeating the arguments of §4, for 1 - e ~ [) < e, we may introduce 
the classes L;,b;d(M,A) on a manifold M. 

Let us now pass to considering hypoellipticity and ellipticity. 
We introduce the class HS:"ta (X x IRn, A) of symbols 0' (x,~, A) (we will call 

them hypoelliptic with parameter), belonging to S;, b;d (X x IRn, A) and satisfying 
the estimates 

(9.4) 

for xEK(K compact in X), I~ 1+ IAI ~ R, CI > 0 and R, CI , C2 may depend on 
K; 
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l[o~o~(j(x,e,A.)] (j-I(x,e,A.)1 ~ Ca.p.K(lel+IA.I"d)-C1laIHIPI, (9.5) 

for x E K, I e I + I A.I ~ R (here, as above, R may depend on K). 
We will denote by H L;''.i7J(X, A) the class of properly supported 'PDO 

(depending on the parameter)... E A), whose symbols belong to H S:'d~:(X x 
IRn , A). We have an analogue of Theorem 5.1: 

If AEHL;:;:~(X,A), then there exists an operator BiEHL;'';;oJ-m(X,A) 
called the parametrix of the operator Ai' such that 

(9.6) 

where R~, R~ E L -OO(X, A). The same statement is also true when X is a 
manifold. 

Exercise 9.2. Prove this analogue of Theorem 5.1. 

It is natural also to consider classical 'PDO depending on a parameter. In 
this case A is assumed to be an angle with the vertex at O. The corresponding 
symbols a(x,;,)...) admit asymptotic expansions (for 1;1 + 1)...1 1/d ~ I) of the 
form 

TOO 

a(x,e,A.) - L am_j(x, e, A.) , (9.7) 
j=O 

where am - j(x, e, A.) is positive homogeneous in (e, A. I /d) of degree m - j, i.e. 

(9.8) 

for t> 0, A. E A and td A. EA. Here m can be any complex number. This class of 
symbols will be denoted by CSd'(Xx IR", A) and the corresponding class of 
operators by CL~(X, A). This class is stable under composition, taking the 
transpose and taking the adjoint. 

We will say that the operator A A E CL7 (X, A) is elliptic with parameter if it is 
properly supported and 

am(x,e,A.) =1=0 if XEX and lel+IA.II/d=l=O. (9.9) 

It clearly follows that AiEHL~:;;';d(X,A). There exists a parametrix 
Bi E CLim(x, A) of a classical elliptic operator with parameter, which is also 
an elliptic operator with parameter. 

Example 9.1. Let A be a differential operator in X of degree m and I the unit 
operator. Then A - U E CL';' (X, CC) and the principal symbol is given by the 
formula 

(9.10) 

where am (x, e) is the principal symbol of A. If A is a closed angle in the complex 
plane with vertex at the origin such that am (x, e) for I e I = 1 does not take values 
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in A, then the operator A - AI is elliptic with parameter (and, in particular, 
belongs to HL~·O~m(X,A». 

9.2 Norms of operators with parameter. In this subsection we will consider 
operators with parameter of two kinds: 

1) operators A). in IRn, such that supp KA.lies in a fixed compact set K C IR2n 
(where O~<5<e~l); 

2) operators on a closed manifold M (here, as usual, we assume 1 - e ~ <5 

< Q). 
In what follows we will write A). E L;,O;d (X, A) keeping in mind that X = IRn 

or X = M and that 1) or 2) is fulfilled. 
We denote by IIA IIs,s-1 the norm of A viewed as an operator from HS(IRn) 

into Hs-1(IRn) or from HS(M) into HS-1(M) (here I and s are real numbers). Our 
aim is to study the dependence of IIA).lls,s-1 on A for large IAI. 

Theorem 9.1. Let A). E L;, o;d (X, A), I ~ m and s, IE IR. Let one of the numbers 
b, s, s - I be equal to O. Then 

IIA).lIs,s_I~Cs,I(1+IAI1/d)m, if I~O, (9.11) 

IIA).lIs,s-l~ Cs,I(1+IAI 1/d)-(I-m), if I~O. (9.12) 

Coronary 9.1. If A). EL;,O;d(X, A), where m~O, then 

(9.13) 

where IIA).II denotes the operator norm of A). in L2(X). 

We will need the following useful 
Lemma 9,1 (Schur Lemma). If A is an operator with the Schwartz kernel 

KA such that 

sup J IKA(x, y)ldy :::: C and sup J IKA(x, y)ldx :::: C, 
x y 

then 
IIA: L2 -+ L 211:::: C. 

(This lemma holds for integral operators in L 2 on any measure space, or for 
integral operators L2(Y) -+ L2(X) for any measure spaces X, Y.) 

Proof By the Cauchy-Schwarz inequality we have 

IAu(x)12 :::: (J IKA(x, Y)llu(Y)ldy) 
2 

2 = (J IKA(x, y)II/2IKA (x, y)II/2I u(y)ldy) 

:::: J IKA(x, y)ldy J IKA(x, y)llu(y)1 2dy 

:::: C J IKA(x, y)llu(y)1 2dy. 
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Now integrating with respect to x and changing the order of integration we 
obtain the desired nonn estimate. 0 

Proof of Theorem 9.1. 1. Note first of all that a partition of unity reduces 
the case X = M to the case X = JR", which we will now study. 

2. Consider first the case s = 1= m = O. The statement of the theorem 
reduces to the estimate 

(9.14) 

which is proved by repeating verbatim the argument in §6 (we recommend the 
reader to work this through as an exercise). Note now that the estimate (9.14) 
could be proved directly utilizing the results from §6 if the constants 

C~,p(A) = sup la~aea(X,~,A)1 <oel~l-bIPI (9.15) 
x. ~ 

where bounded as 1 A 1-+ + 00. This evidently follows from (9.1) for b = 0, but for 
b > 0 some of the constants C~, p (A) can grow as 1 A 1-+ + 00. Therefore, for b > 0 
it is indeed necessary to repeat the argument from §6. 

3. Now consider in JR" the standard operator-valued function 
tPm(A) E L7, 0; d (JR", <C) with the symbol <Pm (x, ~, A) = (1 + 1 ~ 12 + 1 A 12/d)m/2. This 
'PDO with parameter will be useful to us, although it does not satisfy condi
tion I). 

Let us estimate the norm of the operator tPm(A). The operator tPm(O) induces 
an isometric isomorphism of Hm(JR") onto L2(JR"). Therefore 

But tPs-1(0) tPm(A) tP_s(O) =tPm(A) tP_/(O) is simply the multiplication operator 
by (1+1~12+IAI2/d)m/2 (1+1~12)-1/2 of the Fourier transform u(~) in L2 (JR") 
and therefore its norm is equal to 

tflml(A) = sup (1+1~12+IAI2/d)m/2 (1+1~12)-1/2. 
~ EIR" 

We obviously have 

tflml(A) ~ Csup (1+1~1+IAll/d)m(1+1~1)-1, 
~ EIR" 

where C only depends on m and I (but not on A). 
Now, from the easily verified relation 

if l~ 0, 

if I ~ 0 and t ~ Rml 

(we assume m ~ I everywhere) it follows that 
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l/fml(.:1.) ~ Cml (1 + 1.:1.ll/d)m, 

l/fml(.:1.) ~ Cml (1+1.:1.1 1 /d)m-l, 

if I~O, 

if I ~ 0, 

i.e. for cPm(.:1.) one of the norm-estimates (9.11), (9.12) holds as asserted in the 
theorem. 

4. Consider now the general case A, EL;,o;d(IRn, A). We obviously have 

IIA,lIs,S-1 = IIcPm(.:1.)· (cP_ m(.:1.)· A,)IIs,s-1 

~ IIcPm(.:1.)lIs,S-I· IIcP- m(.:1.) A,lIs,s (9.16) 

and analogously 

IIA,lIs.s-I = II (A,cP_ m(.:1.»cPm(.:1.) IIs,s-1 

~ IIA,' cP- m(.:1.)lIs-I.s-I IlcPm(.:1.)lls,s-I' (9.17) 

Using the already proven norm-estimate for II cPm (.:1.) lis, s-l we see that in 
order to complete the proof of the theorem when s = 0 or s - 1= 0 it suffices to 
verify that 

(9.18) 

5. Let us define 4>_m(A) as an operator with the Schwartz kernel which is 
obtained by multiplying the Schwartz kernel of C/J-m{A.) by f{J(x - y), where 
f{J E CQ'(IRn), f{J = 1 in a neighbourhood of 0 E IRn. Then 4>_m(A) is a 
uniformly properly supported 'PDO in Lf o/IRn, <C). Let us write 

(9.19) 

and investigate the remainder operator R_m(A) which has a Schwartz kernel 
K R_m vanishing in a e-neighbourhood of the diagonal. In fact it is a convolu
tion operator, so K R-m depends on x - y and A only. It is easy to see from the 
construction of R-mO\) that KR_m(x, Y; A) = r_m(x - y, A) with 

r_m(z, A) = f eiZ;(l - f{J(z»(1 + 1~12 + IAI2/d)-m/2 a~, 
JRII 

where f{J E CQ'(IRn), f{J = 1 is a neighbourhood ofO. 
Now it is easy to prove that r -m (-, A) E S(IRn) for every fixed A E ([. 

Moreover, all seminorms of r_m (-. A) in S(IRn) decay as IAI -+ 00 faster than 
any power of IAI. Indeed, we can apply the standard integration by parts to get 

r_m(z, A) = f e iz';lzl-2N (l - f{J(z» [(_.1~)N(l + 1~12 + IAI2/d)-m/2] a~, 
JRII 

hence 
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zet D~r-m(z, A) = f zaD~ [eiz~lzl-2N(1 - qJ(z»] 
IR" 

X [(-L\~)N(1 + Isl2 + IAI2/d)-m/2] as, 
for an arbitrary integer N ::::: 0 and any fixed multiindices ct, (J. The integrand 
can be estimated by 

C(1 + Izl)'a,-2N(1 + Isl)'!l'(1 + lsi + IAI 1/d)-m-2N 

with a constant C > O. We can assume that m + 2N ::::: 0 and use the obvious 
estimate 

to arrive to the estimate 

Izet D~r_m(z, A)I ::s: Cet!lN(1 + IAI 1/d)-m/2-N, 

which holds for sufficiently large N and implies the desired result. 
6. Now we will sketch two possible proofs of estimates of type (9.18) for 

R_m(A)AA and AAR_m(A). 
Let us recall that it is assumed that the Schwartz kernels of AI. are supported 

in a fixed (independent of A) compact subset of IR" x IR". 

(a) Note that the proof of the boundedness result (e.g. Proposition 7.5) im
plies that 

where M = M (s, A) is independent of A. This is a rough estimate and it is 
easy to obtain by following the steps of the proof of Proposition 7.5 and of the 
necessary results from Sect. 6. 

Now note that R_m (A) is infinitely smoothing in the Sobolev scale H' (IR"), 
and, more precisely, 

for all s, t E IR and N ::::: O. This holds because the convolution operator 
R_m (A) can be presented as the multiplication of the Fourier transform by a 
function '-m(S, A) = Fz ___ ~r(z, A) which is in S(IR") with respect to S with 
seminorms which decay as IAI -+ 00 faster than any power of IAI due to the 
estimates obtained in the first part of my comments to this question above. 

Combining the two inequalities above we immediately obtain the desired 
estimates of the type (9.18) for R_m (A)AA and AAR-m (A). 

(b) Another way to establish these estimates is to study first the structure 
of the operators R_m(A)AA and AAR_m(A). It suffices to consider the operator 
AAR_m(A) and then use the relation 
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(R_m(A)A)J* = A~R_m(A) 

to establish the same estimates for the operators ofthe type R_m(A)AA' 
Clearly AAR-m(A) can be written in the standard form (3.9) with the symbol 

aA.m(x,O = aA). (x, ~)r_m(~' A), where the function r was defined above. Note 
that aA). (x,~) has a compact support with respect to x, uniformly in~. Taking 
into account the behavior of r we see that aA.m (x, ~) satisfies the estimates 

la; D~aA,m(X, 01 ::::: C",tJ,m,M,N(l + I~!)-M (l + IAI)-N 

for any M, N ?: 0 and any multiindices a, (3. The Schwartz kernel of the 
operator A).R_m(A) has the form 

K).(x, y) = J ei(X-YH"a).(x,~) a~. 
IR" 

The estimates for a). immediately imply that 

IK).(x, y)1 ::::: CN(1 + Ix _ yl)-N, 

and the required norm estimates follow from the Schur lemma. 

7. Now let 8 = O. It is clear from (9.16) that we need to show that 

(9.20) 

where C does not depend on A (but may depend on s). Clearly 

Acting as in the part 5 of this proof, we may replace eP,(A) by a properly 
supported 'PDO eP,(A) (for any t E IR) and instead of (9.20) prove the estimate 

,,<P,,(O)<P_m(A)A). <P_,(O) " ::::: C. 

Denote the symbol of <P_m(A)AA by b(x,~, A). We claim that 

b(x, ~,A) E S~O;d(IR"; A) 

(9.22) 

in the sense of the uniform classes in IR" (see problems 3.1 and 3.2), and in 
particular b(x,~, A) E S~.O(IR2") uniformly in A, i.e. 

sup [la;a:b(x,~, A)I(~)'1Ia1] < +00 
x,;,). 

Using an appropriate composition formula (e.g. in the uniform classes dis
cussed in Problems 3.1 and 3.2) we see that the same estimates hold for the 
symbol a(x, t A) of the operator <P" (O)<P_m (A)A). <P_,,(O). 

Now applying the boundedness theorem (again extended to uniform opera
tors in IR") we get the desired estimate (9.22) for the operator norm. 

Another possible way of arguing (to avoid using uniform operators in IR"): 
introduce appropriate cut-off functions to reduce everything to functions sup-
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ported in a fixed compact set, and then investigate remainders, using the Schur 
Lemma. D 

9.3 The inverse of operators with parameter. In this part we will consider 
only operators on a closed manifold M. 

Theorem 9.2. Let A). EHL;:b~~(M, A). Then there exists R > 0, such thatfor 
I A I ~ R, the operator A). is invertible with 

(9.23) 

where AR = An {AIIAI ~ R}. More precisely, if B, is a parametrix for the 
operator with parameter A)., i. e. condition (9.6) is fulfilled, then 

(9.24) 

Proof Let B, be a parametrix for the operator A).. Then it is obvious from 
(9.6) that it suffices to prove that / + R, with RJ. E L - OC!(M, A R ) is invertible for 
small A and 

(9.25) 

Note that for arbitrary N> ° and s, t E IR 

(9.26) 

From this it follows, in particular, that there exists R > ° such that II R). II < t for 
I A I ~ R and hence (! + R;.) -1 exists for A EAR at least in the space L 2 (M). Now, 
/ + RJ. is Fredholm in each of the spaces HS(M) (formally this is a consequence 
of the ellipticity of / + R). and Theorem 8.1, although it is easy to obtain directly) 
and has everywhere the same kernel and co kernel, so that the invertiblity of 
1+ R).. for IAI ~ R is guaranteed in each of the spaces H'(M). 

To prove (9.25) it is convenient to use 

(9.27) 

and (9.26). Denoting the left hand side of(9.27) by Q). we see that estimates ofthe 
form (9.26) hold for Q).. 

The kernel Q;. (x, y) of Q). can be expressed by the formula 

Q,(x,y) = [Q,b(' - y)](x) , (9.28) 

where b (z - y) is the b-function (in z) at a point y EM on which it depends as a 
parameter. The operator Q). in (9.28) acts on the variable z and the result is taken 
at the point x. Note that if s < - nj2, then b (. - y) EHS(M). Further, b (. - y) is 
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a differentiable function of y with values in HS - 1 (M) and is more generally a k 
times differentiable function of y with values in HS-k(M). Therefore from (9.26) 
it follows that estimates of the form (9.3) hold for the kernel Q.l(x, y), which also 
demonstrates that Q.l E L - oo(M, AR). The inclusions (9.23) and (9.24) then also 
readily follow. 0 

9.4 The resolvent of an elliptic operator. Returning to example 9.1 in the case 
of an operator on a manifold and applying the results obtained we get 

Theorem 9.3. Let A be a differential operator on a closed manifold M with 
principal symbol am (x, ~) and A a closed angle in the complex plane CC with vertex 
o E CC. Let A be elliptic with parameter relative to A, i.e.for ~ =1= 0, am (x, 0 does not 
take values in A. Then 

a) there exists R> 0 such that A - AI is invertible for A EAR with 

(9.29) 

b) the following norm estimate holds 

where s is any real number. 

Proof a) follows from Theorem 9.2 and b) from a) and Theorem 9.1. 0 

Corollary 9.2. Under the conditions of Theorem 9.3 we have 

(9.31 ) 

Corollary 9.3. Let A be an elliptic self-adjOint differential operator on a closed 
manifold M with principal symbol am (x, ~). Assume that am (x, ~) > 0 for all (x, ~), 
~ =1= O. Then A is semi-boundedfrom below, i. e. there is a constant C> 0 such that 
A ~ - CI or 

(Au, u) ~ - C(u, u), u E Coo(M). (9.32) 

We mention here another important fact, namely that under the condition of 
ellipticity with parameter, the resolvent (A - AI) - 1 differs from the parametrix 
only by an operator of COO (M, A). This is used in the theory of complex powers 
along with the explicit construction of a parametrix as given in the elliptic theory 
(cf. section 5.5). 

Problem 9.1. Extend the theory of elliptic operators with parameter to the 
case of matrix operators, i. e. to systems. 
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Hint. The condition of ellipticity with parameter for a matrix function 
am (x, ~), means that det (am (x, ~) - A) * 0 for ~ * 0 and A E Ii or, equivalently, 
that the eigenvalues of am (x, ~) do not belong to Ii for ~ * O. 

Problem 9.2. Let A be an elliptic differential operator on a closed manifold 
M, and suppose that for some angle Ii the operator A - AI is elliptic with 
parameter for A E Ii. Show that index A = O. 

§10. Definition and Basic Properties of the Complex Powers 
of an Elliptic Operator 

10.1 Definition of the holomorphic semigroup A z • Let A be an elliptic 
differential operator of order m on a closed n-dimensional manifold M and 
am (x, ~) the principal symbol of A. Assume that am (x,~) does not take values in a 
closed angle Ii of the complex plane <C for ~ * 0 (here the vertex of Ii is assumed 
to be at 0 E <C). In other words, in the notation of §9, A - AI E CL':, (M, A) and 
satisfies the condition of ellipticity with parameter. 

It follows from Theorem 9.3 that the resolvent R). = (A - AI) -I is defined for 
I A I ~ R, A Eli i. e. for A Eli R' Now, in view of Theorem 8.4, we see that the 
spectrum (J (A) of A is a discrete subset of <C. Hence, in the angle there can be only 
a finite number of points of (J (A). We may therefore draw a ray L o, starting at 0 
and running inside Ii such that (J (A) n Lo is either empty or consists of the point 
o only. In what follows, we assume for convenience firstly that 0 $ (J (A), i. e. A-I 
exists as an operator (cf. §8), and secondly that Lo = (- 00,0]. Neither of these 
assumptions is very essential; we may get rid of the first one by replacing A 
with A + £I and the second by studying eiH A instead of A. 

So, finally, our assumptions are as follows: 

1) am(x,~) - ,1*0 for ~*O and AE(-oo,O]; 

2) (J (A) n ( - 00, 0] = 0. 
(10.1) 

(10.2) 

It follows from conditions 1) and 2) that for some angle Ii of the form 
{rr - B ~ argA ~ rr + B}, with B> 0, the following hold: 

I') am(x, i;) - A -=1= 0 for ~ -=1= 0 and A E A; 

2') (J (A) n Ii = ~. 
(10.1') 

(10.2') 

In what follows we shall assume that A has been chosen in this way. 
Since 0 tJ. a(A), we see that a(A) does not intersect a disk IAI < 2(2 in the 

complex A-plane. Now select in this plane a contour r = rQ of the form 
r = r l Ur2 ur3, where (Fig. 1) 
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_____ O_~_A __ =rr_·_·----------~rl=P 
O~A=-Tr V 

A = rein (+ 00 >r> e) 

A = ee ilp (n>cp> -n) 
A=re- in (e<r<+oo) 

Consider the integral 

Fig. 1 

A z = --2i J AZ(A-AI)-l dA, 
n r 

(10.3) 

where Z E <C, AZ is defined as a holomorphic function of A for A E <C\ ( - 00,0], 
equal to ez 1n .! for A > 0 (here it is assumed that In A E JR. for A > 0). In other words, 
on r we set 

(10.4) 

where - n ;:;; arg A ;:;; n (arg A is described more precisely in the definition of the 
contour r). 

Note that in view of the estimate (9.31) (Corollary 9.2) the integral (10.3) 
converges in the operator norm on L 2 (M) for Re Z < 0 and also A z is a bounded 
operator on L 2 (M). In the same \I'ay, by Theorem 9.3, the integral (10.3) 
converges in the operator norm on HS (M) for arbitrary s E JR. and also, for 
Rez < 0, Az maps HS(M) into HS(M) hence also maps COO(M) into COO(M) as 
well as ~'(M) into ~'(M), since 

COO(M) = nHS(M) and ~'(M) = U HS(M). 

Proposition 10.1. a) For Re z < 0 and Re w < 0 we have the semigroup 
property 

(10.5) 

b) If k Ell. and k > 0 then 

(10.6) 

c) For arbitrary s E JR., Az is a holomorphic operator-Junction of z (for 
Re z < 0) with values in the algebra of bounded operators on the Hilbert space 
HS(M). 

Proof a) Construct a contour r' (Fig. 2) of the form r' = r{ vr; vr;, 
where 
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A. = rei(x-e) (+oo>r>iQ) 

A. = i Qei<p (n-e><p> -n+e) 
A. = re i( -x+,) G Q < r < + CX) ) 

Fig. 2 

on r; 
on r; 
on r;. 

r.' 2 

89 

The number e > 0 is chosen so that (10.1') and (10.2') are satisfied. The contour r 
is contained "within" r', and in view of (9.31) and the condition on r' it is 
obvious -that the integral (10.3) does not change if we replace r by r'. 

Utilizing this fact, we obtain 

In this computation we have used the Cauchy formula and the so-called 
Hilbert identity 

which is clear if we, for instance, multiply both sides by (A - A./) (A -Ill). 

b) Note that if z = -1, - 2, ... , then (re ix)' = (re- ix)' and the integrals 
along the straight line parts of r in (10.3) cancel. Therefore 



90 Chapter II. Complex Powers of Elliptic Operators 

where r2 = {IAI = Q}, traversed clockwise. Now make a change of variables, 
putting A = lip which gives 

where r; = {Ipl = lIQ}, also traversed clockwise. Taking into account that (A 
_p-1 1)-1 = pA- 1(pI_A- 1)-1, we may now write 

since the entire spectrum of the bounded operator A - 1 is situated inside the 
contour r; and we may use the Cauchy formula. 

c) Differentiating the integral (10.3) with respect to z we obtain the integral 

_i pz (in A) (A - AI) - 1 dA, 
2n r 

(10.8) 

converging in operator norm (in HS(M» uniformly for Rez ~ -e < O. We 
conclude, that the operator function Az is holomorphic in z and the derivative 

~ A z is equal to the integral (10.8). 0 

10.2 Definition of the complex powers of an operator 

Definition 10.1. Let z E <C and k E 7L be such that Re z < k. Put, on COO (M) or 
~'(M) 

(10.9) 

We need to verify that this is well-defined and that is the content of the first 
part of the following theorem. 

Theorem 10.1. a) The operator AZ as defined by (10.9) is independent of the 
choice of integer k, provided Re z < k. 

b) IfRez<O, then AZ=Az ' 

c) The group property holds 

(10.10) 

d) If k E 7L, then (10.9) with z = k gives the usual k-th power of the operator A 
(in particular AO = I, Ai = A and A -1 is the inverse to A). 
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e) For arbitrary k E 7l and s E JR, the function AZ is a holomorphic operator 
function of z in the half-plane Re z < k with values in the Banach space ff (HS(M), 
Hs-mk(M)) of bounded linear operators from HS(M) to Hs-mk(M). 

Proof a) Let z E «=, k, IE 7l be such that Rez < k, Re z < l. We need to verify 
that 

(10.11) 

Assume that k> I and put k - 1= p and z - k = w. Then (10.11) reduces to the 
equality Aw=A-PAw+ p with p a positive integer and Re(w+p) <0. This 
however, follows at once from Proposition 10.1 since A - P = A _ P by (10.6) and it 
only remains to use the semi-group property (10.5). 

b)-d) These properties follow in an obvious manner from a) and 
Proposition 10.l. 

e) This statement follows straightforwardly from a) and c) in Pro
position 10.1, if we remember that Ak, for k an integer, maps HS(M) 
continuously into Hs-mk(M) (this follows from Theorem 7.3 (on boundedness) 
and the fact that A -I E CL -m(M), as is clear from Theorem 8.2 (about the 
inverse operator)). 0 

10.3 The self-adjoint case. Let a smooth positive density on M be given 
defining a scalar product on L2 (M) and A a self-adjoint elliptic differential 
operator of order m on M. Then its principal symbol am(x,~) is real-valued. 
In this case, conditions (l 0.1) and (l0.2), which we assume to hold, mean that 

am(x,~) > 0, ~ * 0, 

A~M, 3>0, 

(10.12) 

(10.13) 

i.e. (Au,u) ~ 3(u,u) for any uECOO(M). Let {<PJt=1 be a complete orthonor
mal system of eigenfunctions for A with eigenvalues {AjL"': I' Remember that 
A.j -+ + 00 as j -+ 00 (cf. Theorem 8.3). It follows from (10.13) that A.j ~ 3 > 0 
for allj= 1,2, .... 

Now, any distribution f E qfi' (M) may be represented as a Fourier series 

'l: 

f~ L jj<Pj(X) , xEM, (10.14) 
j=1 

where 
jj = (f, <p). (10.15) 

Here, whenfEL2 (M) we of course have the usual scalar product in L2 (M). 
If, however f E qfi' (M), then (f, <p) denotes (fJpjdll>, where dll is the fixed 
density on M (recall that the distributions are linear continuous functionals on 
the space of smooth densities). We now describe the properties of the Fourier 
series of smooth functions and distributions. 
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Proposition 10.2. For a series 

00 

L c/Pj(x) (10.16) 
j;l 

with complex coefficients cj the following properties are equivalent: 

a) the series (10.16) converges in the Coo(M)-topology; 

b) the series (10.16) is the Fourier series of some function fE Coo(M); 

c) for any integer N 

00 

L 1 Cj 12 ;,y < + 00 . (10.17) 
j;l 

Furthermore, conditions d), e) and f) are also equivalent: 

d) the series (10.16) converges in the weak topology of flfi'(M); 

e) the series (10.16) is the Fourier series of some distribution fE flfi' (M); 

f) the exists an integer N (perhaps negative), such that (10.17) isfulfilled. 

Proof The basic idea of the proof is to use the relations 

Coo(M) = nHS(M) , flfi'(M) = U HS(M) , 
s s 

and the fact that AN is a topological isomorphism between the spaces H mN (M) 
and L2(M). Now, L2(M) is easily characterized in terms of the coefficients of 
Fourier series by the Parceval equality. Therefore the topology of CYO(M) may 
be determined via the seminorms II filA N where 

00 

Ilfll~;N= L 1./j12..1.jN, 
j;l 

because ANf has the Fourier coefficients ..1.f .fj. From this the equivalence of 
conditions a), b) and c) is obvious. 

Let us verify the equivalence of d), e) and f). If d) is satisfied denote by fthe 
sum of the series (10.16), so that fE flfi'(M) and 

00 

(j,cp) = L cj(cpj,cp) 
j;l 

for any cP E Coo (M). In particular, taking cP = CPj we obtain cj =./j i. e. precisely e). 
Further, if e) is satisfied, i. e. cj = (j, cp), withf E flfi' (M), then selecting an integer 
N such that AN f E L 2 (M) we also see that!) is satisfied. Finally, if j) is satisfied, 
then the series (10.16) converges in the norm of HmN(M), thus giving d). D 
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We now introduce a "spectral" characterization of the complex powers of a 
self-adjoint operator A in terms of the coefficients of the eigenfunction 
expansion associated with the eigenfunctions C{)j' 

co 

Proposition 10.3. Let fE~/(M) and let f(x) = L fjePj(x) be the Fourier 
j~l 

series expansion off in the eigenfunctions of the operator A. 
Then 

co 

AZf= L Ajf/p/x). (10.18) 
j~l 

In particular, C{)j(x) are the eigenfunctions of the operator AZ with eigenvalu.es Aj . 

Proof The operator AZ maps CCO(M) continuously into itself. In view of 
the easily verified relation (AZ)* = AZ we see that AZ being the adjoint of AZ 
continuously maps ~/(M) into ~/(M) provided ~/(M) is endowed with its 
weak topology. Since the series on the right hand side of (10.18) converges 
weakly in ~/(M) by Proposition 10.2, in order to verify (10.18) in the general 
case it suffices to do so for f = C{)j' Re z < O. But, f = C{)j and Re z < 0 imply 

by the Cauchy formula. But this is exactly (l 0.18) for f = f{Jj. 0 

Exercise 10.1. Let A satisfy (10.1) but instead of (10.2) require the weaker 
condition 

0" (A) n ( - 00,0) = ~, 

so that Ker A may be a non-empty finite-dimensional subspace in Cco (M). 
Define Az via the contour integral (10.3) and let Eo, Eb be the invariant 
subspaces of the operator A introduced in Theorem 8.4. 

a) Show that AzEo = 0 and Eb is an invariant subspace of Az for Re z < O. 
b) Show that for the operators Az the semigroup property AzA w = Az+ w , 

Re z < 0, Re w < 0 holds, allowing AZ to be well-defined for all z by formula 
(10.9), so that the group property (10.10) holds for the operators AZ. 

c) Verify that AZ for a sufficiently large positive integer z is the usual power 
of A whereas 

where Po is the projection onto the subspace Eo parallel to Eo and that, 
analogously, A _ k for a sufficiently large positive integer k is the inverse of the 
operator Ak on Eo and equals 0 on Eo. 
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Problem 10.1. Let A be an elliptic differential operator with principal 
symbol am (x, ~) on a closed manifold M. Assume that Re am (x, ~) < 0 for ~ :f: O. 
Show that the Cauchy problem 

au 
at = Au, t>O; ult=o=<p(x); (10.19) 

has a unique solution in COO(M) and ~'(M). 
Hint. The solution u (t, x) will necessarily be of the form 

(10.20) 

where the operator etA is determined via the contour integral 

(10.21) 

Assuming that the spectrum (J (A) is situated in the half-plane Re A < 0 (which 
can be achieved by changing A into A - Clor substituting u = vect in (10.19)), it 
suffices to take r = r 1 u rz , where r 1 and rz are the following two rays: 

i (X _E) 
A = re "2 

The uniqueness of the generalized solution of the problem (10.19) is 
demonstrated using the Holmgren principle (cf. e.g. Gel'fand I.M., Silov G.E. 
[1], vol. 3). 

§ 11. The Structure of the Complex Powers 
of an Elliptic Operator 

11.1 The symbol ofthe resolvent. Let A be an elliptic differential operator on 
a closed manifold M. We shall next construct in local coordinates the symbol of a 
special parametrix of the operator with parameter A - AI (which we view here as 
an operator in CL:(M,A), A a closed angle in CC with vertex at 0). We assume 
that A satisfies the conditions for ellipticity with parameter relative to A, where 
the angle A is as described in §10 (i.e. it satisfies (10.1') and (10.2'), and A 
contains the semi-axis ( - 00, 0]). 

The parametrix will be constructed in a chart Xc M and we will identify X 
with an open set in JR." using a coordinate system on X. Let the operator A on X 
be of the form 
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A = L a~(x)D~. (11.1 ) 
I-I;;;m 

Its total symbol 

a(x,~) = L a~(x) ~~ (11.2) 
I-I;;;m 

may be decomposed into homogeneous components 

aj(x,~)= L a~(x)~-, j=O, 1, ... , m. (11.3) 
I-I ~j 

The total symbol a (x, ~,A) = a (x, ~) - A of A - AI may be decomposed into 
components homogeneous in (~, A 11m) given by the formulas 

am(X,~,A) = am(X,~)-A, 

a/x,~, A) = aj(x,~), j = 0, 1, ... , m - 1. 

The condition of ellipticity with parameter means that 

am(x,~,).,) * 0 for x E X, )., E A, I~I + I).,II/m * 0 

(11.4) 

(11.5) 

(11.6) 

It is natural to look for the symbol of the parametrix of A - AI in the form of 
an asymptotic sum of functions homogeneous in (~, A 11m). Denote these 
functions by b~m-/x,~, A),j = 0, 1, 2, ... , where the lower index indicates the 
degree of homogeneity: 

These functions are recursively defined by the relations 

am(X,~,A) b~m(X,~,A) = 1, 

am(x,~, A)b~m_/x,~, A) 

+ L a~am_k(X,~,A)D~b~m_I(X,~,A)/O:! = 0, 
k+l+I~I~j 

l<j 

j = 1, 2, ... 

(11.8) 

( 11.9) 

(compare the construction of a parametrix for the classical elliptic PDO in §5, 
formulas (5.17') and (5.17"». 

To obtain a real parametrix from these functions b~m _ j (x, ~, A) it is first of all 
necessary to eliminate their singularities for I ~ I + I A 111m = ° by multiplication 
with a cut-off function and, secondly, to glue together the various local 
parametrices using a partition of unity (cf. §5). 
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11.2 The Symbols of complex powers. We shall construct the homogeneous 
components b~~'~j(x, 0 of the symbol of AZ using the homogeneous components 
of the parametrix constructed earlier, in exactly the same way as the powers AZ 
were constructed using the resolvent (A - AI) - 1. Indeed, from the condition of 
ellipticity with a parameter there follows the existence of e = e (x, ~) such that 
am (x, ~,A) =4= 0 for I AI < 2 e, ~ =4= 0 and A E <C. From (11.8) and (11.9) it is clear 
that b_ m - /x,~, A) is holomorphic in A in the disc IAI < 2e. Forming the contour 
r as in §10, we may define the functions b~1,_Oj(x,~) for Rez < 0 by the formulas 

(11.10) 

where the branch AZ is defined as in §10. 
In particular, for j = 0, we obtain by the Cauchy formula that 

(11.11) 

Let us note that for a sufficiently small e the integral (11.10) is independent of the 
choice of e (in the disc I AI < 2 e there are no singularities of the functions 
b_m_j(X,~,A)). The function b~1'~/x,~) is positively homogeneous in ~ of 
degree mz - j, i. e. 

b(Z),O(x t):) = tmz-jb(Z),O(x):) t> 0 ): =4= O. 
mz - ) ,~ mz - J ,~, ,s (11.12) 

To prove this, it is necessary to perform a change of variables in the integral 
(11.10) and use the homogeneity of b~I1I_/x,~, )..): 

i 
b~1'~j(x, to = 2- S AZb~m_j(x, t~,A)dA 

n f 

i 
= 2- S (tm flY b -m- j(x, t m fl) . t m dfl 

n f' 

Here r t is the contour t-mr (it has the same shape as r but the radius of the 
curved part is t-me instead of e). 

Now it is necessary to extend the definition of b~~'~j(x, 0 to all Z E <C. This is 
done in the same way as the construction of A Z for z E <C in §10. The following 
analogue of Proposition 10.1 holds. 

Proposition 11.1. a) For Re z < 0 and Re w < 0 we have the semigroup 
property 
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L a~b~~'~p(x,~) D~b~'".l·~q(x,~)/a! = b~(:';~?_j(x,~), 
!a!+p+q=j 

j=O, 1,2, ... 
(11.13) 

b) If k E 7/. and k > 0, then the set b~-':k- j(x, ~), j = 0, 1, 2, ... , is the set of 
homogeneous components of the parametrix of Ak. 

c) For any multi-indices 0(, {3 the derivative a~ a~ b~l'~j (x, ~) is a holomorphic 
function of z for Re z < 0 and ~ =!= O. 

Proof This is achieved by repeating on the symbol level the proof of 
Proposition 10.1; recommended to the reader as a useful exercise. 0 

In what follows it is convenient to denote by at) (x, ~), k > 0 and integer, the 
homogeneous components (of degree j) of the symbol dk) (x, ~) of the operator 
A\ so that 

mk 

a(k) (x, ~) = L ay)(x,~). 
j=O 

If k is an integer and k < 0, then by ay)(x,~) we denote the homogeneous 
components of the symbol of the parametrix to the operator A\ or, what is the 
same thing, the homogeneous components of the symbol of A - k. They are 
defined recursively by the relations 

(11.14) 

(- k) ( ,,). (k) ( ") + a_ mk x,." amk - j x,." 

+ L a~a~-':k_p(X,~)· D~a~k_q(x,~)/O(!=O, j=1,2, ... (11.15) 
p+q+lal=j 

q<j 

Definition 11.1. Let z E CC and k E 7/. be so chosen that Re z < k. Put 

b~l'~j(x,~) = L a~a~k_p(x,~)· D~b~(~"}k?_q(x,Wa!, 
p+q+!a! =j 

j=O, 1, ... 
(11.16) 

Theorem 11.1. a) Thefunction b~l'~j(x,~) as defined via formula (11.16) is 
independent of the choice of the integer k as long as Re z < k. 

b) IfRez<O, then the functions b~~'~j(x,O obtained by formula (11.16) 
coincide with the functions, denoted by the same symbol, obtained via the contour 
integral (11.10). 

c) The group property (11.13) holds for any z, WE ce. 
d) If k E 7/., then b~~'~j (x,~) = a~k- j (x, n 
e) For any multi-indices 0(, {3, any x, ~(~=!=O) and any j=O, 1, ... , 

a~ a~ b~;'~j (x,~) is an entire function in z. 
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Proof Statements a)-d) are proved in exactly the same way as the 
corresponding statements in Theorem 10.1 (it is only necessary to pass from the 
operator algebra to the symbol algebra consisting of formal series of 
homogeneous functions and with multiplication given by the composition 
formula for symbols). The proof of e) is obtained immediately by looking at the 
formulae defining the functions b~~'~j (x, ~). D 

11.3 Smoothed resolvent symbols. Let w (t) E COO (IR1), so that w (t) = 0 for 
t<t, Wet) = 1 for t~ 1. Put 

and let us define 
e(~,A) = w(I~12 + IAI2/m) 

b_m_j(X,~,A) = e(~,A) b~m_j(X,~,A). 

(11.17) 

(11.18) 

With the help of the function b_m_j(x,~, A) we construct on the manifold M 
a parametrix of the operator with parameter A - AI in a way similar to the 
second part of the proofofTheorem 5,1. Now let M = U XY be a finite covering 

Y 

of M by charts, qP a subordinated partition of unity and the functions 
lfIY E C;' (XY) be such that lfIY == 1 in a neighbourhood of supp cpY. Further let 
I/>Y, '['Y be the multiplication operators by cpY and lfIY and B:"m_/A) a pseudo
differential operator on XY with the symbol b:"m_j(X,~,A) constructed by 
formula (11.18) in the coordinate neighbourhood XY. 

Now put 

(11.19) 

and 
N-l 

B(N)(A) = L B_m_/A). (11.20) 
j=O 

Proposition 11.2. 
(A-AI)-l- B(N)(A)ECL~m-N(M,A). (11.21) 

Proof First we construct an exact parametrix B(A) of the operator A - AI, 
putting 

00 

B(A) '" L B_m_j(A). (11.22) 
j=O 

The precise meaning of this formula is: construct in each XY an asymptotic sum 

00 

bY(X,~,A) '" L b:"m_j(X,~,A), (11.23) 
j=O 

then take the operator BY (A) in XY with the symbol bY (x,~, A) and finally put 
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B()") = L cpY BYtf/ Y , (11.24) 
Y 

where ([>1, 'l'1 are as in formula (11.19). Then we obviously have 

B()') - B(N)().) E CL;;,m-N (M, A). (11.25) 

But from Theorem 9.2 it follows that 

(A-).I)-I - B()') ECOO(M,A). (11.26) 

Equating (11.25) and (11.26) we arrive at (11.21). 0 

11.4 Smoothed symbols of complex powers and the structure theorem. Let 
w (r) be the same function on IRI as at the beginning of 11.3. Put 

e (~) = w (I ~ I) 
and define 

(11.27) 

(11.28) 

The construction of b~~·.3/x,~) and b~1- j (x,~) can be carried out in any 
coordinate neighbourhood X1 (the corresponding functions will be denoted by 
b~1'.3j 1 (x,~) and b~Uj(x,~) if we need to know exactly which coordinate 
neighbourhood). Denoting by B::l'!j the operator in X1 with symbol b~1'!j(x, ~), 
we once again put 

(11.29) 

and 
N-I 

B(z) - '\' B(z) 
(N) - L... mz-j' (11.30) 

j=O 

For the statement of the basic structure theorem, we shall also need 
the definition of holomorphic families of 'PDO, which constitute the set 
(!J(G,L;,6(M», where G is a domain in the complex plane <C. 

Definition 11.2. Let X be an open set in JRn, G a domain in <C, 
a(x,~, z) E COO(Xx JRn x G) where a (x, ~,z) is holomorphic in z. We shall write 
a(x,~,z)E(!J(G,S~6(X» if for any multi-indices a, {3 any kE7L+ and any 
compacts KI eX, K2 c G there exists a constant C = C (a, {3, k, K I , K 2) such that 

(11.31) 

for (x,~, z) E KI X JRn x K 2 . If A (z) is a 'PDO in X, depending on the parameter z, 
then we shall write that A (z) E(!J (G, L;, 6 (X» if A (z) = Al (z) + R(z), where 
Al (z) is a properly supported 'PDO on X with symbol a(x,~, z) E(!J (G, S~6(X» 
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and R(z) has kernel R(x, y, z) E Coo(Xx Xx G), holomorphic in z. Finally, we 
shall write that A (z) E(9 (G, L~.b(M», if A (z) is a \{IDO on M, depending on the 
parameter z E G such that for any coordinate neighbourhood Xc M and any 
local coordinates x: X -t Xl' Xl an open set in IR", the family of operators AX(z) 
on Xl induced by the operators A (z) on M via the diffeomorphism x is such that 

Repeating the arguments of §4 we see that to verify that 
A (z) E(9 (G, L;,b(M» for 1 - e ~ b < e it suffices to do so for a fixed coordinate 
covering of M and fixed coordinate diffeomorphisms. 

Also, repeating the argument in §3 and §5, we see that composition, taking 
the adjoint and forming the parametrix of a hypo elliptic operator (we assume 
that the condition for hypo ellipticity is fulfilled uniformly in z) does not take us 
outside the holomorphic families, specified in Definition 11.2. 

We shall now formulate the basic structure theorem. 

Theorem 11.2. For any z E <r 
AZ E CLmz(M), (11.32) 

moreover for any integer N ~ 0 and t E IR 

AZ_ B(z) ERl(Rez<t Lmt-N(M» 
(N) \Y '1,0 . (11.33) 

Proof 1. First let us show that (11.32) follows from (11.33). For fixed z E <r 
set 

00 

B(z) ~ " B(z) . 
L" mz - J (11.34) 

j;O 

(this formula can be decoded in the same way as (11.22». Then it is obvious that 
we may assume 

B(Z) E CLmz (M) . (11.35) 

Now, fixing in (11.33) t EIRsuch that t > Rezand then letting Ntend to + 00, we 
obtain 

AZ _ B(z) EL -oo(M), (11.36) 

from which (11.32) follows. 
2. Let us prove (11.33). Set 

(11.37) 
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First of all note, that the group property of the complex powers AZ and its, for 
the time being hypothetical, symbols b::1'~j (Theorem 10.1 and 11.1) together 
with the fact that the composition of holomorphic families yields again a 
holomorphic family allow us to reduce the proof to the case t = 0 (N may be 
arbitrary). In other words, it suffices to verify that 

(11.38) 

In order to make use of Proposition 11.2 it is convenient to consider for 
Re z < 0 and together with the operator B(W), the operator 

'B(~\ = 2~ pz B(N) (A) dA. 
1t r 

(11.39) 

It is easily verified that 

'B(Z) - B(z) E(!)(Rez<O L-OO(M)) (N) (N) , • (11.40) 

Indeed, we obviously have 

N-1 

'B(z) - " 'B(z) 
(N)- L... mz-j' (11.41 ) 

i=O 

where 

(11.42) 

and this is why the symbol' b::1-j(x,~) of the operator' B::1- j is expressed in 
some local coordinate system by the formula 

(11.43) 

From this it obviously follows that 

'bIZ) ( l') _ b(Z)' 0 ( l') 
mz - j x, ~ - mz _ j x, ":, for I~I > 1 (11.44) 

But then the same holds for the symbols b::~ _ j (x, ~) of the operators B::1- j' the 
sum of which gives the operator Bt:J) (cf. the formulas (11.28)-(11.30)). Taking 
the obvious estimates for the derivatives with respect to z into account, (11.40) is 
obtained at once. 

Now, in view of (11.40), it is clear that it suffices to verify a member
ship of the type (11.38) for 'Rl~) = AZ - 'Bt:J). Denote by 'rt:J) (x, ~) the symbol 
of 'Rl~) in some local coordinate system and by r(N)(x,~, A) the symbol of 
R(N)(A) = (A - U) -1 - B(N) (A). Then 
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(11.45) 

and we have 

(11.46) 

But in view of Proposition 11.2, we have the estimate 

where K is some compact set in the coordinate neighbourhood under 
consideration. From this it follows that 

and via (11.46) we get (11.38) for 'Ri!J). 0 

Exercise 11.1. Extend Theorem 11.2 to the situation described in Exercise 
10.1. 

§12. Analytic Continuation of the Kernels 
of Complex Powers 

12.1 Statement of the problem. Expressing the kernel in terms of the 
symbol. Let M be a closed manifold, A an elliptic operator on M, satisfying 
(10.1) and (10.2), which makes it possible to construct the complex powers. For 
Rez < -n!m we denote by Az(x, y) dy the kernel of AZ (this then depends on the 
parameter x EM and is a density on M and may, in local coordinates defined for 
y E Y, be expressed as A z (x, y) dy, where dy is the Lebesgue measure defined by 
the local coordinates and Az (x, y) is a continuous function on M x Y). By a 
abuse of language, this function A z (x, y), which depends on z and on the local 
coordinates in a neighbourhood of y, is called the kernel. 

Our immediate goal is to construct an analytic continuation (in z) of the 
kernel A z (x, y) to the entire complex z-plane <C. Note, that if X, Yare open 
subsets of M, then Az (x, y) is uniquely defined for x E X, Y E Y by the values 
(AZu, v) for u E CO' (X) and v E CO" (Y). 

Now let X be a coordinate neighbourhood (not necessarily connected), 
which we identify with an open subset ofIRn. Ifwe write the 'PDO BEL m (X) 
in the form 

Bu(x) = J ei(x-yH b(x,~) u(y) dydC 
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where b ESI(X X IR"), then for 1< - n the kernel A (x, y) is continuous and is of 
the form 

A (x,Y) = J ei(x-YH b(x, ~)d~. 

The restriction of the 'PDO A' to X (cf. 4.3) can be represented in the form 
AZ=A1,z+R1,z, where A1,z is a properly supported 'PDO and R1,z is an 
operator with kernel Rl (x, y, z) E COO (X X X x <C), holomorphic in z and equal to 
zero for x and y close to each other. Denoting by a (x, ~,z) the symbol of A!. z we 
will also by abuse of language, call this symbol the symbol of AZ. The kernel 
AzCx, y), for x, y E X close to each other, may be represented in the form 

(12.1) 

The kernel Az (x, y), for Re z < - n/m, is continuous and holomorphic in z. 
For x = y we obtain 

Az (x, x) = J a (x, ~,z) d~ . (12.2) 

Note that the result of the integration in (12.2) (and in (12.1) for x and y close to 
each other) does not depend on the choice of the "symbol" a (x, ~,z). 

12.2 Statement ofthe result. In the statement of the result we will make use 
of the homogeneous components b~~'~/x, ~) of the symbol of AZ, which were 
constructed in §11. Note here that for Rez<j/m, these homogeneous 
components are given by the formulas 

where b~rn_j(X,~,A) are the homogeneous components of the symbol of the 
parametrix for the operator A - AI, also constructed in § 11. 

Earlier (12.3) was applied only for Rez < 0, but the integral in (12.3) 
converges for Rez <jim, hence both parts of (12.3) are holomorphic in z for 
Re z < j/ m demonstrating their equality for these z. 

We shall also need the functions 

00 

d~~'_o/x,~) = J rZ b~rn-j(x,~, - r) dr, j = 0, 1, 2, ... , (12.4) 
o 

defined for - 1 < Re z < j/ m and positively homogeneous in ~ of degree mz - j. 

Theorem 12.1. Let X be a fixed arbitrary coordinate neighbourhood on M, 
Az (x, y) the kernels of the complex powers AZ of the elliptic operator A, definedfor 
Rez < -n/m andfor x, y EX. Then 

1) for x =1= y the function Az (x, y) can be extended to an entire function 
ofz, equal to 0for z = 0,1,2, ... ; 
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2) Az(x, x) can be extended to a meromorphicfunction in the whole com
plex z-plane with at most simple poles, "Yhich may be situated only at the 

points of the arithmetic progression Zj = ] - n, j = 0, 1, ... , and the residue 
m 

of Az(x, x) at Zj is equal to 

1 
y.(x)=-- S b~~·O(x,~)d~/, (12.5) 
) m I~I =1 

where d~ I = (2 n) - n d~ I and d~ I is the surface element of the sphere I ~ I = 1; 

3) if Zi = I is a non-negative integer then Yi(X) = ° and the value x1(x) 
= Al (x , x) of the analytically extended kernel at Z = I is given by the formula 

x1(x) = (_1)1 ~ S d~)~O(x, ~)dC. 
m !~!=1 

(12.6) 

Statement 1) is valid uniformly in x E K j , Y E K2; K j and K2 being disjoint 
compact sets in X, i. e. Kz (x, y) can be continued to an entire function of Z with 
values in C (K j x K2)' Similarly, statements 2) and 3) are uniform in x E K, where K 
is a compact set, i.e. the map z-+ Az (x, x) viewed as afunction of z with values in 
C (K), can be extended meromorphically to the whole complex z-plane with poles 
at the points Zj,j = 0, 1, ... , with residues Yj(x) IK at these poles and values Xl (x) I K 

at 1=0, 1, 2, .... 

Remarks. 1) In formula (12.5) the function b<:,j~' 0 (x,~) appears, which may, 
according to the notation in § 11, be written also 

(12.7) 

since mZj - j = -no 
2) Since Zj <jjm, then instead of (12.5) we may directly write an expression 

for Yj(x) in terms of b~m_j(x,~, A): 

A similar expression can be written also for x1(x): 

x1(x)=(-1)1~ S d~/7rlb~m(l+j)_n(x,~,-r)dr, (12.9) 
m !~! = j 0 

where I is a non-negative integer (the sUbscript -m(1 + 1) - n in (12.9) is 

obtained by expressing j in terms of I by j - m = I). 
n 

3) Note the special formula for the residue of the left-most pole Zo = - nj m: 
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(12.10) 

In the important special case, when am (x, ~) > 0 for ~ =!= 0, it follows from this 
formula that Yo (x) =!= O. In what follows in this case we transform (12.10) to a 
form more convenient for applications. 

Proof of Theorem 12.1 1. We will make use of the structure theorem 11.2 
and the notation used there, viz. Bg)) and R:~) = AZ - B:~). Let us denote by 
R:~) (x, y) the kernel of R:~) and by r:~) (x,~) its symbol in some chart X. Then, if 
x, y EX we have 

R(Z) (x y) = Jr(Z) (x J') ei(x-Y)'~dJ' 
(N), (N),'" .". (12.11) 

This integral converges for Re z < N - n and defines for these z a holomorphic 
m 

function of z with values in C (Kl x K 2 ), where K 1 , K2 are arbitrary compact sets 
in X. Therefore the statements about holomorphy, poles and residues reduce to 
the corresponding statements about the kernels of the operators B:~). 

The kernel of B:~), in its turn, is a sum of terms of the form 

B(Z) .(x y) = Jei(x-y).~ bIz) .(x J')dJ' mz-) , mz-) ,~ ~, (12.12) 

therefore in what follows we will study integrals of the form (12.12). 

2. LetK1 andK2 be disjoint compact sets in X. WewillshowthatB~1_j(x,y) 
is an entire function of z with values in C (Kl x K2)' 

Integrating by parts in (12.12) for x =!= y, we obtain 

B(Z) .(x y) = Jei(x-y).~ Ix-yl-2M,dMb(z) .(x J')dJ' 
mz-) , ~ mz-) ,~ ~, (12.13) 

where M is a positive integer. This integral converges already for Re z 

2M + j - n d d fi h I h' f . f h . h . < an e mes a 0 omorp IC unctIOn 0 t ese z WIt range m 
m 

C(Kl x K2), since Ix-yl f; e > 0 for x e K 1 , Y E K2. Since M is arbitrary, it is 
clear that B~1_j(x,y) is an entire function of z with values in C(Kl XK2)' 

3. We have for X=y 

or 
(12.14) 

where e(~) = w(I~I), w(r)eCoo(JR1), w(r) = 0 for r ~ t, w(r) = 1 for r f; 1. 
Passing to polar coordinates in the integral (12.14), we obtain 
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Obviously, the second factor is an entire function of Z with values in C (K) (K any 
compact set in X). The first factor may be decomposed into the sum 

00 1 00 

J w(r) rmz-j+n-l dr = J w(r) rmz-j+n-l dr + J rmz-j+n-l dr. (12.16) 
o 0 1 

The first integral in (12.16) is an entire function of z and the second one can 
be computed 

J rmz-j+n-l dr = _ 1. = _ ~ 
1 mz - ] + n m Z - Zj 

(12.17) 

j-n 
where Zj = --. Therefore B~~_j(x,x) has one pole with the residue y/x), 

m 
given by the formula (12.5). 

Let us verify that Yj (x) = 0 if Zj = I, a non-negative integer. This is clear from 
Theorem 11.1, part d) (the functions b~l'~j(x,~) are the homogenous com
ponents of the symbol of the differential operator Al and therefore vanish for 
ml- j < 0 and, in particular, for ml- j = - n). 

4. To conclude the proof of 1) and 2) in Theorem 12.1 it remains to show 
that Al (x, y) = 0 for x =1= y and 1 Ell +. For this, it suffices to show that if u, 
v E C({' (X) and supp u n supp v = ~, then 

J Al (x,y) u(y) v(x)dydx = O. (12.18) 

This however is equivalent to the fact that <Alu, v) = 0, since in view of 
Theorem 10.1 part e), the function <Azu, v) is an entire function of z. 

Thus we have shown 1) and 2) of Theorem 12.1 and the absence of poles for 
Z Ell +. In what follows we will in fact give a new independent (although also 
more intricate) proof, allowing us to compute Al (x, x) for 1 E lL +. The reader 
who is not interested in this computation may omit the remainder of the proof. 
without any loss of understanding of the later parts of the book. 

5. To investigate the values of A z (x, x) for Z E lL +, it is convenient to use 
another approximation of Az (x, y) which is obtained if we smooth off the 
symbols of the parametrix b<:m_j(x,~, A) instead of the symbols b~~'~/x,~) of 
the complex powers. This was essentially done in 11.3, where we introduced the 
operators B_m_j(A), B(N) (A), R(N) (A), 'B~~_j' 'BilJ) and 'R~~) and their symbols, 
defined in any coordinate neighbourhood X, b_m_j(X,~,A), b(N)(X,~,A), 

r(N) (x,~, A), ' b~~ _ j (x, ~), ' b~~) (x, ~), 'r~~) (x, ~)(cf. formulae (11.17)-(11.48». As 
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an approximation of the kernel Az (x, y) we will use here the kernels 'Bl~)(x, y) of 
the operators 'Bi~): 

N -I 
'B(z) ( ) - ~ 'B(z) ( ) (N) X,y - L., mz-j x,y , (12.19) 

j=O 

where 'B~~_ j(x, y) is the kernel of the operator 'B~~_ j' expressed by the formula 

'B(z) .(x y) = Jei(X-Y)'; 'bIz) .(x l')(fJ' 
mz - ) , mz - J ' S S (12.20) 

or 

(12.21) 

Here an important role is played by the choice of contour r, since, generally 
speaking, the integral (12.21) depends on the radius of the curved part of the 
contour (the cut-off function e (~, A) entering the definition of b -m _ j (x, ~,A) is 
not holomorphic in A). We shall denote by (]m, the radius of the curved part of the 
contour r, (] > O. In view of the homogeneity of b~m _ j (x, ~,A) in (~, A1 /m), it is 
clear that there is a constant L>O such that the function b~m_j(x,~,A) is 
holomorphic in A for I AI < Lm I ~ 1m. We take the radius of the curved part of r 
equal to (]m, (] > 0 and such that 

e < LI(2 VU+l). (12.22) 

Then, if I ~ 12 + I A1 2/m ~ 1/4 and A E r, we have either I AI > (]m (i. e. A belongs to 
the straight line part of r) or I AI = em and 

(the last inequality is equivalent to (12.22)). In this way, and in view of the fact 
that e(~,A)=O for 1~12+IAI2/m~1/2, we may always assume that 
b~m_j(x,~,A) is holomorphic inside the curved parts of r. 

The kernels 'B~~_j(x,y) are defined and holomorphic for Rez <jim (for 
these z-values, the integral in (12.21) converges absolutely). Our present aim is to 
analytically continue these kernels to the entire complex z-plane. 

Let us show first of all, that for x =1= y, the kernel 'B~l- j (x, y) may be 
continued to an entire function of z (and furthermore, if KI and K2 are disjoint 
compact subsets of X, then the kernel'B~~ _ j (x, y) may be continued to an entire 
function of z with values in C (KI x K2))' Indeed by the standard integrating by 
parts 
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'B(Z) ( ) mz-j X,Y 

(12.23) 

where M is a positive integer, and from this expression the holomorphy of 
'B~~_ /x, y) for z such that Re z < U + 2M)/m is obvious. 

6. We now demonstrate that 'B~1_/x,y) = 0 for x'*' y and zE7L+. If 
z E 7L + , then)! is a single-valued function and the integrals along the straight line 
parts of r in (12.23) cancel. But also the integral along the curved part of r 
equals 0 by the Cauchy theorem, since 

L1r(b-m-/X,~,A» = L Cap[o~b~m_j(X,~,A)] [O~8(~,A)], 
lal+IPI=2M 

the function o~ b~m- j (x,~, A) is holomorphic in A inside the curved part of rand 
any derivative o~ 8 (~, A) is constant in A for I AI = const. 

7. Let us now study the analytic continuation of the integral 

(12.24) 

Let r 1 be the part of r, in I ~ 12 + I A1 2/m > 1 and r 2 the part where I ~ 12 + I A1 2/m 

~ 1 (for I~I > 1 this set is empty). We then clearly have 

pZ8b~m_jdA = S AZb~m_jdA + S AZ8b~m_jdA. 
r r 1 r 2 

It is obvious that the integral 

is an entire function of z. This entire function equals 0 for z = 0, 1, 2, ... , since 
then the integrals along the straight line parts of r2 cancel due to the single
valuedness of AZ , and the integral along the curved part is 0 by Cauchy's theorem 
(8(~,A) is constant for 1~I=const and IAI=const and b~m_j(X,~,A) is 
holomorphic in A inside the curved part of r2). We may therefore prove all the 
statements on continuation for the integral 

I(z)=_i Sd~ S AZb~m_j(X,~,A)dA. 
211: ['I 

(12.25) 

It is obvious that r 1 = r for I ~ I ~ ~ and r 1 consists of 

two rays for I~I <~. Let us put n =r 1 for I~I < ~ and 
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rl = I ~ 1m (1- (2) -m12 r for I ~ I ~ ~. Since it follows from (12.22) that 

Q/~ < L thenb~m_j(x, ~,A) has no singularities for IAI < (Q I~I/~)m 
and by the Cauchy theorem 

r' r' , 

Let us now make a change of coordinates, putting 

A = e ± in t m on the straight line parts of r~; 

(12.26) 

A = (Xm I ~ 1m e irp, where (X = R' -7r ~ q> ~ 7r on the curved part of rl. 
1-Q 

The purpose of this change is to derive from (12.25) an integral of a 
homogeneous function in (~, t) and to proceed as in part 3. of this proof. After 
the change, we obtain 

where 

I _ sm 7rZ 
l-m--

7r 

if I~I<~, 

if I~I~~, 

+00 

S tmz+m-lb~m_j(x,~, -tm)dt, 
V1-~1' 

Fig. 3 
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Let us remark that the sum 

J II d~ + J (12.27) 
leI< VI-e' Imd1=? 

is an integral of a function in (~, t), homogenous of order mz + m - 1 - m - j in 
the domain consisting of the intersection of a conic domain and the complement 
of a ball (Fig. 3). 

Introducing spherical coordinates in the space (~, t), we see that the integral 
(12.27) converges absolutely for Re(mz-j-l) < -n-1 and that, in view of 
(12.17), it can be written in the form 

m sm nz 
n(mz-j+n) 

J tmz+m-Ib'!..m_j(x,~,-tm)d(~,t)', 
lei' + I' = 1 

I>e 

(12.28) 

where d(~, t)' is the surface element on the unit sphereSn in the (~, t)-space. Since 
e > ° and t> e, the integral (12.28) is well-defined as an entire function of z. 

Further this whole expression can have only one pole for z = Zj =j - n ; if Zj =1= 0, 
m 

1, 2, ... , it vanishes for all Z Ell. + ; if Zj = 1 E 71. + it vanishes for all integer Z =1= 1 and 
there is no longer a pole at Z = I. Here one can, of course, write down the value of 
(12.28) for Z = Zj = 1 E 71. + , but it will be more convenient to do this later for the 
whole integral (12.25). 

Let us consider the remaining term 

Here it is convenient to go over to spherical coordinates in the ~-space. We then 
obtain 

C n J I3d~ = . J eiq>(z+I) J b'!..m_j(x,~,(Xmeiq»d~'dcp, (12.29) 
1~1>j/1-""? mZ-j+n -n 1~1=1 

where C=const. From this the fact that the integral is meromorphic is obvious 
and the only possible pole is at Z = Zj' If Z = 1 E 71. + we have 

j eiq>(z+l)b'!..m_j(x,~,(Xmeiq» dcp=i- I J w'b'!..m_j(x,~,(Xmw)dw=O, 
-n Iwl=1 

since the function b'!..m_j(x,~, A) is holomorphic in A for IA 1< (Xm. From this it is 
also clear that for Z = 1 E 71. + the integral (12.29) vanishes, except maybe at Z = Zj 

(if Zj E 71.), where in this case there is no pole. 

8. In this way we have demonstrated that the integral (12.24) is 
meromorphically extendable to the whole complex plane, having no more than 
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one simple pole, which is only possible for Z = Zj =j - n . Further, the value of 
m 

this integral for Z = IE lL + is zero, with the possible exception of the point 
Z = 1= Zj' but then we have no pole at Zj' Let us consider now just this case, 
Z = 1= Zj ElL +, and compute the value of the analytic continuation (12.24) at 
z=l=zj' 

Note that the integral with respect to A in (12.24) is convergent for Z = Zj' 

since Zj = j - n < jim. Decompose the ~-integral into a sum of the integrals over 
m 

the ball I ~ I ~ 1 and over its complement I ~ I > 1. Standard arguments, already 
used before, show that the integral over the ball I ~ I ~ 1 is 0 for Z = Zj' For I ~ I ~ 1 
we have e (~, A) = 1 and instead of (12.24) it is enough to consider the integral 

(12.30) 

Changing to spherical coordinates in the ~-space, we obtain 

(12.31) 

Using the Cauchy theorem for Rez > -1 we may contract the curved part of 
r to O. Then we obtain for (12.31) 

sin nz 00 

1= J J rZ b~m_j(x,~, -r)drd~'. 
n(mz-j+n) 1~1=1 0 

The value of this expression for Z = Zj = IE lL + equals exactly XI (x), where XI (x) 
is given by the formula (12.6) or (12.9). Therefore 'B~)n (x, x) = XI (x). 

9. Let us now note that the difference 

'Rl~) (x, y) = Az (x, y)- 'B«~\ (x, y) 

= 2~ J d~ pZei(x-y).~ r(N)(x,~,A)dA 
n r 

(12.32) 

N-n 
can be extended to a holomorphic function of z for Re z < -- with values in 

m 
C(Kx K), where Kis any compact set in X. From this one can see that in the half

N-n 
plane Rez < -- the functions Az(x,y) and 'B«;Mx,y) have the same poles 

m 
with identical residues. Further, if Z = IE lL + and x =t= y, then Al (x, y) 
= 'B8J) (x, y) = 0 (cf. parts 4 and 6 of this proof). It is therefore clear, that by 
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continuity A,(x,y) = 'BW) (x,y) for all X,y (if 1< N: n). In particular, 

A, (x, x) = 'B8J) (x, x), which together with the result of part 8. completes the 
proof of Theorem 12.1. D 

§13. The (-function of an Elliptic Operator and Formal 
Asymptotic Behaviour of the Spectrum 

13.1 Definition and the continuation theorem. Let A be an elliptic operator 
on a closed manifold M, satisfying the same conditions as in the foregoing 
section. Let A z (x, y) dy be the kernel of AZ. For x = y we obtain from this kernel 
the density A z (x, x) dx which is well-defined on the whole manifold M and which 
can be integrated over M. 

Definition 13.1. The function 

C(Z) = J A z (x, x) dx (13.1) 
M 

is called the' -function of the elliptic operator A. 

In the next section we show that 'A (z) can be expressed via the eigenvalues of 
A allowing us in the self-adjoint case to obtain the simplest theorem on the 
asymptotic behaviour of the eigenvalues. For now, we shall be content with the 
formal Definition 13.1 and will formulate a theorem on the analytic 
continuation of the ,-function. 

Theorem 13.1. The function C(z) defined by the formula (13.1) for 
Re z < - n/ m can be continued to a meromorphic function in the entire complex 
z-plane with at most simple poles, which can be situated only in the points of 

the arithmetic progression Zj = j - n, j = 0, 1, 2, ... , except for the points 
m 

Zj = 1=0, 1, 2, ... , and where the residue Yj at Zj and the value 'Xl = '(I), in the 
notations of Theorem 12.1, are given by the formulae 

. j-n 
= - 2~ J dx J de pm b?.m_j(x,~,A)dA, 

nm M !~!=1 r 
(13.2) 

=(-IY~ Jdx J d~'7rlb?.m(l+1)_n(x,~,-r)dr. (13.3) 
m M !~! = 1 0 
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Proof Follows from Theorem 12.1 by integrating (12.5) and (12.6) with 
respect to x, taking into account the remarks following Theorem 12.1. 0 

13.2 The spectral meaning of the, -function. In this section we shall assume 
that on M there is given a smooth positive density, which by abuse of notation is 
denoted dx. Then the kernel of an operator may be identified with an ordinary 
function on M x M. In addition, the self-adjointness of an elliptic operator on M 
is a meaningful concept. 

Theorem 13.2. Let A be a self-adjoint positive elliptic differential operator on 
M and let Aj U = 1, 2, ... ) be its eigenvalues. Then 

OCJ 

C(z) = L Aj, Rez < -njm, (13.4) 
j=l 

where the right-hand side converges absolutely for the indicated z-values. This 
convergence is uniform in z in the half-plane Re z < - nj m - t: for arbitrary t: > O. 

Proof Let Rez < -njm and let AzCx,y) be the kernel of AZ, which is a 
continuous function on M x M. Let {cp/x)}t)= 1 be complete orthonormal system 
of eigenfunctions for A. Decomposing Az(x,y) into a Fourier series in the 

complete orthonormal system of functions {CPj(X)CPk(Y)}f,'k=l we obtain 
OCJ 

Az(x,y) = L Ajcp/x) CPj(Y) , (13.5) 
j=l 

where the series converges in L2 (M x M). If z is real, then by the Mercer theorem 
(cf. Riesz and Sz.-Nagy [1], §98) the series (13.5) converges absolutely and 
uniformly. Putting x = yin (13.5) and integrating over x, we obtain the identity 
(13.4). In the case of a non-real z it is only necessary to note that IAj I = A~ez, from 
which it follows that the series in (13.4) and (13.5) converge absolutely and 
uniformly. The last statement of the theorem follows from the fact that if So E 
IR, So < -n/m, then the series (13.5) for Rez < So is majorized in absolute 
value by the sums of the series 

1 OCJ 1 OCJ 

:2 L A:jolcpj(x)1 2+:2 L AjoIcpj(YW, 
j=l j=l 

which are themselves absolutely and uniformly converging series with positive 
terms. 0 

Remark 1. One may also prove Theorem 13.2 without using the Mercer 
theorem, noting that for Rez < -nj(2m) the operator AZ has a kernel 
Az (x, y) E L2 (M x M) (i. e. AZ is a Hilbert-Schmidt operator) and in view of the 
Parceval identity we have 

00 

L AJs = S lAS (x, yW dx dy, s< -nj(2m). (13.6) 
j= 1 MxM 
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From the group property it follows that for s < - n 

As (x, y) = S As/2 (x, z) As/2 (z, y) dz , 
or 

As (x, y) = S As/2 (x, z) As/2 (y, z) dz 

using the fact that the kernel As/2 (x, y) is hermitean. Putting now x = y and 
integrating in xwe obtain from (13.6) that (13.4) holds for real z < -njm. The 
transition to complex z is accomplished in the same way as above or by using 
analytic continuation. 

Let us remark however that from this proof it is hard to get exact information 
on the decomposition (13.5) (in particular about the uniform convergence of the 
series there). 

Remark 2. The equality (13.4) is valid also without the assumption on self
adjointness of A. The proof is easily obtained from the theorem ofV.B. Lidskii 
(cf. Gohberg I.e. and Krein M.G. [1], TheoremS.4). However, in the non
selfadjoint case it is not possible to extract any kind of interesting information 
about the eigenvalues from (13.4). The only exception is the case of a normal 
operator, where in fact the results may be deduced from the corresponding 
results in the self-adjoint case. 

13.3 Formal asymptotic behaviour of the function N(t) in the self-adjoint 
case. The function Vet). Let A be as in Theorem 13.2. Set 

N(t) = L 1 (13.7) 

for arbitrary tEIR, i.e. N(t) is the number of eigenvalues of A not exceeding t 
(counting multiplicity). It is clear that N(t) is a non-decreasing function of t 
which equals 0 for t < AI' We assume here for convenience that the eigenvalues 
have been arranged in increasing order: 

(13.S) 

We then have an obvious formula, expressing C(z) in terms of N(t) in the 
form of a Stieltjes integral: 

00 

C (z) = S t Z dN (t) . (13.9) 
o 

Assume now that N(t) admits the following asymptotic expansion as 
t--* + CXJ: 

(13.1 0) 
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where Reoc i > Reoc 2 > ... > Reock > Reock+l, then 

k C1J 

C(z) = L CI S lZd(l"') + ;;'(z) , (13.11) 
1= I I 

where;;' (z) is holomorphic for Re z < - Re OC k + I. Since 

it follows that (13.11) may be rewritten as 

(13.12) 

Hence for Re z < - Re OCk+ I the function C (z) has simple poles at - OC I with 
residues -CIOC!> 1= 1, ... , k. Therefore knowing the poles of 'A(S) and the 
residues at these poles allows us to write down a formal asymptotic expansion 
for N (t). In reality however, only the computation of the first term of the 
asymptotic expansion works out well. This term, dictated by comparison of 

(13.10) and (13.12), must have the form - '0 t So if 'A(S) has its left-most pole at 
- So < 0 with residue, 0 . So 

The formula 

'0 N({)~ --(So 

So 
(13.13) 

will be rigorously proved in the following section using the Tauberian theorem 
of Ikehara, while for the present we shall occupy ourselves with the specifica
tion of its coefficients. 

By Theorem 13.1 we have So = n/m and 

(13.14) 

Since in the situation under consideration am (x,~) > 0 for ~ '*' 0, then '0 '*' 0, so 
that the pole at -n/m really exists. Formula (13.13) may now be written 

N(t) ~! S dx S a;;; "1m (x,~) d~' . t"lm. 
n M !~! = I 

(13.15) 

Now rewrite the right-hand side of (13.15) in a more natural form. For this, 
introduce the function 
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Vet) = (2rc)-n J dxd~. (13.16) 
a.(x,~) < I 

Note that this function has an invariant meaning: it is the volume in T* M 
of all points (x,~) such that am(x,~) < t, multiplied by (2rc) -no Here the volume 
is given in T* M by the measure, induced by the canonical symplectic structure 
(cf. Arnol'd [1]). 

Lemma 13.1. We have the following formula 

(13.17) 

and may, therefore, instead of (13.15) write 

N(t) '" Vet). (13.18) 

Proof Let us remark to begin with, that the condition am (x,~) < t, in view 
of the homogeneity of am, is equivalent to am (x, t -l/m~) < 1. Thus, changing 
variables in (13.16), rJ = r l/m~, we obtain 

V(t)= J dxdrJ·t nlm . 
a.(x,~)<1 

The later arguments will take place for a fixed value of x, and we shall write am (~) 
instead of am(x, ~). 

Fig. 4 

We have to show that 

J d~ = ~ J a;;.n/m(~') d~'. 
a.(~)<1 n I~I=I 

(13.19) 
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Let I~'I = 1 and den = sup{t: am(tn~ 1} (Fig.4), so that d(~') is the 
1>0 

distance of 0 from the surface am (0 = 1 in the direction ~ I. Let us consider the 
infinitesimal cone with vertex in 0 and height den . C cutting out the area de 
on the surface I~'I = 1. The volume of this cone equals ~(d(~')Y' d~'. 

Therefore 

S d~=~ S (d(~'))nd~'. 
am(~)<1 n 1(1=1 

(13.20) 

But amW = am(I~I' I~I) = 1~lmamC~I} in view of the homogeneity of 

amW; hence if amW=l then am(I~I)= I~I-m, from which d(~')=I~1 
= am(n- l/m . Substituting this expression for d(~') in (13.20) we obtain 
(13.19). 0 

13.4 Asymptotic behaviour of the eigenvalues. We shall now state an 
asymptotic formula for Ak as k -+ + 00, equivalent to the asymptotic formula for 
N(t) «13.13), (13.15) or (13.18)), and infer from this that, essentially, N(t) as a 
function of t, and Ak as a function of k, are mutually inverse functions. 

Denote by VI the coefficient of the term tnlm in (13.17), so that VI = V(l). 
Then the desired formula is of the form 

(13.21 ) 

Proposition 13.1. The asymptotic formulae (13.21) and (13.18) are equivalent 
(i. e. each implies the other). 

Proof 1. Suppose (13.18) holds, i.e. for any e > 0 there exists to> 0 such 
that 

(13.22) 

for t> to. Choose an integer ko > 0, such that Ako > to and Ako + 1 > Ako ' Then 
show that 

(13.23) 

for k ;?; ko . Indeed, for any k ;?; ko there exist integers k 1 and k2 such that ko ~ k 1 

< k ~ k2 and Ak, < Ak, + 1 = Ak, < Ak, + l' In particular, we have N (A k) = k 1 and 
N(Ak ) = k2' so that from (13.22) it follows that 

1 - e :::; k V-I A - nlm :::; 1 + e - 11k, _ , 

1 - e ~ k2 Vl- 1 Ak~nlm ~ 1 + e. 

(13.24) 

(13.25) 
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Further, N(t) = kl for Ak , ~ t < Ak , so that for these t 

and by continuity 
(13.26) 

It follows from (13.25) and (13.26) that 

1 - 8 ::s; kV- I A -n/m ::s; 1 + 8 - I k, _ , (13.27) 

and it remains to note that Ak = Ak,. Hence (13.23) is proven. But from this it 
follows that 

(13.28) 

and this implies (13.21). 

2. Now let (13.21) hold. Choose 8 > 0 and let ko be an integer such that for 
any integer k> ko, the inequality (13.28) holds. Let Ak , ~ t < Ak" where kl and 
k2 are the same as in part 1. of this proof. It follows from (13.28) that, in 
particular, 

1 - 8 ::s; k V-I A -n/m ::s; 1 + B 
- I I k, - , 

1 - B ~ (k l + 1) VI- I A~n/m ~ 1 + 8, 

(13.29) 

(13.30) 

since Ak, + I = Ak,. Choose now a number ko so large that VI- I A';- n/m ~ 8 for 
k ~ ko . We then obtain from (13.30) that 

But N(t) = kl and therefore from (13.29) and (13.31) we get 

1 - 28 ~ N(t) V1- I Ak;n/m ~ 1 + 28, 

1 - 28 ~ N(t) V1- 1 A;;,n/m ~ 1 + 28, 

from which it follows that 

in view of the fact that Ak , ~ t < Ak " as required. 0 

(13.31) 
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13.5 Problems 

Problem 13.1. Find the poles, residues and values at the non-negative 

integer points of the (-function of the operator A = - ::2 on the circle IR./2n 7L. 

Express the classical Riemann (-function 

00 

(z) = L 
n= 1 nZ 

(13.32) 

in terms of C (z) and find all the poles, residues and values of (z) at z = 0, - 2, 
-4, .... 

Problem 13.2. Consider the Schrodinger operator A = - LI + q(x) on the 
torus 1[2 = IR. 2/2n 7L 2. Here q (x) E COO (1[2). Express (A (0) in terms of q(x). 

Problem 13.3. Let A be an elliptic differential operator, mapping COO (M, E) 
into COO (M, F), where E and F are smooth vector bundles on M. Let there be 
given a smooth density on M and hermitean structures on E and F (a hermitean 
metric on each fiber). Show that 

(13.33) 

where the right-hand side does not depend on z. 
(This formula allows us, in principle to write down the index A in terms of the 

symbol of A, using Theorem 13.1 which gives the possibility of computing (B(O) 
for B = 1+ A* A or B = 1+ AA*.) 

Hint: All non-zero eigenvalues of AA* and A* A have the same multipli
cities, since A maps an eigensubspace of A* A into an eigensubspace of AA* and 
A * acts in the opposite direction. 

Problem 13.4. Show that the kernel K(t, x, y) of the operator eAt from 
Problem 10.1 is infinitely differentiable in f, x and y for t> 0 and for all x EM, 
Y EM. As t-+ +0, we have the following asymptotic properties of K(f, x, y): 

a) If x =j= y, then K (f, x, y) = 0 (tN) for any N> O. 

b) K (t, x, x) has the following asymptotic expansion as f -+ + 0: 

00 j-n 

K(t, x, x) ~ L a/x)t m , 

j=O 

(13.34) 

where aj(x) E COO (M). Express aj(x) in terms of Yj(x) and x/ex) (cf. 
Theorem 12.1) and write down an expression for a/x) in terms of the symbol of 
A. 
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Verify that if A* = A, then 

r:1J 

K(t,x,y) = L e-Ahpj(X) ((J/Y) (13.35) 
j=O 

and the O-function 
r:1J 

O(t) = L e-Ajl= J K(t,x,x)dx (13.36) 
j=O M 

has the asymptotic expansion 
r:1J j-n 

O(t) '" L (I./,n. (13.37) 
j=O 

Express index A in terms of the O-functions of the operators A * A and AA *. 

Problem 13.5. Let E be a hermitean vector bundle on a closed manifold M 
with smooth positive density and let A be an elliptic self-adjoint differential 
operator mapping Cr:1J(M,E) into Cr:1J(M,E) (not necessarily semibounded). 
Consider the function 

'1A(Z) = L (signll) . IIlIZ, (13.38) 
A 

where the sum runs over all the eigenvalues of A. Show that the series (13.38) 
converges absolutely for Re z < - n/m and the function defined by it, '1 A (z), may 
be continued to the whole complex z-plane as a meromorphic function with 

simple poles at Zj = j - n ,j = 0, 1, 2, .... Express the residues at these poles via 
m 

the symbol of A. 
Hint. Express '1Az) in terms of 'A (z) and G (z) where C (z) and G (z) are 

two ,-functions of A, obtained by different choices of the branch for IlZ with 
cuts along the upper and lower semi axes of the imaginary axis. 

§14. The Tauberian Theorem of Ikehara 

14.1 Formulation. The Tauberian theorem of Ikehara allows us to deduce 
from the fact that the ,-function is meromorphic asymptotic formulae for N(t) 
as t-+ + 00 or for Ilk as k-+ + 00 (cf. §13). Let us give its exact formulation. 

Theorem 14.1. Let N(t) be a non-decreasing/unction equal to O/or t ~ 1 and 
such that the integral 

r:1J 

,(z) = J t Z dN(t) (14.1) 
1 
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converges Jor Re z < - ko, where ko > ° and the Junction 

A 
(z) + -k

z+ 0 

121 

can be extended by continuity to the closed half-plane Re z ::; -ko. We will 
assume that A =1= 0. Then, as t -+ +00 we have 

(14.2) 

(recall that it (t) ~ fz (t) as t ~ + 00 means that lim it (t)/fz (t) = 1). 
t-t + 00 

(The convergence of the integral in (14.1) for Re z < - ko easily follows from 
a weaker condition. Namely, it suffices to suppose that the integral converges for 
Rez< -kl for some kl and the function (z) thus expressed can be holo
morphically continued to the half-plane Re z < - ko). 

Corollary 14.1. Suppose that the Junction (z), defined Jor Re z < - ko by 
(14.1), can be meromorphically continued into the larger half-plane Rez < -ko 
+ 8, where 8 > 0, so that on the line Re z = - ko there is a single and moreover 
simple pole at - ko with residue - A. Then the asymptotic Jormula (14.2) holds. 

14.2 Beginning of the proof of Theorem 14.1: The reductions. 

1 st reduction. It is convenient to consider instead of (z) the function 
J(z) = ( - z). We then obtain 

00 

J(z) = f t-ZdN(t), (14.3) 
1 

where the integral converges for Re z > ko and the function J(z) _ _ A_ is 
continuous for Re z ~ ko . z - ko 

2nd reduction: Reduction to the case ko = 1. By introducing the function 
it (z) = J(koz), we obtain 

00 00 

it (z) = f t- koz dN(t) = f r- Z dN1 (r), 
1 1 

where Nl (r) = N(rl/ko). Since 

A A 1 
J(koz) - = it (z) - - . -

koz - ko ko z-l 

and since N(t) ~ ~ tko is equivalent to Nl (r) ~ kA r, then Theorem 14.1 reduces 
ko 0 

to the following statement: 
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Let N(t) be a non-decreasing function and let the integral 

<Xl 

J(z) = f t-ZdN(t) (14.4) 
1 

be convergent for Re z > 1, where J(z) - ~ is continuous for Re z ~ 1. Then 
z-1 

N(t) "" At as t- + 00. (14.5) 

Note that from the continuity of J(z) - ~1 for Re z ~ 1 and the fact that 
z-

J(z) ~ 0 for real z ~ 1, it follows that A > O. Changing N (t) for A -1 N (t), which 
results in changingJ(z) for A -1 J(z) , we see that it suffices to show the statement 
for A = 1. 

3rd reduction. Let us pass from the Melin transformation to the Laplace 
transformation, i.e. make a change of variables t = eX. Put N(eX) = cp (x). We 
then see that cp (x) is a non-decreasing function, equal to zero for x < 0 and that 
the integral 

<Xl 

J(z) = f e-zxdcp(x) (14.6) 
o 

converges for Rez > 1 and J(z) - _1_ is continuous for Rez ~ 1. We must 
show that z - 1 

lim e- X cp (x) = 1. (14.7) 
x~+C() 

4th reduction. Denote H (x) = e-xqJ(x). The qJ(x) is non-decreasing if and 
only if 

H(y)~H(x)ex-y for y~x. (14.8) 

Integrating by parts in (14.6) gives, for Re z > 1 

<Xl 00 

J(z) = z f e-zxcp(x)dx = z f e-(z-l)x H(x)dx (14.9) 
o 0 

Now put z = 1 + E + it, where E > 0 and t is real. Note that 

<Xl 1 f e-(z-l)xdx = --, 
o z-1 

therefore, (14.9) implies 
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fez) __ 1_ = 7 e-(z-l)x (H(x) - 1) dx. 
z Z - 1 0 

Since 

fez) __ 1 __ = ~ (f(Z) __ 1 __ 1), 
Z z-1 z z-1 

then, putting 

h,(t) = ~ (f(Z) - ~1 -1)1 ' 
Z Z - z ~ 1 +, + it 

(14.10) 

we obtain 
ro 

h,(t) = S e-n-itX(H(x) -1)dx. (14.11) 
o 

We may now give the following reformulation of Theorem 14.1. 

Theorem 14.1'. Let H (x) be a function, equal to 0 for x < 0 and satisfying 
(14.8)for all real x andy. Assume that the integral (14.11) converges absolutely for 
any I: > 0 and the function h, (t) defined by it, is such that the limit 

lim h, (t) = h (t) (14.12) 
,~o 

exists and is uniform on any finite segment I t I ~ U. Then 

lim H(x) = 1 . (14.13) 
X-Io + 00 

Remark. If H (x) tends to 1 sufficiently quickly (if e. g. H (x) - 1 ELI ([0, 
+(0))), then we obtain (14.12) from (14.13) by passing to the limit under the 
integral sign, which one may do in view of the dominated convergence theorem 
(the function h (t) then equals the Fourier transform ofe (x) (H(x) - 1), e (x) the 
Heaviside function). In some sense, the Tauberian condition (14.8) allows one to 
invert this statement. 

14.3 The basic lemma. It is clear that in order to prove Theorem 14.1' we 
have to somehow express H(x) - 1 in terms of h (t) which, formally, is possible 
by the inverse Fourier transformation. However, we know nothing about the 
behaviour of h (t) as t-+ + 00 or about the nature of the convergence of h, (t) to 
h (t) on the whole line and it is therefore necessary, to begin with, to multiply the 
limit equality (14.12) with a finite cut-off function i2 (t). These considerations, 
linked to the convenience ofha ving transformations with positive kernels (of the 
Fejer type), demonstrate that it is convenient to consider fi (t) to be the Fourier 
transform of a non-negative function Q (v) ELI (IR): 

fi(t) = S e- itv Q(v)dv. (14.14) 
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We shall assume that Q (t) is a continuous function with compact support 
such that Q(O)= 1, e(v);?;O and e(v)ELl(lR). From this it follows that 

+00 

S e(v)dv = 1. (14.15) 
-00 

The existence of a function Q (t) of the type described may be shown in the 
same way as in 6.3 (at the beginning of the proof of Theorem 6.3 a function 
Q (t) E COO (IR 1) is constructed which satisfies all these requirements). We can 
also explicitly define Q(t) , putting 

2 ' /
1- 11 . 

e(t)= 0; 

Then indeed, for a fIxed v =1= 0 we have 

It I ~ 2, 

It I >2. 

2 . (Itl) 2 eilV 
( Itl) eitv 

( Itl)12 e(v) = S eltv 1-- dt= - S it) d 1-- + -. 1--
-2 2 -2 2 2nlV 2-2 

= 2 eitv signtdt=- eitv 12_ eitv 1-2=1-cos2v=~sin2~ 
J2 2iv 4nv2 0 4nv2 0 2nv2 n v2 ' 

from which all the necessary properties of e (v) are obvious. 

Lemma 14.1. For any fixed A > 0 

+ 00 ( v) lim J H Y - I e (v) dv = 1 . 
y~ + 00 - 00 

(14.16) 

Proof 1. Put e.!(t) = e (tfA) and e.! (v) = Ae (Av) so that e.! (t) is the Fourier 
transform of Q.!(v). It is clear that 

+ 00 (v) + 00 )00 H Y-I e(v) dv = }X) H(y-v) Q.!(v)dv, (14.17) 

and since Q.! (v) possesses the same properties as Q (v), it suffIces to prove (14.16) 
for A = 1. 

2. Putting £.(t) = e(t)he(t), we compute the inverse Fourier transform of 
the function £.(t) with compact support, taking into account that e (t) and he(t) 
are the Fourier transforms of the absolutely integrable functions Q (v) and 
B(v) (H(v)-1)e-ev: 
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+00 [+00 J = J (H(x)-l)e-£X J g(t) eit(y-x)dt dx 
o - 00 

(14.18) 

+00 

= J (H(x) -1) e-£x g (y-x) dx. 
o 

As a result, as one might have anticipated, we obtain a convolution and we 
have made sure that (14.18) holds everywhere and in the usual sense (the change 
in the order of integration is permitted by the Fubini's theorem). 

Let us now rewrite (14.18) in the form 

+00 00 00 

J eity £.(t)dt + J e-<X g(y-x)dx = J H(x) e-£X g(y-x)dx (14.19) 
- 00 0 0 

and take the limit as e-+ +0. Since suPP£' c supp g and £.(t) -+ F(t) uniformly 
in tEsUppg (here F(t) = g(t) h(t», then the first integral on the left-hand 
side has a limit as e-+ +0 for any y. The same also holds for the 
second integral (e.g. by the dominated convergence theorem). Therefore, the 
integral on the right-hand side of (14.19) has for any y a limit as e-+ +0. Since 
H(x)e-'x g (y-x) converges monotonely as e-+ +0 to H(x) g (y-x), we get 

+00 00 00 

J eity F(t)dt + J g(y-x)dx = J H(x) g(y-x)dx. (14.20) 
- 00 0 0 

Now let y tend to + 00. By the Riemann lemma 

+00 

lim J eity F(t) dt = O. 
y-++co -00 

00 

In addition, it is clear that lim J g (y - x) dx = 1. Therefore, it follows from 
(14.20) that y~ + 00 0 

00 

lim J H(x) g(y-x)dx = 1. (14.21) 
y-+ + co 0 

But 
00 +00 +00 

J H(x)g(y-x)dx = J H(x) g(y-x)dx = J H(y-v) g(v)dv, 
o -00 -00 

so that (14.21) implies the statement of the lemma. 0 
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14.4 Proof of Theorem 14.1'. 1. First, we show that 

lim H(y) ~ 1. (14.22) 
y--t + 00 

Since 

for any a> 0, it follows from Lemma 14.1 that 

lim (14.23) 
y ..... + 00 

Now, in view of the Tauberian condition (14.8) we have 

for vE[-a,a]. 

Now, it follows from (14.23) that 

lim H(y-~)e-¥1 Q(v)dv~l, 
y ..... +oo A -0 

or 

2a ( a )-1 
lim H(y) ~ eT J (!(v)dv . 

y-t+oo -0 

(14.24) 

Inequality (14.24) holds for any a> 0 and A > O. Leta~ + 00 andA~ + 00 in 
this inequality in such a way that a/A~O. Then we obtain the required estimate 
(14.22) from (14.24). 

2. We will now verify that 

lim H(y) ~ 1. (14.25) 
y-+ + 0Cl 

To begin with, note that (14.22) implies the boundedness of H (y): 

(14.26) 

in view of which 

J H(Y-~) (!(v)dv ~ cx(b) , 
Ivl~b A 

(14.27) 
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where ex (b) --t 0 as b--t + 00 (this means, in particular that the integral on the left
hand side of (14.27) approaches 0 as b--t + 00, uniformly in y and A). 

Since 

SHy -, Q (v) dv = S ... + J ... , + co (v) b 

- co /I, -b Ivl~b 

then, by (14.27) and Lemma 14.1 we obtain for arbitrary b> 0 

lim S H (y -~) Q (v) dv ~ 1 - ex (b) . 
y~+oo Ivl~b A 

(14.28) 

Let us again use condition (14.8). We have 

from which, in view of (14.28), it follows that 

( b) ~ b 
lim H y + , e J. S Q (v) dv ~ 1 - ex (b) , 

y~+oo /I, -b 

or 
2b ( b )-1 

lim H(y) ~ (1-ex(b» e - T J Q(v)dv 
y~ + 00 b 

(14.29) 

Now let b--t + 00 and A--t + 00, so that b/A--tO. Then from (14.29) we obtain the 
desired inequality (14.25). 0 

Problem 14.1. Let N(t) be a non-decreasing function, equal to 0 for t ~ 1 
and let the integral (14.1) be convergent for Rez < - k o, some ko > O. Assume 
furthermore, that the function, (z), defined by (14.1), can be meromorphically 
continued to larger half-space Rez < - ko + e, where e > 0 so that on the line 
Rez = -ko there is a single pole at -ko with principal part A (Z+ko)-l in the 
Laurent expansion (here I is a positive integer, equal to the order of the pole at 
- ko). Show that 

as t--t + 00. 

Problem 14.2. Prove the Karamata Tauberian theorem: 
Let N (t) be a non-decreasing function of t E IR 1 , equal to 0 for t < 1 and such 

that the integral 
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00 

8(z) = S e-ztdN(t) (14.30) 
o 

converges for all z > 0 and 

(14.31) 

(here A> 0 and IX> 0 are constants). Then 

A 
N(t) '" t~ as t--+ + (fJ . 

r(IX+1) 
(14.32) 

§15. Asymptotic Behaviour of the Spectral Function and 
the Eigenvalues (Rough Theorem) 

15.1 The spectral function and its asymptotic behaviour on the diagonal. Let 
M be a closed n-dimensional manifold on which there is given a smooth positive 
density and let A be a self-adjoint, elliptic operator on M such that 

(15.1) 

Then A is semibounded. Denote by Aj its eigenvalues, enumerated in 
increasing order (counting multiplicities): 

By CPj(x) we denote the corresponding eigenfunctions, which constitute an 
orthonormal system. 

Let Et be the spectral projection of A (the orthogonal projection onto the 
linear hull of all eigenvectors with eigenvalues not exceeding t). It is clear that 

Etu = L (u, cp) CPj· (15.2) 
},j~t 

Definition 15.1. The spectral function of A is the kernel (in the sense of L. 
Schwartz) of the operator Et • 

Taking into account that on M there is a correspondence between functions 
and densities, we may assume that the spectral function is a function, not a 

density. From (15.2) it is obvious that this function, e (x, y, t), is given by the 
formula 

e (x, y, t) = L CPj (x) CPj (y) (15.3) 
'!J;;>t 
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and, in particular, belongs to Coo(MxM) for every fixed t. Let us note 
immediately the following properties of e(x, y, t): 

1) e(x, x, t) is a non-decreasing function of t for any fixed x EM; 

2) the function N (t) introduced in section 13.3, can be expressed in terms of 
e (x, x, t) by the formula 

N(t) = S e(x,x,t)dx, (15.4) 
M 

where dx is a fixed density on M. 
Now assume that local coordinates in a neighbourhood of x are so chosen, 

that the density coincides with the Lebesgue measure in these coordinates and 
put 

Vx(t) = S ct~. (15.5) 
a.(x.~)< t 

Theorem 15.1. For any x EM the following holds: 

(15.6) 

Proof 1.To begin with, note that without loss of generality we may 
assume .11 ~ 1. Indeed this is satisfied by the operator A1 = A + MI for 
sufficiently large M. Now, if e1 (x, y, t) is the spectral function of A 1 , we have 
e (x, y, t) = e 1 (x, y, t+ M). Therefore, the asymptotic formula e1 (x, x, t) ~ Vx (t) 
implies e(x,x,t)~ Vx(t+M). But 

which implies (15.6). 

2. Thus let .11 ~ 1. We may then define complex powers AZ of A in 
accordance with the scheme of §10. Using (13.5), we may for x = y express the 
kernel Az(x,y) of AZ in terms of the spectral function as follows 

00 

A z (x, x) = S t Z de (x, x, t), (15.7) 
o 

where d signifies the differentiation with respect to t (for a fixed x this is simply a 
Stieltjes integral). In view of Theorems 12.1 and 14.1 we obtain now for e(x, x, t) 
the asymptotic formula 

(15.8) 
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An elementary transformation of the right-hand side of this formula, carried 
out in the proof of Lemma 13.1, shows that it equals VAt), implying (15.6). 0 

IS.2 Asymptotic behaviour of the Eigenvalues 

Theorem IS.2. Let A satisfy the conditions described at the beginning of this 
section. Then one has the following asymptotic relations 

N(t)- V(t), t-++oo, 

Ak '" V (1) -min km/n, k -+ + 00 , 

where Vet) is defined by the formula (13.16). 

(15.9) 

(15.10) 

Proof In §13 we showed the equivalence of (15.9) and (15.10). (Pro
position 13.1). Let us prove (15.9). This is done on the basis of the Tauberian 
theorem of Ikehara, by analogy with the proof of Theorem 15.1. Indeed, again 
we may assume that Ai ~ 1. Then for Rez < -n/m, we clearly have the formula 

00 

(A (z) = J t% dN(t). (15.11) 
1 

It remains to use Theorems 13.1 and 14.1 and Lemma 13.1. o 
Remark. One can derive (15.9) from (15.6) by integration over x.To justify 

this integration, it is necessary, however, to prove the uniformity in x of (15.6), 
which requires in several places (in particular, in the proof of the Ikehara theo
rem) the verification of uniformity in the parameter. To avoid this cumbersome 
verification, we have preferred to give an independent proof. 

IS.3 Problems 

Problem IS.1. In the situation of this section prove the estimate 

le(x,y, t) I ~ Ctn/m, 

where x, y EM and the constant C> 0 does not depend on x, y and t (t ~ 1). 

Problem IS.2. Let A be an elliptic differential operator, on closed manifold 
M with smooth positive density, which is normal, i.e. 

A*A = AA*. (15.12) 

a) Show that A has an orthonormal basis of smooth eigenfunctions (fij(x), 
j = 1,2, ... , with eigenvalues Aj E <C, such that 

(15.13) 

b) Show that if N(t) denotes the number of Aj , such that IAjl ~ t, and if Vet) 
is defined by the formula 
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Vet) = (2n)-n J dxd~, (15.14) 
la.(x, ~)I < t 

then 

N(t)~V(t) as t--++oo. (15.15) 

Problem 15.3. Deduce Theorems 15.1 and 15.2 from the results of Pro
blem 13.4 and the Tauberian theorem of Karamata (Problem 14.2). 

Problem 15.4. Let M be a closed manifold, A an elliptic differential operator 
on M, such that am (x, ~) > 0 for ~ =!= O. Let Aj be its eigenvalues and Nl (t) the 
number of eigenvalues with Rd j ~ t (here we take for the multiplicity of an 
eigenvalue Ao the dimension of the root subspace E, ,cf. Theorem 8.4), N2 (t) the 
number of eigenvalues with I Aj I ~ t. Show that 0 

Nl (t) ~ N z (t) ~ Vet) as t --+ + 00, (15.16) 

where Vet) is defined as before. Show that 

(15.17) 

(this means, in particular, that 1m Ak has a lower degree of growth than ReAk ). 



Chapter III 
Asymptotic Behaviour of the Spectral Function 

§16. Formulation of the Hormander Theorem and Comments 

16.1 Formulation and an example. Let M be a closed n-dimensional 
manifold on which there is given a smooth positive density dx and let A be an 
elliptic, self-adjoint operator of degree m on M such that am (x, ~) > 0 for ~ + o. 
We will use the notations e(x, y, ).), N()'), Vx ().) and V()') introduced in §15. The 
following theorem refines Theorems 15.1 and 15.2. 

Theorem 16.1 (L. H6rmander). The following estimate holds 

le(x,x,).)-VA).)I;;:;C).(n-l)/m, )'~1, xEM, (16.1) 

where the constant C> 0 is independent of x and A. 

Corollary 16.1. The following asymptotic formula holds 

N()') = V()') (1+0().-I/m)) as ).~+CX) (16.2) 

Remark 16.1. In general the estimate of the remainder in (16.1), (16.2) 
cannot be improved. This can be seen by looking, for instance, at the operator 

A = - dd2
2 on the circle SI = IR/2 n 7L. The corresponding eigenfunctions are 

x . 
of the form 

_ 1 ikx 
lfIk(X) - ,/- e , 

V 2n 
k= 0, ± 1, 

and the eigenvalues are ).k = k 2 , k = 0, ± 1, ± 2, .... 

±2, ... , 

Further, since Ilfl k (xW = (2n) - I, then clearly e (x, x,).) = (2n) -1 N ()'). 
Since Vx ().) = (2n)-1 V()') then (16.1) and (16.2) are equivalent. So it 
suffices to show that the estimate of remainder in (16.2) can not be improved. 
But in this example (16.2) has the form N()') = V()') (1+0().-1/2)) or 

N()') = 2111 + 0(1). The estimate 0(1) can not be improved because N()') 
has only integer values. 

M.A. Shubin et al., Pseudodifferential Operators and Spectral Theory

© Springer-Verlag Berlin Heidelberg 2001
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Later, in §22, we will study a more interesting example, which is a 
generalization of the present one (the Laplace operator on the sphere) and shows 
that (16.1) cannot be improved in the case of arbitrary nand m. 

16.2 Sketch of the proof. First of all, the theory of complex powers of 
operators, allows a reduction to the case when A is a 'PDO of order 1. In this 
situation we will show, that for small t, e itA is itself an FlO, with a phase function 
which is a solution of a certain first order non-linear equation. Let us now 
remark, that the kernel of eitA is the Fourier transform (in A.) of the spectral 
function of A. From this the asymptotic (16.1) is obtained, by invoking 
Tauberian type arguments for the Fourier transformation. 

The remainder of this chapter is as follows: § 17 contains some indispensible 
information on first order non-linear equations; in § 18 an important theorem on 
the action of 'PDO on exponents is proved, from which, in particular, the 
composition formula for a 'PDO with an FlO follows; in §19 the class of phase 
functions corresponding to'PDO is studied; in §20 we construct the operator eitA 

in the form of an FlO for a first order operator A; in §21 Theorem 16.1 is proved 
in the general case (there is also information about e(x, y, A.) for x =F y); finally, 
§22 contains the definition of the Laplace operator on a Riemannian manifold 
and the computation of its spectral function in the case of a sphere. 

Problem 16.1. Compute N (A.) and e (x, x, A.) for the operator 

on the torus lfn = IRnj2nZ" and verify that the asymptotic formulae (16.1) and 
(16.2) hold. 

§ 17. Non-linear First Order Equations 

17.1 Bicharacteristics. Let M be an n-dimensional manifold and a (x,~) a 
smooth real-valued function, defined on an open subset of T* M. Consider the 
Hamiltonian system on T* M, generated by a(x,~) as Hamiltonian: 

(17.1) 

( 8a 8a ) ( 8a 8a ) . 
where a~ = 8~!"'" 8~n ,ax = 8x!"'" 8xn and (x,~) are the coordmates 

on T* M, induced by a local coordinate system on M. It is well-kown, that the 
vector field on T* M, defined by the right-hand side of (17.1), is independent 
of the choice oflocal coordinates on M (cf. e.g. V.1. Arnol'd [1)). 
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Definition 17.1. A solution curve (x(t), ~ (t» of (17.1) IS called a 
bicharacteristic of the function a (x, n. 

A bicharacteristic is not necessarily defined for all t E IR. In this case we 
assume that it is defined on the maximal possible interval (concerning this 
consult also Problems 17.1 and 17.2). 

Proposition 17.1. The function a (x,~) is a first integral of the system 
(17.1), i.e. if(x(t),~(t» is a bicharacteristic o/the/unction a(x,n then 
a(x(t), ~(t» = const. 

Proof We have 

d .' 
dt a(x(t), ~ (t» = axx + a~~ = axa~ - axa~ = O. D 

Proposition 17.1 makes sense of the following definition: 

Definition 17.2. A bicharacteristic (x(t), ~(t» of the function a(x, n is 
called a null-bicharacteristic if a(x(t), Ht» = 0. 

17.2 The Hamilton-Jacobi equation. Consider the first order partial 
differential equation 

a(x,qJx(x» = 0, (17.2) 

where qJ is a smooth, real-valued function, defined on an open subset of M and 
qJx its gradient. Such an equation is called a Hamilton-Jacobi equation. For its 
treatment, it is convenient to introduce the graph of qJx, i. e. the set 

rep = {(x, qJx(x», x EM} c T*M. (17.3) 

Proposition 17.2. If qJ is a solution of(17.2), then the manifold rep is invariant 
under the phase flow of the system (17.1), i. e. if (x (t), ~ (t» is a bicharacteristic 
of a, x(t) for tE[O,b] belongs to the domain ofqJ and (x (0), ~(O»Erq> then 
(x(t), ~(t»Erepforall tE[O,b]. 

Proof In view of the uniqueness theorem, it sufficies to verify that the 
Hamiltonian vector field (a~, - ax) is tangent to rep at all its points. This is 
equivalent to the following: if(x(t), ~ (t» is a bicharacteristic and (x (0), ~ (0» E rep 

(i.e. ~ (0) = qJx(x(O»), then {: [~(t) - qJx(X(t»]} I = O. But this follows 
from the computation: t t~O 

{~ [~(t)-qJx(X(t))]}lt~O =(~-qJxx'X)lt~O 
= - ax (x(O), ~(O» - qJxx(x(O» a~(x(O), ~(O» 

a 
= - ax [a (x, qJAx»]x~X(O) = O. D 
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In what follows the only important case for us is when a(x,~) is positively 
homogeneous with respect to ~ of degree m, i.e. 

(17.4) 

where m is any real number. Such functions are characterized by the Euler 
theorem: 

~. a~ = mao (17.5) 

Proposition 17.3. Let a (x,~) be homogeneous of degree m and cp (x) a solution 
of(17.2). Then cp (x) is constant along the projections of the null-bicharacteristics 
a/the/unction a(x, ~) belonging to r'P' i.e. ij(x(t), ~(t» is a null-bicharacter
istic and HO) = <pAx(O», then <p(x(t» = const. 

Proof We have 

~ cp(x(t» = CPxx = cpxa~ = cpx(x(t» a~(x(t), ~(t» 
= cpx(x(t» a~(x(t), cpAx{t») = ma(x(t), CPx(x(t») = O. 0 

17.3 The Cauchy problem. The Cauchy problem for the Hamilton-Jacobi 
equation (17.2) consists in finding a solution cp (x) of this equation, subject to the 
condition 

(17.6) 

where S is a hypersurface (submanifold of codimension 1) in M and 1/1 E COO (S). 
Locally, we may consider the hypersurface as a hyperplane, i. e. by choosing the 
local coordinate system in a neighbourhood of a point Xo E S, we may achieve 
that 

(17.7) 

so that 1/1 = 1/1 (x'), where x' = (Xl' ..• ,xn - l ). In this coordinate system, it is 
convenient to formulate the condition of being non-characteristic, guaranteeing 
local solvability of the Cauchy problem in a neighbourhood of the point x' E S: 
the equation 

a (x', 0,1/1 x' (x'), A) = 0 (17.8) 

has a simple root A, i.e. a root AEIR, which in addition to (17.8) satisfies 

:;n (x',O,l/Ix,(x'),A) 9= O. (17.9) 
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Let a point 0 E S be fixed. Then by the implicit function theorem, the 
equation 

a(x, CA) = 0 (17.10) 

for Ixl < c and 1~'-ljIx,(O)1 < c has a solution A = a'(x, n, which is a smooth 
function of x and ~'. It is easy to verify that a' (x, n is homogeneous of the first 
order in r, so we may assume that it is defined for Ix I < £ and for all r =1= 

o in a conical neighbourhood of If;AO). Equation (17.10) for Ixl < £ and 
for a vector (~', A) close to the direction of (1{I;,(O), a'(O, 1{I;,(O))), may be 
represented in the form 

A - a'(x,n = o. (17.11) 

Therefore the local Cauchy problem takes the following form: find a solution 
q> = q> (x) of (17.2), which satisfies (17.6) and, additionally, satisfies 

~q> (0,0) = a' (0, 1jI~, (0)) . 
UXn 

(17.12) 

Since in this situation it is possible to pass from (17.10) to (17.11), our 
problem may be written in the following form 

Oq> , ( oq» 
oXn - a x, ox' = 0, (17.13) 

q>lx,=o = ljI(x'), (17.14) 

i. e. the matter reduces to the case 

a (x,~) = ~n - a' (x, n. (17.15) 

Let us consider the bicharacteristics of a (x,~) of the form (17.15). Their 
equations are 

(17.16) 

Consider a null-bicharacteristics (x (t), ~ (t)) belonging to r <p and starting in 
S, i.e. such that xn(O) = O. Then it is obvious from (17.16) that xn(t) = t. Fix 
another point x' = x' (0) E S. It is clear that the condition (x (0), ~ (0)) E r <p means 
the following 

~' (0) = 1jI~, (x'), ~n (0) = ~q> (x', 0), 
UXn 

(17.17) 
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and the condition a (x (0), ~ (0» = 0 gives 

~n (0) = a' (x', 0, IJI~' (x'». (17.18) 

Therefore, the null-bicharacteristic belonging to r<p and such that Xn (0) = 0 
and x' (0) = x', is uniquely defined. From (17.17) and (17.18) the smooth 
dependence on x' is clear. In addition, if we consider the transformation 

(17.19) 

defined for Ixl < 10, then from the initial condition x' (0) = x', it follows that its 
Jacobian is 1 for Xn = 0, so that g is a local diffeomorphism. Now, from 
Proposition 17.3, it necessarily follows that 

(17.20) 

where [g-l (x)]' is the vector, obtained from g-l (x) by neglecting the last 
component (corresponding to the notation x' for x = (x', xn». 

Therefore, we have shown the uniqueness of the solution of the local Cauchy 
problem and obtained a formula, (17.20), for this solution. The existence of this 
solution is a simple verification. We recommend the reader to do the following 
exercise. 

Exercise 17.1. Show that formula (17.20) actually gives a solution of the 
local Cauchy problem as described above. 

17.4 Global formulation. We would like to formulate sufficient conditions 
for the existence of a solution of the Cauchy problem in a neighbourhood of S 
without restricting to a small neighbourhood of a point on S (although the 
neighbourhood of the hyper surface S may be very small, in the sense of, for 
example, some distance from S). First, these conditions must of course, 
guarantee the existence of solutions of the local problem at any point XES and 
secondly, roughly speaking, provide continuous dependence of the root A of 
equation (17.8) on x. This means, that on S we may define a co vector field 
~ = ~ (x') E T;,M, continuously depending on x' ES and such that 

1) i* ~(x') = IJIx' (x'), where i: S -+ M is the natural inclusion map and IJIx' (x') 
is the gradient oflJl (x') at x' ES, viewed as a covector on S (an element of T:,S); 

2) Introduce local coordinates as described in 17.3 in a neighbourhood of 
any point x' E S. Then 

~(x') = (lJIx'(x'), A(X'», 

where A (x') is a root of (17.8), satisfying (17.9), i. e. satisfying all the conditions 
for the local solvability of the Cauchy problem. Let us note that (17.12) may be 
written, here without local coordinates as 

(17.21) 
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Therefore, the final statement of the Cauchy problem goes as follows: find a 
solution of{17.2), defined on a connected neighbourhood of the hypersurface S, 
satisfying the initial condition (17.6) and the additional condition (17.21). In this 
form, the problem has a unique solution, depending smoothly on the parameters 
(if any), provided that the given quantities a, S, 1/1 and ~ also depend smoothly on 
these parameters. 

Remark 17.1. Condition 1) is obviously necessary (assuming the rest is also 
fulfilled) for the solvability of the Cauchy problem and signifies simply the 
absence of topological obstructions to the global existence of a field ~ (x'), the 
local existence and smoothness of which is ensured by solvability conditions of 
the local problems at the points x' ES. 

17.5 Linear homogeneous equations. Equation (17.2) is called linear homo
genous if a (x, 0 is linear in ~, i. e. 

a (x, ~) = \Y (x) . ~ , (17.22) 

where \Y (x) is a vector field on M. The projections on M of the bicharacteristics, 
are in this case the solutions of the system 

x = \Y (x), (17.23) 

and the solutions of (17 .2) are simply the first integrals of the system (17.23). The 
same system (17.1) contains also, along with (17.23), the equations 

(17.24) 

which are linear in ~. A standard growth estimate for I ~ (t) I shows that if 
x(t) E K, where K is a compact set in M, then I ~ (t) I is bounded on any finite 
interval on the t-axis. Therefore a bicharacteristic is either defined for all t or 
its projection x(t) will leave any compact set K c M. The condition that S is 
noncharacteristic means, that Vex) is everywhere transversal to S. 

Let us consider the mapg mapping (x', t) into x(t) with x(t) a solution of the 
system (17.23) with the initial value x (0) = x'. If there exists I: > 0 such that x(t) 
is defined for any x' for all I t I < 1:, then g determines a map 

g: S x ( - 1:, 1:) -+ M. (17.25) 

If g is a diffeomorphism, then the solution of the Cauchy problem with initial 
data on S is defined on the image of g. It is therefore important to be able to 
estimate from below the number I: > 0, for which the map (17.25) is a 
diffeomorphism. One important case, where such an estimate is possible will be 
shown below. 
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17.6 Non-homogeneous linear equations. These are equations of the form 

v (x) . cpAx) + b (x) cp (x) = f(x) , (17.26) 

where b (x),f(x) E Coo (M), V (x) is a vector field on M, cp (x) is an unknown 
function and CPx its gradient. If x(t) is a solution of the system (17.23) then 
obviously 

d 
dt cp (x (t» + b (x(t» cp (x(t» = f(x(t», 

from which cp (x(t» can be found as a solution of an ordinary first order linear 
differential equation, provided that cp (x (0» is known. The basic feature 
following from this is that the domain, on which a solution of the Cauchy 
problem exists, depends only on V (x) and S and is independent of the right-hand 
side f(x) and the initial value If! E Coo (S). 

In particular, in what follows, we will need an equation of the special form 

(17.27) 

where x = (x', xn), x' EM' for some (n-1)-dimensional closed manifoldM' and 
Xn E (- a, a) with a > O. The system (17.23) (for the corresponding homogeneous 
equation) is of the form 

(17.28) 

The solutions x(t) of this system which start at Xn = 0, are defined for 
t E( -a, a) and if we put S = M' = {x: Xn = O}, then the map g of the preceding 
section becomes a diffeomorphism g: M --. M, where M = M' x ( - a, a) and 
where it is clear from (17.28) that the "fiber" M' x Xo is mapped onto itself 
diffeomorphically. Because of this, the Cauchy problem for (17.27) with initial 
condition 

cp Ix,=o = If! (x'), x' EM', (17.29) 

has a solution cp E Coo (M). 
In a number of cases one can carry out similar arguments also for non

compact M'. 

Problem 17.1. Let a(x, 0 be defined for x E M, ~ i= 0 with degree of 
homogeneity I in ~. Show that if (x (t), ~ (t» is a bicharacteristic, then it is 
either defined for all t or x (t) will leave any compact set K eM. In particular, 
if M is compact, then all bicharacteristics are defined for all t E IR. 
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Problem 17.2. Show that the same holds for an arbitrary degree of 
homogeneity of a(x, ~), if condition of ellipticity holds: 

a (x, ~) '* 0 for ~ '* 0, X EM. 

§18. The Action of a Pseudodifferential Operator 
on an Exponent 

IS.1 Formulation of the result. Here we describe the asymptotic behaviour 
as )... ~ +00 of the expression A(eiAl/I(X»), with A a 'PDO and 1{! a smooth 
function without critical points. 

Theorem IS.1. Let X be an open set in IRn, A EL~.b(X), 1 - a ~ b < a, A 
properly supported and with symbol a (x, ~). Let Ii' (x) E CCC(X) and Ii'~(x) '* 0 for 
x E X (here Ii' ~ denotes the gradient of Ii'). Then for any function f E COO (X) and 
arbitrary integer N ~ 0, for )... ~ I we have 

(18.1) 

where ax (y) = Ii' (y) - Ii' (x) - (y - x) . Ii' ~ (x), a(~) (x, ~) = 8~ a (x, ~), and for 
RN (x, A) the following estimate holds 

(18.2) 

where K is compact in X and the constants Cy• N. K do not depend on A. If there are 
families of functions f(x), Ii' (x), bounded in Coo(X) (i.e. the derivatives 8Yf(x), 
8Y Ii' (x) are uniformly bounded on any compact set for arbitrary fixed y) and if the 
gradients Ii'~ are uniformly separated (in absolute value) from 0 on any compact 
set, then the constants Cy• N. K in the estimates (18.2) are independent of the choice 
of functions f, Ii' of these families. 

Remark 1B.1. The statement of this theorem is similar to that of 
Theorem 4.2 on the transformation of the symbol under diffeomorphisms and, 
as will become clear in what follows, the theorems are actually equivalent. 
However, in view of the importance of Theorem 18.1, we shall give two proofs 
for it: one derived from Theorem 4.2 and an independent one, essentially based 
on the stationary phase method. The latter allows us to deduce from 
Theorem 18.1 the invariance of the class of 'PDO under diffeomorphisms and 
the formulae for change of coordinates. The reader is recommended to pursue 
this in the form of an exercise (historically this was the first method by which 
the invariance of the class of'PDO under diffeomorphisms was demonstrated). 
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Remark 1B.2. It is useful to note right from the beginning, in what sense 
(18.1) is asymptotic as ..1.-+ + 00. 

It is clear that the condition ",~(x) =F 0 will ensure the estimate 

(18.3) 

Let us now verify that D~(f(z)eiAe.(z»lz=x is a polynomial of degree not 
higher than I (X 1/2. Indeed we have 

D: (f(z) eiAQ.(z» (18.4) 

L cYo ... y, (D;of(z» . ..1.k (D;' ex (z» ... (D~' exCz» eO.Qx(z) , 

Yo+Y, + ... +y,=. 

where in this sum IYj I ~ 1 for j = 1, 2, ... , k. Since ex(z) has a zero of second 
order for x = z, then in (18.4) for x = z only terms in which IYjl ~ 2,j = 1, ... ,k, 

k 

remain. But L IYjl ~ I(XI, so we obtain 2k~ I(XI as required. 
j=l 

Now, taking (18.3) into account, we see that 

xEK, 

giving the required decrease in the degrees of growth of the finite terms in 
formula (18.4), since e> 1/2. 

18.2 First proof of Theorem 18.1. Let us make a change of coordinates 
y = x(x) = (Xl' ... ,Xn - l , '" (x». This change has Jacobian "'~. and may be made, 
therefore, only where "'~" =F O. The general case however can be easily reduced to 
this case using a partition of unity and a rearrangement of the coordinate axes. 
Indeed A is properly supported and consequently for any compact set Kl there 
exists a compact set K2 such that Au I K, only depends on u I K,. Therefore 
A (feiAI/I) I K, may be written as a finite sum of terms of the form A (fj eiAI/I), with 
fj E CO' (X) and where to any j there exists an integer k, 1 ~ k ~ n, such that 
",~,(x) =F 0 for x E suppfj. 

Thus, let "'~" =F 0, X E X and let Al be the operator A written in the coordinates 
y=x(x) (cf.§4). Let al(y,f/) be the symbol of A l . By Theorem 4.2 we have 

a (y n) I = e-i>«x)· ~ A (ei>«x).~) 1 ,., y=>«x) 

where 
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In particular, putting '1 = (0, ... ,0, A), we obtain precisely formula (18.1) for 
1= 1 and where RN can be estimated as in (18.2). The statements about 
uniformity and the case of arbitrary I are obtained by repeating the proof of 
Theorem 4.2; we leave this to the reader as an exercise. 0 

18.3 Second proof of Theorem 18.1. For simplicity, we shall assume in this 
proof that (j = 0 and (} = 1. 

Note, once again, that since A is properly supported, we may assume that 
IE CO'(X). Put, for brevity, /(A) = e-i11f/(x) A (jeillf/(x»(x)(for a fixed x). We have 

/(A) = f a(x,~) I(y) eil(If/(y)-If/(x»+i(x-YHdyd~. (18.5) 

Let us now make the change of coordinates ~ = A(: 

/ (A) = An f a (x, AO I(y) ei1[1f/(Y)-If/(x)-(y-xHI dy d( . (18.6) 

We want to find the asymptotic behaviour of this integral as A- + 00. We shall 
see that a major role (and this is the point of the stationary phase method) is 
played by neighbourhoods of the critical points of the function 

g(y,O = IjI(Y) -1jI(x) - (y-x)· C (18.7) 

Now, since g, = x - y, g; = 1jI;(y) - (, there exists exactly one critical point of 
this function, the point y = x, ( = 1jI~ (x). For short we put ~x = 1jI~(x). Introduce 
the cut-off function X E CO' (JR n), X (z) = 1 for I z I < 8/2, X (z) = 0 for Iz I > 8, where 
8 > 0 and consider the integral 

l(A) = An f a(x,AO X(y-x) X«( -~x) I(y) ei1g(y,C)dyd(. (18.8) 

Then for any N> 0 

(18.9) 

Indeed, putting 

we see that tLei1g(y,C) = eilg(y,C). Integrating by parts in the oscillatory integral 
/(A) -l(A), and considering that 

we see that 
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and transforming this oscillatory integral into an absolutely convergent one 
(cf.§1) we easily obtain the estimate (18.9) due to the factor A-I, in the 
expression for L. Analogously, one also obtains estimates for the x-derivatives 
from the difference J(A) -I(A). However, note that they follow from the 
estimates of J (A) - I(A) with arguments similar to the proof of Proposition 3.6. 
In the sequel we shall omit estimates of the derivatives, leaving them to the 
reader. 

Thus, instead of J(A), we may consider I(A). Making yet another change of 
coordinates (= ~x + A -1'1, we obtain 

I(A) = S ei(x-y)~ a (x, A~x+'1) X (I) X(y-x) f(y) eiJ.~.(y)dya'1. (18.10) 

Expand a (x, A~x + '1) in a Taylor series at '1 = 0: 

where 
I 

rN(x,'1,A)= L caS(l-t)N-I'1aa(a)(x,A~x+t'1)dt. 
!a! =N 0 

Multiplying this expansion with the cut-off function X('1/A) X(y-x) and 
substituting the result into (18.10) we obtain 

I(A) = L S ei(x-y)·~ a(a) (x, A~x) 
JaJ<N 

'1
a 

('1) x ex! X ;: X (y - x) f(y) eiJ.Q·(Y) dya'1 + R~ (x, A), (18.11) 

where 
I 

R~(x, A) = L Ca S dya'1 S (1- tt- I '1aa<a)(X,A~x+ t'1) 
!a!=N 0 

x X(y-x) x(~) ei(X-Y)'~f(y) eo.~·(Y)dt. (18.12) 

As follows from the arguments above, the asymptotic behaviour of the finite 
parts in formula (18.11) does not change if we remove the cut-off function 
X ('1/A). But then these terms can be easily transformed, by the Fourier inversion 
formula: 

S ei(x- y). ~ a(a) (x, A~J 1~ X (y - x) f(y) eiA~.(y) dya'1 

= a(a) (x, A~J D~ (f(y) eiAQ.(Y)) I y =x' 
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so that it only remains to estimate the remainder R~ or to estimate, uniformly in t 
(0 < t ~ 1), the integral 

ra(x, A, t) = hada)(x, A~x+ tl]) x(y-x) X (~) ei(x-y)·q (f(y)ei.!q.(y» dyell] 

= a'+~=a Ca'a" J ei(x-ylq da)(x, A~x + tl]) X(a')(y- x) X (~) Da" (f(y) ei.!q.(y» dyell] 

(18.13) 
where let 1= N. 

Let us introduce the notation 

If the number e in the definition ofX (z) is chosen so that e <I~x 1/2, then for aa one 
has the estimates 

layap - ( 1)1 < C lm-N-Iyl 
q x aa x, 1], 1'., t = apy I'. • (18.14) 

Now let us use (18.4) and substitute into (18.13) the expression obtained 
from this for D~" (f(y)eiJ..Qx(I». In this expression all the terms contain prod-
ucts . 

(18.15) 

in which IYII + ... + IYk I ~ N. If k ~ N12, we do not transform this product. If k 
> N12, then by the Dirichlet principle, in (18.15) there are no less than k - NI2 
indices Yj such that I Yj I = 1. But then, by the Hadamard lemma 

(D;- €lAy» ... (D;' €lAy» = L gy (y, x) (x - y)Y , 
lyl~k-N/2 

where gy (y, x) is a smooth function (in x and y), defined for y sufficiently close to 
x. Inserting this expression into (18.13) and integrating by parts (utilizing the 
exponent ei(x-y)'q, allowing us to change (x-yF into (-DqF), we see that 
ra (x, A, t) is a linear combination of terms of the form 

(18.16) 

where a~Y) = a~ aa and ley, x) is smooth (in x and y) and supported in I y - x I ~ e. 
The indices k and yare related by I Y I ~ k - N12. Taking into account that the 
volume of the domain of integration in I] in (18.16) does not exceed CAn, and 
using (18.14) we obtain for II (A) the estimate 
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which allows us to conclude the proof by applying the type of arguments used in 
the proof of Proposition 3.6. 0 

18.4 The product of a pseudodifferential operator and a Fourier integral 
operator. Let X, Ybe open sets in 1Rnx and 1RnY and let P be an FlO of the form 

Pu(x) = Jp(x,y,O) eirp(x,y,9) u(y) dydO, (18.17) 

where p (x, y, 0) E sm' (X X Y X 1R N) and <p (x, y, 0) is an operator phase function 
(cf. §2, Definition 2.3). Let there also be on X a properly supported PDO 
A EL~,d(X) with symbol a (x, ~). Since P maps CO'(y) into COO(X) and G'(y) 
into ~'(X) and A maps the spaces COO (X) and ~'(X) into themselves, then the 
composition A· P is defined as an operator, mapping CO'(y) into COO(X) and 
G'(y) into ~'(X). 

Theorem 18.2. Let 1 - (! ;;:£ () < (! ;;:£ 1. Then the composition Q = A . P is also 
of the form (18.17) with the same phase function <p(x, y, 0) as P and with an 
amplitude of the form 

q(x,y,O) = e- irp (x,y,9) a (x, Dx) [P(x,y,O) eirp(x,y,9»), (18.18) 

with the asymptotic formula 

(18.19) 

where (!(z,x,y,O) = <p(z,y,O) - <p(x,y,0) - (z-x) . <Px (x, y, 0). 

Remark 18.3. Since <p (x, y, 0) is not smooth for 0 = 0, it is not immediately 
clear from (18.18) that Q is an FlO. This is the case however, since adding an 
operator with smooth kernel to P we may assume that p (x, y, 0) = 0 for 101 < 1. 
Then (18.18) defines a smooth function in all the variables and the same holds for 
all terms in the expansion (18.19), which has the usual meaning (cf. 
Definition 3.4). However, an operator with smooth kernel may always be 
written in the form (18.17) with an amplitude p (x, y, 0) which has compact 
support in 0 and equal 0 for 101 < 1 (cf. the hint to Exercise 2.4). Therefore Q is 
an FlO with phase function <po 

Proof of Theorem 18.2. Let us introduce the set 

Crp= {(x,y,O): <Po(x,y,O)=O}. 

used in §1 and §2. Note that <p~ (x, y, 0) =1= 0 for (x, y, 0) E Crp by the definition of 
an operator phase function. Changing P by adding an operator with a smooth 
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kernel, we may assume that supp p (x, y, 0) lies in an arbitrarily small conical 
neighbourhood of the set C<p (cf. Proposition 2.1) and, in particular that cp~ =1= 0 
on supp p. In addition and in accordance with Remark 18.3, assume that 
p(x,y,O)=O for 101 < 1. 

Now note, that since A continuously maps COO (X) into Coo (X), we may apply 
it under the integral sign in (18.17) (for this it is necessary to begin by 
transforming the integral into an absolutely convergent one, as in §1; note that 
the variable x is not involved in this change, being just a parameter). Now it is 
only necessary to verify (18.19), understood in the sense of Definition 3.4 (cf. 
also Remark 18.3). But this is a trivial consequence of Theorem 18.1, putting A 
= 101 and viewing y and 0 as parameters. Indeed, we have 

q (x, y, 0) = Am' e- i1<p(x.y.8') a (x, Dx) [A -m' p (x, y, 0) ei1<p(X. y .8'»), 

where 0' = 0/10 I. Noting now that by varying the parameters y, 0 the functions 
cp (x, y, 0'), A -m' p (x, y, 0) belong to a bounded subset of Coo (X), we see that 
Theorem 18.1 applies. 0 

Exercise 18.1. Obtain from Theorem 18.2 the composition formula for two 
properly supported '1'00 of the type Lm(x) (cf. Theorem 3.4). 

Exercise 18.2. Let A and P be as in Theorem 18.2. Prove the result, similar to 
Theorem 18.2, for the operator Ql = p. A. 

Hint. Use transposition. 

Problem IS.1. Obtain from Theorem 18.1 the change of variable formula 
for PDO (cf. Theorem 4.2). 

§ 19. Phase Functions Defining the Class 
of Pseudodifferential Operators 

19.1 In the formulation of Theorem 4.1 there is an example of a class of 
phase functions, for which the corresponding class of FI 0 coincides with the 
class of'l'DO. In the sequel, we shall need the following variant of this theorem 
for non-linear phase functions. 

Theorem 19.1. Let X be an open set in IR" and cp (x, y, e) a phase function on 
X x X x IR" such that 

1) cp~(x,y,e)=o<=>x=y; 

2) cp~ (x, x, e) = e. 
Then, if 1 - e ~ {) < e, the class of FlO with phase function cp and amplitude 

p(x,y, e) eS;'.!(Xx XxIR") coincides with the class L;.6(X), The class of FlO 
with phase function cp and with an amplitude a(x, y,~) which is classical, coincides 
with the class of classical '1'00. 
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Remark 19.1. Conditions 1) and 2) for nearby x and y, may be expressed in 
one single condition 

<p(x,y,~) = (x-y)· ~ + O(lx-YI21~1). (19.1) 

19.2 Proof of Theorem 19.1. 1. Since the kernels of FlO with phase 
functions satisfying condition 1) of Theorem 19.1 are smooth for x =1= y by 
Proposition 2.1, then we may assume that all amplitudes are supported on an 
arbitrarily small neighbourhood of the diagonal x = y. 

2. Let <p, <PI be two phase functions, satisfying the conditions of 
Theorem 19.1. Denoting by L;,{) (X, <p) the class of FlO with phase function <P 
and with amplitudes in the class S;' {) (X x X x IRn), we see that it suffices to verify 
the inclusion 

(19.2) 

because it clearly implies that all the classes L;, {) (X, <p) coincide and, in 
particular, that they coincide with L;, {) (X). 

3. Denote by Jt\ the class of all functions IjI (x, y, ~), which are positively 
homogenous of degree k in ~, smooth for ~ =1= 0 and defined for nearby x and y. 
Note that Yt'o is an algebra, containing the smooth functions of x and y as a 
sub algebra, and that Yt'1 is a Yt' o-module. 

For us it is essential that for nearby x and y, the difference <PI - <P can be 
written in the form 

(19.3) 

Let us verify this. From the Taylor formula it follows that 

o<p n 

~ = (Xj - y) + L ajk (Xk - Yk) , 
I."j k= 1 

where ajk EYt' 0, ajk (x, x, ~) = O. This can also be written in the form 

<P~ = (/+A)(x- y), 

where / is the unit matrix and A is a matrix with elements in Yt' 0, equal to 0 for 
x = y. But then, for nearby x and y the matrix (/ + A) -1 exists and has elements 
from Yt' o' This means that we may write 

(19.4) 

Now, using (19.1) for <P and <PI' we see that on the diagonal (as x = y) <PI - <P 
has a zero of order two and by the Taylor formula 
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n 

({Jl - ({J = I ~k(Xj-Y) (Xk - Yk), ~k E£'l . 
j, k~ 1 

Inserting here the expression for Xj - Yj from (19.4), we obtain (19.3). 

4. Consider now the homotopy 

(19.5) 

Each of the functions ({JI satisfies (19.1). A trivial repetition of the above 
argument shows that instead of (19.3) we may write 

(19.6) 

where bjk E£'l and depends smoothly on t. 
Now let PI be the FlO given by the formula 

PIU (x) = J eiq>,(x,y,e) p (x, y, 0 U (y) dy d~ . 

Then 

= I (19.7) 

where dj " ... ,j2, E£'r' Without loss of generality, we may assume that p (x, Y, ~) 
= 0 for I ~ I < 1, so that dj" ... ,j"P E sm + r (X X X x JR"). We now integrate by parts 
in (19.7), using the formula 

This integration demonstrates that 

d r 
_ P ELm + r(l-2(1)(X m) dtr I (1,0 ''t'l , (19.8) 

where all estimates are uniform in t. But if we now put 

Q. = -- __ t ELm +j(l-2 Q)(X ({J ) 
(-l)j dip I 

J j ! dtJ I ~ 1 (I, {) , l' 

then, by the Taylor formula, 
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(19.9) 

The remainder in (19.9) hasa kernel with increasing smoothness as k-+ + 00. It is 
00 

therefore clear that if Q '"" L Qj (adding the amplitudes asymptotically), then 
j=O 

which shows (19.2). 
The fact that classical amplitudes remain classical under this procedure, is 

clear from the construction. 0 

Problem 19.1. Let ({J1' ({J2 be two phase functions such that 

where bjk E Coo (X X X x (IR"\ 0» and bjk homogenous in ~ of degree 1. Show that 
L;, b (X, ({J2) c L;, b (X, ({J1)' 

§20. The Operator exp ( - itA) 

20.1 Definition and formulation of results. Let M be a closed n-dimensional 
manifold with a smooth density and let A be a self-adjoint, classical '1''00 of 
degree I on M with principal symbol al (x,~) satisfying the condition 

(20.1) 

(in particular, A is elliptic). Let {({Jdk= 1. 2, ... be a complete orthonormal system 
of eigenvectors for A and Ak the corresponding eigenvalues. If U (x) E Coo (M) we 
denote by Uk the Fourier coefficients of u(x) with respect to the system {({Jk(X)}: 

(20.2) 

Proposition 20.1. If u(x) E COO (M), then 

00 

u(x) = L Uk({Jk(X), (20.3) 
k=1 

where the series converges in the topology of Coo (M). 
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Proof We clearly have 

UkAf = (u,ANC{Jk) = (ANu,C{Jk)' 

and since AN u E Coo (M), we may apply AN termwise to the series (20.3) for any 
NEll +, obtaining each time a series converging in L2 (M). But from this it 
immediately follows that for any s EIR., the series (20.3) converges in norm in 
HS(M), since for s = NEll + this norm is equivalent to II u II + II AN U II, with II . II 
the L2 (M)-norm. From this and the embedding theorem 7.6, the required 
statement follows. D 

This proposition allows us to make the following 

Definition 20.1. The operator exp ( - itA) for t E IR. is defined by the formula 

00 

exp( -itA) u(x) = L exp( -itAk ) UkC{Jk(X). (20.4) 
k=l 

Clearly the series (20.4) for u E COO (M) converges in the topology of Coo (M). 
Further, if u E HS(M), s an integer, then this series converges in norm in HS(M) 
(cf. the proof of Proposition 10.2). The operator exp( -itA) is for integer s a 
bounded operator on HS(M). Note, that it is also a unitary operator on L2 (M). 

Another definition consists in considering the Cauchy problem 

{
au 
iii + iAu = 0, 

ult=o = Uo, 

(20.5) 

(20.6) 

where u = u(t, x) E Coo(IR. x M), Uo E Coo(M) and the operator A in (20.5) acts 
on x for any fixed t. Solving this problem by the "Fourier method", we see that 
the solution is given by (20.4), with u replaced by uo, i. e. 

u(t,x) = exp( -itA) uo(x). (20.7) 

The solution of (20.5)-(20.6) is also unique. This can be seen, for instance by 
writing for a solution u (t, x) the expansion 

00 

u(t,x) = L ck(t) C{Jk(X) , 
k=l 

which, being inserted into (20.5)-(20.6) gives the equations c~(t) + iAkCk(t) = 0, 
with the initial values ck(O) = (uo, C{Jk), from which one can uniquely recover 
ck(t). 

Theorem 20.1. If 8 > 0 is sufficiently small, then for I t I < 8 one can represent 
U (t) = exp ( - itA) in the form of a sum of an operator with a smooth kernel in t, x 
and y and an FlO, given by the phase function 

C{J (t, x, y, 0 = I/f (x, y,~) - tal (y,~) (20.8) 
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linear in t, and by an amplitude p (t, x, y,~) which is a classical symbol of order 0, 
smooth in t and such that the following estimate is fulfilled 

(20.9) 

Example 20.1. Consider in JR" the operator A = -{="Ll with symbol In 
The Cauchy problem (20.5)-(20.6) for functions decreasing as I x 1-+ + 00 

can be solved using the Fourier transformation in x. Indeed, since Au (x) 
= F~--+~(I~lu(~», then 

u(t,x) = exp(-itA) uo(x) = F~--+~(e-it!~!uo(m 

= IS ei(x-Y)'~-it!~! u(y)dyd~. 

We see that in this case (formally this does not follow from the theorem how
ever) the operator exp ( - itA) is an FlO with phase function (x - y) . ~ - t I ~ I. 

20.2 Proof of Theorem 20.1. 1. Let us construct the operator Q (t), which 
approximates V (t) and is an FlO of the form 

Q (t) f(x) = IS q (t, x, y,~) ei<p(t.x. Y.~) fey) dyd~ . 

The operator V (t) satisfies the conditions 

{ (Dt+A) Vet) = 0, 

V(O) = I. 

We will try to choose Q(t) satisfying the conditions 

{ 
(Dt+A) Q(t) EL-oo(M), 

Q(O) - IEL-oo(M). 

(20.10) 

(20.11) 

(20.12) 

(20.13) 

(20.14) 

More precisely, the left side of (20.13) will also be a smooth function of t with 
values in L - 00 (M). 

The linearity of the problem, allows a reduction, using a partition of unity, to 
the case of constructing q and <p in local coordinates. 

In view of Theorem 18.2, (20.13) will be satisfied if 

(20.15) 

where A operates on x. 
Writing down an asymptotic expansion for the symbol a (x,~) and for 

q (t, x, y,~) in terms of homogeneous functions, we have 
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Then by Theorem 18.2 

e-i<p [Dr + A](qei<p) '" (CPr+al (x, CPJ) qo + '0 + , -I + ... , 

where 'j is the sum of terms of degree of homogeneity j. 
We require 

(20.16) 

The initial values 

(20.17) 

must be chosen, so that for t = 0 we may guarantee (20.14). But for this we have 
to require that 1/1 be a phase function, corresponding to the class of 'PDO (cf. 
§19), i.e. for nearby x and y 

(20.18) 

We will look for this function in a neighbourhood of the diagonal x = y. The 
term O(lx-YI21~1) in (20.18) is necessary in order to achieve linearity in t for 
the function cP (t, x, y, ~), which - in its turn - is useful since later on we will take 
the Fourier transformation in t. Thus, we look for cp in the form 

cP (t, x, y, ~) = 1/1 (x, y, ° -ta' (y, ~). 

This is yet another requirement on cp. We will see that it can be satisfied. 
Putting this expression for cP into (20.16) yields: 

-a' (y,~) + al (x, I/Ix (x, y, ~» = O. 

Setting x = y, we obtain using (20.18) that a' (y,~) = al (y, ~). Hence 

where 1/1 (x, y, ~) satisfies the equation 

a1 (x, txCx, y, ~» = Q1 (y, S). 

Instead of (20.18) we require 

l/I(x,y,OI(x-y) ~;0=0, 

I/Ix (x, y,~) Ix;y = C 

(20.19) 

(20.20) 

(20.21) 

(20.22) 

from which (20.18) immediately follows. The relations (20.20)-(20.22) define a 
Cauchy problem for 1/1, in which y and ~ are parameters. In this, we may assume 



154 Chapter III. Asymptotic Behaviour of the Spectral Function 

that I ~ I = 1, since solving this problem for I e I = 1 we can afterwards extend I/.f 
by homogeneity (of degree 1) to all values of ~. 

Let us note, that the plane (x- y)' e = 0 is non-characteristic, because 
o~a1 (x,~) =1= 0 in view of the Euler formula ~ . o~a1 (x, e) = a1 (x, e). From the 
results in §17 it is clear that the solution exists for x which are close to y and, 
furthermore, that the corresponding neighbourhood of y in which the solution 
exists, may be chosen uniformly iny, ~ so that the function I/.f (x, y, e) is defined in 
some neighbourhood of the diagonal x = y. 

2. It follows from Theorem 19.1 that there exists a classical symbol 
I(x, y, 0 E CSo, which is supported on an arbitrarily small neighbourhood of the 
diagonal x = y and 

f f I (x, y, ~)ei"'(x,y,o I(y)dyi!~ - I(x) = kl(x), (20.23) 

where k is an operator with smooth kernel. 
From (20.23) and (20.14) it now follows that we must have the following 

initial condition for q: 

q(O,x,y,~) = I(x,y,~) (modS- OO). (20.24) 

If we introduce the decomposition of I(x, y,~) into homogeneous 
components 

I '" 1o + 1-1 + ... , 

then (20.24) may be rewritten in the form 

(20.25) 

We now write out the equations for the functions q_j' given by (20.13) and 
(20.25). The first order terms equal 0 in view of (20.16). For the O-th order terms 
we obtain 

I °tqo + L a~")(x, <f>x) o~qo + L a~")(x, <f>x) o~~ qo + iao (x, <f>x) qo = 0, 
1 .. !=1 1 .. !=2 rx. (20.26) 

qolt=o=lo, 

where a~<X) = o::a1. This Cauchy problem allows us to define qo (t, x, y,~) for 
small t. Furthermore, for any integer j ?; 0 we obtain the following equations, 
called transport equations: 
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olq-j+ L a~)(x,o/J o~q_j 
lal = 1 

. ~ (a) ( ) O~ 0/ . ( ) R - 0 + ~ a1 x,o/x -, q-j+ laO x,o/x q-j+ j- , 
lal=2 IX. 

(20.27) 

q-jll=o = L j , 

where Rj only depends on qo, q-l,···, q-(j-l)' 
In view of the reasoning in section 17.6, the solution of (20.27) may be 

defined in the same t-interval as the solution of (20.26). 
Hence, we finally obtain an operator Q (t), defined for 1 t 1 < e, which is an 

FlO and for which 

(DI+A) Q(t) = K(t), 

Q(O) = 1+ k, 

(20.28) 

(20.29) 

where K (t) has a smooth kernel with a smooth dependence on t and where k is an 
operator with a smooth kernel. 

3. Let us now demonstrate that [Vet) - Q (t)] is an operator with infinitely 
differentiable kernel in t, x, y (for 1 tl < e). For this consider the operator 

R(t) = V(-t) Q(t) - I (20.30) 

and differentiate it with respect to t: 

DIR(t) = - (DIV) (-t) Q(t) + V(-t) (DIQ)(t) 

= AV(-t) Q(t) - V(-t) AQ(t) + V(-t) K(t). (20.31) 

The validity of this computation follows from the described structure of Q (t) 
and from the remarks on Vet), made at the beginning of this section (the 
derivative is of course taken, after having applied R(t) to some function 
u(x) E COO (M)). Since V(t)A = AV(t), it follows from (20.31) that 

DIR(t) = V( - t) K(t). (20.32) 

On the other hand, it is clear from (20.29) that 

R(O) = k. (20.33) 

Since V ( - t) K (t) is an operator with smooth kernel in t, x, y, integrating (20.32) 
and taking (20.33) into account, we see that R (t) has the same property and then 
from (20.30) it is clear that the operator V(t) - Q(t) = - Vet) R(t) also has 
a kernel which is smooth in t, x, y for 1 t 1 < e. 0 

Problem 20.1. Let A be a classical first order 'PDO on M, satisfying (20.1) 
but not necessarily self-adjoint. Carry out the construction of the parametrix 
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Q (t) for this operator and show that the Cauchy problem (20.5)-(20.6) has a 
unique solution and that for the operator V (t) = exp( - itA), defined by this 
problem, the statement of Theorem 20.1 is also true. 

Hint: Obtain an integral equation of the Volterra type for Vet), using the 
operator Vo(t) = exp( -itAo), where Ao = t(A+A*). 

§21. Precise Formulation and Proof of the Hormander Theorem 

21.1 The singularities of the Fourier transformed spectral function near zero 
and estimates of the averaged spectral function. Let e (x, y, A) be the spectral 
function of the same (first order) operator A as in §20, Vet, x, y) the kernel of the 
operator exp (- itA). If qJj(x) are the eigenfunctions of A with eigenvalues Aj , we 
have 

e(x,y,A) = L qJj(x) qJj(Y) , 

V (t, x, y) = L e-i'jl qJ/x) qJj (y) , 
j 

(21.1 ) 

(21.2) 

where the latter series is summed in the sense of e. g. distributions on M x M, 
depending smoothly on t (this is easy to prove by arguments similar to those used 
after Definition 20.1). It follows from (21.1) and (21.2) that 

V(t,x,y) = J e-iAtd,e(x,y,A), (21.3) 

where the integral is understood as a Fourier transformation (from A to t) in the 
distribution sense. 

Let Q(A) ES(JR1) and let Q(t) = F'-+I Q(A) be the Fourier transform. Then 
from the known properties of the Fourier transformation it follows that 

Q(t) V(t,x,y) = F'-+I J Q(A-J1) dl'e(x,y,J1). (21.4) 

Now choose Q (A) such that 

1) Q(A»O for all AEJR 1 ; 

2) Q (0) = 1; 

3) supp Q (t) c (- 6, 6), where 6> 0 is sufficiently small. 

Exercise 21.1. Prove the existence of such a function Q()..). 
Hint: This is done by analogy with the construction of X (x) at the beginning 

of the proof of Theorem 6.3. 

Let now Q (t, x, y) be the distribution kernel of Q (t), constructed (for small 
Itl) in §20. In view of Theorem 20.1, we have 

V(t,x,y) - Q(t,X,Y)EC OO «-6,£)xMxM). (21.5) 
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Thus the functions U(t,x,y) and Q(t,x,y) have the same singularities in a 
neighbourhood of the point t = O. 

Now (21.4) implies 

Lemma 21.1. The function 

J Q (A - p) dfie (x, y, p) - F;::.\ (e (t) Q (t, x, y)) (21.6) 

is a smooth function in all variables, tending to 0 faster than any power of A as 
A -+ + 00, uniformly in x, y EM. 

Let us now compute the second term in (21.6). This can be easily done, 
thanks to the linearity in t of the phase function q> (t, x, y, ~), in the definition of 
the operator Q (t). 

First we compute formally, not worrying about convergence of the integrals. 
In the notation of §20 we have 

Q (t, x, y) = J q (t, x, y, ~) ei('II(x.y.el- a, (Y.elt) a~ , (21. 7) 

F;~.he(t) Q(t, x,y)) (A) 

(21.8) 

Set 

R(A,x,y,~) = (2n)-1 J e(t) q(t,x,y,~) eilAdt. (21.9) 

Then 

(21.10) 

Let us now note that R (A, x, y, ~) is a smooth function of all variables and, 
furthermore since q (t, x, y, ~) is a smooth function of all variables (including t), 
then R rapidly tends to 0 as 1 A 1-+ + 00 and we have for any N> 0 the estimates 

(21.11 ) 

Here R admits an asymptotic expansion into homogeneous functions 
in ~. From (21.11) it is clear in view of the ellipticity of al(Y'~)' that 
R (A - a1 (y, ~), x, y,~) rapidly tends to 0 as 1 ~ 1-+ + 00, hence the integral in 
(21.10) is absolutely convergent. 

As for the justification of the transition from (21.8) to (21.10), which was 
done formally, it remains to note that it is valid for symbols q (t, x, y,~) which 
have compact support in ~, and perform the standard passage to the limit, as in 
the definition of oscillatory integrals (cf. § 1). 

Taking Lemma 21.1 into account, we see that we have proven 

Lemma 21.2. If R is defined via the formula (21.9), then for any N> 0 

1 J Q (A - p) dfie (x, y, p) - J R (A - a1 (y, ~), x, y, 0 ei'll(x.y.ela~ 1 
~CN(1+IAI)-N, (21.12) 

where CN is independent of x and y. 
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Let us now estimate the second term in (21.12). 

Lemma 21.3. We have 

where C does not depend on x and y. 

Proof Let us denote, as in §15: 

Vy(A) = J cl~ . 
al(y.~)<l 

Since the function a1 (x,~) is homogenous of degree 1 in ~, then 

V,(A) = V,(l)A". 

Let us now utilize the obvious identity 

(21.13) 

(21.14) 

(21.15) 

both sides of which are defined due to the estimate (21.11). Taking (21.15) 
into account, we see now that the left-hand side of (21.13) can be estimated via 

00 00 

CN J (1 + IA-O"I)-N dVy(O") = CN J (1 + IA-O"I)-N 0""-1 dO". 
o 0 

But in view of the obvious inequality 1 + 10"1 ~ (1 + IA-O"I)(l + IAI) we have 

Therefore 

00 

J (1 + IA-O"I)-N O"n-l dO" 
o 

00 

~ (1 + IAI)"-1 J (1 + IA-O"I)-N+n-l dO" = C(l + IAl)n-l, 
-00 

from which (21.13) follows. 0 

Corollary 21.1. The following estimate holds 

where C is independent of x and y. 

(21.16) 
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21.2 Passage to estimates of the spectral function 

Lemma 21.4. The following estimate holds 

1 e(x,x,..1.+ 1) - e(x,x,..1.) 1 ~ C(l + /..1.1)"-1, 

where C does not depend on x and ..1.. 

Proof Since Q (..1.) is positive and non-zero on [- 2, 2], we have 

A+2 
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(21.17) 

J Q(..1.-f.1)d/ie(x,x,f.1) ~ C J d/ie(x,x,f.1) ~ C[e(x, x,..1.+ 1) - e(x,x,..1.)], 
A-I 

where C> 0; the statement of the lemma follows now from Corollary 21.1. D 

Lemma 21.5. The following estimate holds 

le(x,y,..1.+1) -e(x,y,..1.)1 ~ C(l+I..1./)n-l, (21.18) 

where C does not depend on x, y and ..1.. 

Proof It follows from (21.1) that 

e(x,y,..1.+1) - e(x,y,..1.) = L ({)j(x) (()j(y), 
A<Aj:;!A+1 

and from the Cauchy-Bunyakovskij-Schwarz inequality we get 

1 e(x,y,..1.+ 1) - e(x,y,..1.) 1 

~ [ L 1 o/j(x) 12Jl/2 [ L 1 o/j(Y) 12Jl/2 
A<~:;!A+I A<~:;!A+I 

= (e(x, x,..1.+ 1) - e (x, x, ..1.»1/2 (e (y,y,..1.+ 1) - e (y,y, ..1.»1/2 

~ C (1 + 1..1. /)n - 1 

by Lemma 21.4 (with the same constant C). D 

Lemma 21.6. The following estimate holds 

le(x,y,..1.+f.1)-e(x,y,..1.) 1 ~ C(l + 1..1.1+ 1f.1/)n-l (1+1f.11), (21.19) 

where C is independent of x, y, ..1., f.1. 

Proof We can prove (21.19) by partitioning e(x, y, A + JL) - e(x, y, A) into 
a sum of at most I + 1 JL 1 terms, estimated as in Lemma 21.5. 0 
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Lemma 21.7. The following estimate holds 

I h) (A- p) e(x, y,p) dp- e (x, y, A) I ~ C(l + IA 1)"-1, (21.20) 

where C does not depend on x, y, A. 

Proof We use the fact that eES(JR1) and J e(A)dA= 1. With the help of the 
obvious inequality 

1 + IAI + Ipi ~ (1 + IA) (1 + Ipl) 

we obtain 

I J e(A-p) e(x,y,p)dp- e(x,y,A) I 
= IS e(A-p) [e(x,y,p) - e(x,y,A)] dp I 
= I I Q(u)[e(x, y,), + p) - e(x, y, ),)] dpi 

~ J (1 + I A I + I pi)" - 1 (1 + I pi) - N dp ~ C (1 + I A I)" - 1 , 

as required. 0 

Lemma 21.8. We have 

1)00 dAJ e(A-p)d"e(x,y,p) - e(x,y,A)1 ~ C(l + IAI)"-1. (21.21 ) 

Proof Integrating by parts, we have 

J e().-p)d"e(x,y,p) = J e'().-p) e(x,y,p)dp, 

from which 

• • J (J e(A-p)d"e(x,y,p»dA = J (J e'(A-p) e(x,y,p)dp)d)' 
-00 -00 

= Jet e'(A-p)dA) e(x,y,p)dp = J e(A-p) e(x,y,p)dp, 

so that (21.21) now follows from (21.20). 0 

Taking Lemma 21.2 into account, we derive the following 

Proposition 21.1. We have 

I
e (x, y, A) - H R (a -a 1 (y, n x, y, ¢) eill'(x,y,I;) da ct¢ I 

u<. 

~ C(l+IAl)n-l, (21.22) 

where C is independent of x, y, A. 
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21.3 The Hormander theorem for first order operators. We would like now 
to rewrite the estimate (21.22) in a simpler form. Note, that in view of (21.9) 

+00 

J R (A, x, y, ~) dA = q (0, x, y, ~) = I (x, y, ~) . (21.23) 

Therefore, putting 

T 

J R(a,x,y,~)da, r<O, 

00 

Rl(r,x,y,~)= - J R(a,x,y,~)da 
T 

= J R(a,x,y,~)da-I(x,y,~), r>O, 

the following estimates for R1 follow from (21.11): 

(21.24) 

We clearly have, 

JJ R(a -a1 (y,~), x, y,~) eiYl(x,y,e)da d~ 
,,<1 

= J I(x,y,~) eiYl(x,y,e)d~ + J R1 (A-a 1 (y,~),x,y,~) eiYl(x,y,e)d~. 
Q,(y,e)<l 

One can show by analogy with Lemma 21.3 that 

Therefore we see that the following holds 

Lemma 21.9. We have 

le(X,y,A)- J I(x,y, O eiYl(x,y,e)d~1 ~ C(1+IAl)n-1, 
Q,(y,e)<l 

where C is independent of x, y, A. 

For further simplification we need 

Lemma 21.10. For nearby x and y we have 

(21.25) 

I 
J I(x,y,~)eiYl(X,y,e)d~- J eiYl(x,y,e)d~I~C(1+IAl)n-1, 

Q,(y,e)<l Q,(y,e)<l 

where C does not depend on x, y, A. 
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Proof From the proof of Theorem 19.1, it is easily deduced that for nearby x 
andy 

(21.26) 

Therefore 

/ f (I(X,y'~)-1)eil/l(x.y.e)tf~/~c f (1+I~D-ld~ 
a,(y.~)<l a,(y.~)<l 

~ C J (1 + lal D-I d~ = C J (l + 11Li)-1 dVy(lL) 

1 1 
~ C f (1 + IJlD- 1 Jln - 1 dJl ~ C H1 + IJlI)n-2 dJl ~ C(1 + IAI)n-l, 

o 0 

as required. 0 

Note, that if the pair x, y belongs to some compact set in M x M, disjoint 
from the diagonal, then we may assume that I(x, y,~) = 0 and, in this case, 
Lemma 21.9 implies that le(x,y,A)1 ~ C(1+IADn-l. 

We summarize these results in the form of a theorem. 

Theorem 21.1. 1) Let 1/1 (x, y,~) be defined for nearby x and y and let 

Then for nearby x and y we have 

/e(X,y,A)- f eil/l(x'Y.~)tf~/ ~ C(1+ IADn-l, 
a, (y.~)<l 

(21.28) 

where C does not depend on x, y and A. In particular, we have 

(21.29) 

2) If the pair x, y belongs to a compact set in M x M disjointfrom the diagonal, 
then 

(21.30) 

Corollary 21.2. The following asymptotic formula for the number N (A) of 
eigenvalues of the operator A smaller than A, holds 

IN(A)- f tf~dX/~C(l+IADn-l. 
a,(x.~)<l 
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21.4 The case of higher order operators. Let A be a self-adjoint elliptic 
differential operator of order m on a closed manifold M with principal symbol 
am (x, ~) ~ O. Let us construct for nearby x and y a function", (x, y, ~) such that 

'" I(x-y)' ~=O = 0, "'x Ix=y = ~, 

(21.31) 

(21.32) 

from which it follows that", is homogeneous of degree one in ~ and such that 

",(x,y,~) = (x-y)· ~ + O(lx-YI21~1) as x-ty. (21.33) 

Theorem 21.2. For the operator A of order m described above we have: 
1) For nearby x and y 

le(x,y,..1.)- J ej"'(x,y.~)d~I~C(l+I..1.l)n:l, 
a.(y.~)d 

(21.34) 

where C does not depend on x and y. 
In particular, 

le(x,x,..1.)- J d~I~C(l+I..1.l)n:l 
a.(x.~)<A 

(21.35) 

and consequently, 

IN(..1.)- J dXd~I~C(l+I..1.l)n:l. 
a.(x.~)<A 

(21.36) 

2) If the pair x, y belongs to some compact set in M x M disjoint from the 
diagonal then 

n-l 
le(x,y,..1.) I ~ C(l+I..1.1) m . (21.37) 

Proof Let us first note that, without loss of generality, we may assume A > 0 
(if this is not true for A, then, in view of Corollary 9.3, it is true for A + c/, for 
sufficiently large c > 0). Introduce the operator Al = Al/m. This is an elliptic 
pseudodifferential operator of order 1 with principal symbol a1 (x,~) 
= am (x, ~)I/m. It is clear that (21.31), (21.32) for", (x, y,~) simply coincide with 
the equations (21.27). In addition it is clear that 

where e 1 (x, y, A.) is the spectral function of AI' All statements in Theorem 21.2 
now follow from the corresponding statements in Theorem 21.1. 0 
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Problem 21.1. Consider the case of a homogeneous operator a (D) with 
constant coefficients in JR". Write down e (x, y, A) as an integral and verify the 
estimates (21.34), (21.35) and (21.37) directly. 

§22. The Laplace Operator on the Sphere 

22.1 The Laplace operator on a Riemannian manifold. 1) Let M be a 
manifold with a Riemannian metric, i. e. in any tangent space Tx M there is given 
a bilinear form <', .) with a positive definite quadratic form. If Xl, ... , x" 

are the local coordinates in an open set U c M, then (-;, ... , ~) is a basis for 
the tangent space at all points in U. Denoting ax ax 

(22.1) 

we obtain a positive definite matrix gij (x). If now v = ± vj ::l a j E TxM, then 
j; 1 UX 

n 

<v,v) = L gij(x)viv j • 

i,j; 1 

(22.2) 

The cotangent space T: M is, by definition, the dual of Tx M. A basis of it 
(for x E U) consists of the 1-forms dxi, defined by the relations 

( . a) , dx', -, = bj. ax) 

A metric on a vector space E induces an isomorphism of E with E*. With the 
help of this isomorphism we may transfer the metric from E to E*. Fixing x E U, 
let us compute <dxi, dx j ) at x. Which tangent vector corresponds to dXi? Denote 
its coordinates by a i\ k = 1, ... , n; then we have to satisfy the condition 

from which aik = i\ the elements of the matrix inverse to II gik II. We now have 

(22.3) 
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" i. e. for any cotangent vector a = L ai dx i E Tx* M 
i= 1 

(22.4) 

2) Now introduce on the Riemannian manifold a smooth density (volume) 
such that in the tangent space the volume of a parallelepiped in an orthonormal 
system equals 1. For an arbitrary parallelepiped, defined by the vectors 
e 1, ... , e", the volume equals 

(22.5) 

where efol is the column of coordinates of ei in the orthonormal basis. Formula 
(22.5) follows from the fact that the volume has to be an additive, non-negative 
invariant of parallelepipeds. 

What about the case where the coordinate basis is not orthonormal? 
Let us then consider the operator A, mapping an orthonormal basis e~, ... , e~ 
into the basis e1 , ••. , e". The columns of its matrix (in the basis e~, ... , e~), 
will be the coordinates of the vectors ei in the orthonormal basis e;, so that 
vol{e1, ... ,en } = IdetAI = Ydet(A*A). 

Now, the matrix elements of A* A in the basis {e;} are of the form 

(22.6) 

Therefore, the volume of the parallelepiped (-;, ... , ~) equals -Vi. 
ox ox" 

where g = det II gij (x) II and the volume of an arbitrary set F in the local 
coordinates of U is defined as 

vol(F) = J -Vg(x) dx 1 ••• dx". (22.7) 
F 

It follows directly from the change of variable formula for an integral that 
the integral (22.7) is independent of the choice of local coordinates. We may 
therefore take it immediately as a definition of vol (F), defining a smooth 
positive density dv on M by the formula 

dv = yg(x) dx 1 .•• dxn. (22.8) 

3) For any differential operator 

A: COO(M) -+ COO(M) 
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there exists a unique operator A*, such that 

(Af,g) = (f,A*g), f, gECo(M), (22.9) 

where 

(f,g) = S f(x) g(x) dv. (22.10) 

Analogous arguments hold also for operators on sections of vector bundles 
over M, if in each fiber of the bundle we have a hermitean metric (positive 
definite hermitean form), which replacesf(x)g(x) in (22.10). 

Let us define a scalar product on the space of 1-forms Al (M), taking on 
T: M ® CC the hermitean scalar product induced by the metric on T: M 
introduced above. Consider the operator 

d: Coo (M) -+ Al (M), (22.11) 

mapping a functionf E Coo (M) to its differential df E A 1 (M), defined by the fact 
that if v E TxM, then <df, v) = (vf) (x), where (v!) (x) denotes the derivative of f 
in the direction v. In coordinates: 

The operator 6: Al (M) -+ Coo (M) is defined as the adjoint of d, i. e. 6 = d*. 

Definition 22.1. The Laplace (or Laplace-Beltrami) operator on functions 

on a Riemannian manifold M, is defined by the formula 

,1 = -6 . d. (22.12) 

Analogously, the Laplace operator is defined on p-forms AP(M) as 

,1 = -(d6+6d): AP(M)-+AP(M), 

but we will not consider this case. 
It is immediately clear that the Laplace operator has the following 

properties: 
a) ,1* = ,1; 

b) if T: M -+ M preserves the metric on the tangent spaces and 
T: Coo(M)-+Coo(M) is defined by Tf=fo T, then 

,1T=T,1, 
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i.e. ,1 commutes with isometries; 
c) if M is closed, then (,1/,1) ~ 0 and from L1f = 0 it follows thatf = const. 

4) Let us compute 8 and Ll in local coordinates. We have 

from which 

and 

= i.~! S giiai :~ ygdx = i.~! Sl[ - a~j (yg gijai)]dx 

= Sl· ~ ~ [ - a~j (yggijaJ] ygdx, 

1 ~ a (,r:.. .. af ) L1f = J df = , r:.. . ~ -a j v g gIl a---r . v g I. l=! X X 

(22.13) 

(22.14) 

Example 22.1. In the Euclidean space IRn with its standard metric, we obtain 

n a2f 
Llf = L a i2' 

i=! X 

Note that all invariants of Ll are also invariants of the Riemannian mani
fold, in particular, the residues and the values of the (-function. 

Exercise 22.1. Compute in local coordinates the principal symbol of the 
Laplace operator on a Riemannian manifold. 

22.2 The Laplace operator on the sphere S". The n-sphere sn is the following 
submanifold of IRn+!: 

There is a metric on sn, induced by the standard metric on IRn+ 1 and 
correspondingly a Laplace operator, which we denote by Ll s . There is the 
following method for computing Ll s, using the operator ,1 on IR" + 1. 

Proposition 22.1. Let f( w) be a function on sn and extend it to IRn + 1, putting 
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i. e. by homogeneity of degree o. Then 

(22.15) 

or 

(.1l)(x) = r- 2 .1sf, (22.16) 

where r = Ixl. 

Proof The equivalence of(22.15) and (22.16) is obvious, since .1lhas degree 
of homogeneity - 2. 

Let us prove (22.15). Denote temporarily by .1~ the operator on S", defined 
by the right-hand side of (22.15). 

The group of isometries SO (n + 1) acts on S" by restricting to S" the rotations 
ofIR" + 1. Using this group, any unit tangent vector may be mapped into any 
other such vector. Therefore, the principal symbol of an operator commuting 
with all isometries, is constant on all unit cotangent vectors (and, consequently, 
is uniquely defined up to a scalar multiplier). Clearly the operators .1 s and .1s 
commute with the action of SO(n+l) on functions. Therefore, there exists a 
constant A. such that the operator .1 ~ - A..1 s has order 1. But this operator also 
commutes with SO (n + 1) and since there are no linear functions which are 
invariant with respect to rotations and since the multiplication term of .1~ - A..1 s 
is constant because of rotational symmetry, then the operator .1 ~ - A..1 s is a 
multiple of the identity, and, consequently, is zero, because .1~1 = .1 s l = o. 
Hence.1~= A..1 s . From what follows, it will be clear that A. = 1, on the other hand 
this can be verified by computing .1 s and .1~ on any non-harmonic function on 
the sphere. 0 

22.3 Eigenvalues ofthe operator .1 s . Let us compute .1 in polar coordinates. 
Let r = Ixl and w = x/lxi, then 

.1 (f(r) g(w» = (.1f) g+ f(.1g) + 2(Vf) . (Vg) = (.1f)g+ f(.1g) , (22.17) 

since (V f) . (V g) = 0 (V f is directed along the radius vector and V g is 
directed along the tangent). Let us compute 11f(r). We have 

Xi 
r',=-x , 

r 

From this we obtain 

.1f(r) = it iJ~i (:i f' (r») = it f" (r) (:?2 
+ f (~- (Xit) f' (r) = f" (r) + ~ f' (r). 

i=O r r r 
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Therefore 

(22.18) 

where L1s is applied on the unit sphere with subsequent extension by 
homogeneity of degree zero. Formula (22.18) is true also on arbitrary functions 
(linear combinations of functions of the type f (r) g (w) are dense in the space 
coo (IRn+1 \ 0». 

In particular, for fer) = rl', we obtain 

L1 (rl'g(w» = r-2+1' [L1 sg+ [,uCu-l)+n,u]g] 

= r-2+1' [L1 sg+ ,u(,u+n-l)g]. (22.19) 

It follows from (22.19), that the following proposition holds 

Proposition 22.2. The equality L1 (rl'g(w» = ° (for r 4= 0) is equivalent 
to the fact that g (w) is an eigenfunction of the operator - L1 s with eigenvalue 
A = ,u(,u+n-l). 

Since all eigenvalues of the operator - L1 s are non-negative, we may assume 
that ,u ~ ° or ,u ~ 1 - n. Note that the quadratic function A (,u) =,u (,u + n -1) 
takes all values A ~ ° for ,u ~ ° and each of them exactly once. It is therefore clear 
that the eigenvalues A ~ ° are in a one-to-one correspondence with those ,u ~ 0, 
for which there exists a non-trivial function ~ (w) such that rl' g (w) is a harmonic 
function on W+l \ O. But then, by the removable singularity theorem, the 
function rl'g(w) is harmonic everywhere on IRn+1 and, consequently, is a har
monic polynomial by the Liouville theorem. In particular, f.L is an integer. 
Clearly the converse is also true, i. e. the restrictions to sn of homogeneous, 
harmonic polynomials are eigenfunctions of the operator - L1 s with eigenvalues 
.A. = k(k+n-l), where k = 0,1,2, ... and by the maximum principle we see that 
a harmonic polynomial is uniquely defined by its restriction to sn. Hence, we 
have proven 

Theorem 22.1. The eigenvalues of the operator -L1s are A=k(k+n-l), 
where k = 0, 1,2, ... and the multiplicity of the eigenvalue k (k + n - 1) equals the 
dimension of the space of homogenous, harmonic polynomials of degree k. 

22.4 Computing the multiplicity. Let Mk be the space of homogeneous 
polynomials of degree k. Let us compute Nk = dimMk. A basis in Mk is given by 
the monomials x~o ... x~" where ko + kl + ... + k n = k. The number of ordered 
partitions of k into a sum of n + 1 non-negative numbers equals the number of 
ordered partitions of k + n + 1 into a sum of n + 1 positive numbers, which in 
turn equals the number of ways of choosing n from n + k, i.e. equals 

( n + k) (n+k)! 1 Nk = = k =-(k+n)(k+n-l) ... (k+l). 
n n!! n! 

(22.20) 
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Note that .1 determines a map 

(22.21) 

and one has the exact sequence 

(22.22) 

where Hk = Ker.1 I M, is the space of homogeneous, harmonic polynomials of 
degree k, the dimension of which we would like to compute. 

Theorem 22.2. 1) The operator .1: M k-+Mk- 2 is surjective. 
2) There is a direct sum decomposition 

where r2 = x6 + ... + x; . 

Corollary 22.1. a) 

Mk = Et> r21 Hk- 21 , 
k-2/?;.O 

(22.23) 

(22.24) 

b) If fand <p are two polynomials, then there exists a unique polynomial u such 
that 

(22.25) 

(i.e. the Dirichlet problem for the Poisson equation in the unit ball is solvable in 
polynomials). 

c) The harmonic polynomials cannot be divided by r2. 

Derivation of Corollary 22.1 from Theorem 22.2. a) The relation (22.24) 
follows from the fact that the sequence (22.22) can be rewritten in the form 

(22.26) 

b) In view of part 1) of the theorem, the solvability of(22.25) reduces to the 
case f = 0, where it is obvious in view of (22.23). 

c) Also obvious in view of (22.23). 0 

Proof of Theorem 22.2. Both statements are proved at the same time by 
induction in k. 

For k = 0,1 the statements of the theorem are true. Let them be true also for 
all I < k. 

1°. Show that Hk (\ r2 M k- 2 = 0. Since by the inductive hypothesis we have 

M k- 2 = Et> r21Hk_21_2 
k-2/-2?;.O 
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r2 Mk- 2 = EB r21Hk_21 
k-2/?,0 

1>0 

hk = L clr2Ihk_21· 
1>0 

k-2/?,0 

171 

(22.27) 

Now consider the harmonic polynomial h=hk - L c1hk- 21 . We have 
1>0 

deg h ~ k and hk is the homogeneous component of h of degree k. Since 
h Ilxl = 1 = 0, then h == 0 from which hk == 0, as required. 

2°. From the condition Mk ~Hk EB r2 Mk- 2, we obtain 

(22.28) 

where the equality is equivalent to the decomposition 

(22.29) 

3°. From the exact sequence (22.22) it follows that 

(22.30) 

where the equality is equivalent to the surjectivity of the operator 

4°. From (22.28) and (22.30) it follows that dimHk= Nk - Nk- 2 from which 
follows the surjectivity and the decomposition (22.29) and hence, by the 
inductive hypothesis the decomposition (22.23) also follows. 0 

Corollary 22.2. The multiplicity of the eigenvalue A. = k(k+n-1) of the 
operator - L1 s is equal to Nk - Nk _ 2, where Nk is given by the formula (22.20). 

22.5 The function N(l) for the operator -As. It is clear that 

N(k(k+n-1)+0) = L dim HI = I (NI-NI- 2) = Nk+ Nk- 1 • (22.31) 
I:;;k I:;;k 

But from (22.20) it is also clear that Nk is a polynomial of degree n in k with 
leading coefficient tin!. It therefore follows from (22.31) that 

2 2 
N(k(k+n-t)+O) ~ - k n ~ - [k(k+n-1)]n/2. 

n! n! 
(22.32) 
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From (22.31) it also follows that 

N(k(k+n-l)+O) - N(k(k+n-1)-O) = Nk - Nk - 2 = Pn - I (k), 

where Pn - I (k) is a polynomial in k of degree n - 1. Therefore 

n-I 

N(k(k+n-l)+O) - N(k(k+n-1) -0) ~ ckn - I ~ c[k(k+n-l)]-2- (22.33) 

where c> O. From (22.32) and (22.33) it is clear that 

N (A) = ~ Anl2 (1 + 0 (A -1 /2», 
n. 

(22.34) 

where the term O(A- 1/2 ) is sometimes greater than cA.- 1/2 , i.e. the remainder 
estimate is the best possible (in any case as far as the exponent is concerned). 

Let us verify that (22.34) is exactly the asymptotic formula from 
Theorem 21.2 (which, in particular, also shows that the multiplier A from the 
proof of Proposition 22.1 equals 1). We have to verify that 

21n! = (2n)-nv"v: (22.35) 

where Vn is the volume of the unit n-ball and V: is the area of sn (Riemannian 
volume). 

Clearly Vn = V:_ I and from this everything reduces to the identity 
n 

, V' _ 2(2n)" 
Vn - I n - (n-l)! 

00 

(22.36) 

Let us compute V:_ I and prove this relation. Put 1= J e- x' dx; then 
o 

and in particular 

l" = J e-(xi+oo,+x;)dx I ... dXn 
Xi~O 

Vn nnl 2 
from which 1= 2' l" = 2"' Now note that 

l" = V:- 1 7 rn-1e-r'dr = V:- 1 . ~ 7 zT- I e-Zdz = V:- 1 r (~) 
2n 0 2n 2 0 2n + I 2' 
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2nn/2 
from which we obtain V:- 1 = r (nI2)' 
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As is well-known, integration by parts yields r(a+1) = ar(a) for a>O, 
from which for n = 2k we obtain 

r G) = r (k) = (k -1)! = G -1 } . 

Ifnow n = 2k + 1, then 

r ('!.) = r (k+~) = (k-~) (k-~) ~. ~. ~ r (~) 2 2 2 2 "'2 2 2 2' 

but r G) = 2 r = Vn, from which 

n n-2 n-4 1 --2-( ) 

n-l 

r:2 =-2-'-2-"':2Vn=2 (n-2)!!Vn· 

N ow let n be even. Then 

r G) r (n;1) = G-1} 2- n/2(n-1)!! Vn 

= 2-(i- 1)(n_2)!! 2- n/2(n-1)!! Vn = 2· 2- n(n-1)! Vn, 
from which 

2(2nt 
(n-1)!' 

as required. The case of odd n is considered in the same way. 

Problem 22.1. Write down the expression for the Laplace operator in the 
Lobacevskii plane (hyperbolic plane). 

Problem 22.2. Compute the eigenvalues for the Laplace operator on the 
n-dimensional real projective space IRPn with the natural metric (induced by 
the metric on the sphere sn under the two-fold covering sn -+ IRpn). 

Problem 22.3. Compute the eigenvalues of the Laplace operator on the 
n-dimensional complex projective space cr;pn with the natural Kahler metric 
(cf. S.S. Chern [1]). 



Chapter IV 
Pseudo differential Operators in lRn 

§23. An Algebra of Pseudo differential Operators in IRn 

The aim of the study of pseudodifferential operators on JRn is to describe 
various effects connected with the behaviour of functions as I x I ~ + 00. A 
fundamental role is played here by non-local effects, so we have to give up the 
requirement of properly supportedness of pseudo differential operators, 
unposed, without loss of generality, in the local theory (Chapter I). 

23.1 The classes of symbols and amplitudes 

Definition 23.1. The symbol class r; (JRN), where m E JR, 0 < Q ~ 1, consists 
of the functions a(z) E COO (JRN), which satisfy the estimates 

(23.1 ) 

Example 23.1. Any polynomial a(z) of degree m belongs to rf(JRN). 

Let us note immediately that if a ErQm'(JRN) and b Er;'(JRN), then 
abEr;,+m'(JRN) and o~aEr;'-QIIXI(JRN). Further, given a linear monomor
phism}: IRl~IRN, a Er;(IRN) andj*a = a 0 j, thenj*a Er;(JR1). Note that 

n r;(JRN) = S(JRN). (23.2) 
m 

Definition 23.2. Let aj Er;J(JRN),j=1, 2, ... , mj~-oo asj~+CX) and 
aECOO(JRN). We will write 

if for any integer r ~ 2 

where m, = max m j . 

j?,r 

00 

a-" a· L.. J' 
j=l 

The following propositions are similar to Propositions 3.5 and 3.6. 

(23.3) 

(23.4) 
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Proposition 23.1. Let aj E r;J(JRN),j = 1,2, ... , where mr .... - 00 asj--+ + 00. 
00 

Then there exists afunction a, such that a,.., L aj • If another function a' has the 
same property, then a - a' E S (JR N). j = 1 

Proposition 23.2. Let aj E r;J(JRN), j = 1, 2, ... , where mj --+ - 00 as 
j--+ + 00. Let a E COO (JRN) andfor any multiindex 0( let thefollowing estimate holds 
for some constants J1.11. and CII.: 

(23.5) 

Finally, let there exist Ij and Cj such that Ij --+ - 00 as j --+ + 00 and the following 
estimates hold 

00 

Then a,.., L aj • 

j=l 

Exercise 23.1. Prove Propositions 23.1 and 23.2. 

We now would like to consider operators of the form 

Au(x) = JJ ei(x-y)· ~ a (x, ~) u (y) dy d~ , 

(23.6) 

(23.7) 

where a (x, ~) E r;(JR 2n). However, as is evident from the considerations in 
Chap. I, it is convenient to consider at once a more general formula for the action 
of the operator 

Au (x) = JJ ei(x-y)· ~ a (x, y,~) u(y) dy d~ , (23.8) 

where the function a (x, y,~) is called the amplitude. 
We will describe the class of amplitudes, which will be useful in what follows 

Definition 23.3. Let II; (JR3") denote the set of functions 
a(x,y,~)Ecoo(JR3n), which for some m' satisfy 

where z = (x, y,~) E JR 3n. 

It is clear that if a EII; (JR3n), then a;a(z)EII;-C1II1.I(JR3n) and if 
b Ell;' (JR3n), then ab EII;+m'(JR3n). We have r;(JR3n) c II; (JR3n). Since 
(z)/(x- y)?, 1, then between the classes II;(JR3n) there are the inclusions 
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If a (x, y,~) En; (JR 3"), then a (x, x, ~) E r; (JR 2"). 
The most important example of an amplitude of the class n;(JR3 ") is 

provided by the following 

Proposition 23.3. Let a linear map p: JR 2"---+ JR" be such that the linear 
map JR 2"---+ JR 2", mapping (x, y) into (p (x, y), x - y), is an isomorphism. Let 
b(X,~)Er;(JR2"). Define the amplitude a(x,y,~)ECO(JR3") by theformula 

a(x,y,~) = b(P(x,y),~). (23.10) 

Then aEn;(JR3 "). 

Proof The functions Ixl + Iyl and Ip(x, y) 1+ Ix- yl give equivalent norms 
on JR 2". Therefore, for the proof of the proposition it remains to use the easily 
verified inequality 

(1+lp(x,y)I+I~IY ::5:C(l+lx-yl)!S!, sEJR, 
(1 + Ip(x,y)1 + Ix- yl + I~IY-

from which the estimates (23.9) follow for a (x, y, ~) with m' = I m I. 0 

Corollary 23.1. If bE r; (IR 2"), then a (x, y, ~) = b (x,~) and a (x, y, ~) 
= b(y,~) belong to n;(JR3 "). 

23.2 Function spaces and the action of the operator. Now we introduce the 
space Cb' (JR") consisting of functions u E Coo (JR") such that 

I Oou(x) I ~ Co (23.11 ) 

for any multiindex lal. The best constants Ca in (23.11) constitute a family of 
semi-norms for a given function, defining a Frechet space structure on Cb' (JR"). 

The operator A of (23.8) is conveniently studied in the space Cb' (JR"). In 
order to give the correct definition of the oscillatory integral appearing in (23.8), 
we shall have to proceed as in §1. For this purpose, let initially a (x, y,~) 
E CD (JR 3"). Then the integration in (23.8) in reality is performed over a compact 
set and we may carry out an integration by parts, using the identities 

<x- y) -M<D~)M ei(x-y)' ~ = ei(x-y)·~, 

<O-N<Dy)N ei(x-y)·~ = ei(x-y)·~, 

where M, N are even non-negative integers. From (23.8) one obtains 

Au(x) = J J ei(x-y)' ~ <x- y) -M <D~)M <Dy)N 

x [<O-Na(x,y,~)u(y)]dya~ 

(23.12) 

(23.13) 

(23.14) 
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If the amplitude a E II; (IR 3,,) satisfies (23.9) and if U E Cf (IR~), then clearly 
for m - N < - n, m' + m - M < - n, the integral (23.14) becomes absolutely 
convergent, defining a continuous function of x EIR". Increasing M and N, we 
will obtain integrals which are convergent also after differentiation with respect 
to x. Hence the operator defined by (23.14), is a continuous map 

(23.15) 

For m < 0, we will also obtain a map A: qX'(IR") -+ Cf(IR"). This same map 
could also be defined using a cut-off function X (x, y, ~) E Co (IR. 3,,), X (0, 0, 0) = 1 
and the formula 

Au (x) = lim Hei(X-YHx(ex,ey,e~)a(x,y,~)u(y)dyd~. 
£~+o 

(23.16) 

The identity of the two definitions (23.14) and (23.16) is verified in the same 
way as in §1 and we leave this verification as an exercise to the reader. 

In particular, the operator A is defined on the space S (IR"). Let us show that 
it gives a continuous map 

A: S (IR") -+ S (IR"). (23.17) 

Indeed, using the inequality 

(1+lxl)k~(1+IYI)k(1+lx-yl)\ k>O, 

we see from (23.14) that 

for any k and a similar estimate holds if we replace Au (x) by o~(Au(x». From 
this we also have Au E S (IR") for u E S (IR") with an estimate of seminorms 
guaranteeing the continuity of the map (23.17) (which also could have been 
obtained from the closed graph theorem). 

Finally note, that since the transposed operator 

tAu(y) = Hei(X-Y)·~ a(x,y,~) v(x)dxd~ (23.18) 

by similar reasoning, maps S (IR ") into S (IR") , then A can be extended by duality 
to a continuous map 

A: S'(IR")-+S'(IR"). 

Definition 23.4. The class of operators A of the form (23.8) with amplitudes 
a E II; (IR 3,,) will be denoted by G; (IR") or simply by G; (if the dimension n is 
clear or unimportant). 
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It is useful to have a description of the operators belonging to the intersection 
G - OC! = n G;. We shall show that this intersection is independent of (} and 

m 

consists of operators with kernels KA (x, y) E S (JR 2"). Clearly it suffices to 
consider the case e < 1. Note that the operators with amplitudes a (x, y, ~) and 
<x - y) - N <D~)N a (x, y, ~) coincide, from which we see that if A E G - OC!, then A 
can be determined by an amplitude a (x, y, ~) satisfying (23.9) with arbitrarily 
small (arbitrarily close to - (0) numbers m and m'. But then A has the kernel 

(23.19) 

belonging to S (JR 2"). From this, it follows in particular that A defines a 
continuous map 

(23.20) 
given by the formula 

Au (x) = <KA (x, .), u ( .) . (23.21 ) 

In the general case the kernel KA (x, y) is defined by the formula 

(23.22) 

and is a distribution KA ES'(JR2"). 

Exercise 23.2. Denote by Cr"J (JR") the space of functions u E CCIJ(JR"), with 
the property that for any multi-index IX one can find constants C~ and f.1~, such 
that 

(23.23) 

Show that an operator A E G; defines a map 

(23.24) 

Exercise 23.3. Let A E G; (JR") and KA the kernel of A. Show that 
KA ECOC!(JR 2"\A), where A is the diagonal in JR" x JR". 

23.3 Left, right and Weyl symbols 

Theorem 23.1. An operator A E G; of the form (23.8) can be written in any of 
the following three forms 

Au(x) = H ei(x-y).~ O"A,/(X,~) u(y)dya~, 
Au (x) = H ei(x-y)' ~ O"A,r(Y,~) u(y) dyaC 

Au(x) = H ei(x-y).~ O"A,w e;y,~) u(y)dya~. 

(23.25) 

(23.26) 

(23.27) 
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Here (fA,/' (fA,r and (fA,w belong to r;'(IR2n), are uniquely defined and have the 
following asymptotic expansions: 

(23.28) 

(23.29) 

(23.30) 

This theorem allows the introduction of 

Definition 23.5. The functions (fA/' (fAr and (fA w from the formulae (23.25)
(23.27) are called, respectively, the lefi, right and W~yl symbols of the operator A. 

Although we shall not use any other symbols, let us show the following 
generalization of Theorem 23.1, containing a parameter t E IR and also allowing 
us to avoid repetitions in the proof of Theorem 23.1. 

Theorem 23.2. Let A E G; of the form (23.8) be given. Then for any t E IR 
A may be uniquely written as 

(23.31) 

where bt E r; (IR 2n). Here bt has the following asymptotic expansion 

bt(x,~) '" L f3,1 , t!P!(I-t)!Y! 8g+ Y(-DJP D~a(x,y,~)ly=x' (23.32) 
P,y • y. 

Definition 23.6. The function bt (x, ~) will be called the t-symbol of A. 

Proof of Theorem 23.2. Putting 

we obtain 

from which 

{ 
v=(I-t)x+ty, 
w = x- y, 

{ x=v+tW' 
y=v-(I-t)w, 

a(x,y,~) = a(v+tw, v - (l-t) w,~). 

(23.33) 

(23.34) 

(23.35) 

Let us now expand the right-hand side of(23.35) at w = 0 in a Taylor series: 

( -1)IYI 
a(x,y,~) = L -,-,- t lPI (l-t)l yl (x- y)p+y (8!8~a)(v, v,~) + rN' 

IfJ+yl:;;;N-1 f3. y. (23.36) 
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where 
1 

rN(x,y,~)= L Cpy(x-y)P+y J(l-t)N-l 
!p+y! =N 0 

x (a~a;a)(v+ tTW, v- t(l- T) W,~) dt, (23.37) 

and Cfly are constants. 
In (23.36) the expression (a~a~a) (v, v,~) signifies that in the function 

a~a~a (x, y,~) it is necessary to take v = (1 - T) x + TY instead of x and y. The 
expression (a~a;a) (v+ trw, v - t(l-T) w,~) in formula (23.37) has a similar 
meanmg. 

Now note, that the operator with amplitude (x- y)p+y (a~a~a) (v, v,~) 
coincides with the one given via the amplitude 

Therefore it follows from (23.36) that A can be represented in the form of a sum 
A = AN + RN, where AN is an operator with T-symbol 

" _l_rIP!(l-r)!y!ap+Y(-D)PDYa(xy 1')1_ 
L. f3!y! ~ x y "." y-x' 

IP+YI~N-I 

and RN is an operator with amplitude rN (x, y, ~). Note that RN is a linear 
combination of a finite number of terms having amplitudes of the form 

1 

J(ag+Ya~a~a) (V+tTW, v- t(l-r)w,~) (1-t)N- 1 dt, 
o 

1{J+yl=N. 

Let us show that this amplitude belongs to the class n;- 2NU(IR.3 n). For this it 
sufficies to show that this is true for the integrand, with all estimates uniform in t 
(note that this is obvious for each fixed t =1= 0 and true for t = 0 by Proposition 
23.3). In view of the relations 

v = (l-T) (v+tTw)+T(v-t(l-T)w), 

tw = (V+tTW) - (v-t(l-T)w) 

it is obvious that 

c-1s; IV+tTWI+lv-t(1-T)wl s; c 
- 1 v 1 + 1 tw 1 -, 

where C> 0 and C does not depend on t E [0, 1]. Therefore 

1 (ag+Ya~a~a) (V+tTW, v- t(l-T) w, ~)I 
~ C (1 + 1 v 1 + 1 tw 1 + 1 ~ I)m- 2uN (1 + 1 tw I)m' +2oN. 
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Since for m' + 2(!N ~ ° we have 

(1 + Itwl)m'+2 QN ~ (1 + Ivl+ Itwl+ IWm'+2 QN (1 + Ivl+ Iw-(m'+2 QN), 

it is clear that if, in addition, m' + m ~ ° and m - 2 (! N ~ 0, then 

l(ag+Yaea~a) (v+trw,v-t(l-r)w,~)1 

~ C(1+lvl+I~I)-m'-2QN (l+lvl+ltwl+I~l)m'+m 

~ C(1+lvl+I~l)m-2QN (l+lwl)m'+m 
~ C(l + Ivl + Iwl + 1~I)m-2QN(l + Iwl)m l +2m+2QN, 

where C does not depend on t. One obtains the estimates for derivatives in an 
analogous way. 

Now let the symbol b' (x,~) E r; (m. 2n) be such that 

00 

b' (x,~) '" L (bN (x,~) - bN - dx, m· 
N=O 

Then, if A' has r-symbol b'(X,~) it is clear that A-A'EG-oo, i.e. the 
operator A - A' has a kernel belonging to S(m.2n). 

Let us now verify that if A has a kernel KA E S (m. 2n), then it has a r-symbol 
br(x,~) ES(m. 2n) and the correspondence between kernel and symbol is a one-to
one correspondence. From formula (23.31) it is clear that this correspondence is 
of the form 

KA(x,y) = F~-~~-ybr((1-r)x+ry,O, 

br(v,~)=Fw~~KA(v+rw,v-(l-r)w) 

(23.38) 

(23.39) 

«23.39) is obtained from (23.38) by a change of coordinates and the Fourier 
inversion formula). In particular, for any KA E S (m. 2n), we can find 
br(v,~) ES(m.2n) by formula (23.39). 

We next show the uniqueness of the r-symbol in the general case. For this we 
note that (23.38) is always true when A is given via a r-symbol br (x,~) and if the 
partial Fourier transform, which appears in this formula, is understood in the 
same sense as the Fourier transform of distributions (cf. §1). Thereby, the 
inversion formula is also true, leading to (23.39) after the linear change of 
coordinates (23.34). Also, from formula (23.39), the uniqueness of the r-symbol 
is obvious, taking into account the uniqueness of the kernel K A . 0 

Corollary 23.2. The class of operators G; coincides with the class of operators 
of the form (23.25) with the left symbol 0' A,/(X, ~) E r; (m. 2n). The same is also true 
if we replace (23.25) by (23.26) or (23.27) and O'A,/ by O'A.r or O'A,w' 

23.4 Relations between the different symbols. The symbols of the transposed 
and adjoint operators. The expression for the r-symbol in terms of the r 1 -symbol 
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for a different r, can be easily obtained from Theorem 23.2 in the form of an 
asymptotic series. Indeed, if an operator A has the r I-symbol b'l (x, ~), this 
signifies that it may be determined via the amplitude 

But then, by Theorem 23.2 its r-symbol has the asymptotic expansion 

or 

where 

( -l)!P! 
b (x 1') '" '\' -- r!P! (l-r)!Y! (l-r )!P! r iY ! aP+Y DP+Y b 

, , " L.. {3' y' I 1 ~ X 'I P. Y •• 

b, (x,~) '" L caa~D~b'l (X,~), 
a 

( _l)!fi! 
Ca = L -,-,- [r(l-r l )]!P! [(l-r)rd!Y! 

fi+y=a {3.y. 

(23.40) 

(23.41 ) 

and, in particular, we have Co = 1. Now, transforming (23.41) using the Newton 
binomial formula (Lemma 3.4), we obtain 

where e = (1, 1, ... , 1). 
Thus, we have proved 

Theorem 23.3. Symbols b,(x,~) and b'l (x,~) of the same operator A E G; are 
related via 

(23.42) 

In particular, b,(x,~) - b'l (x,~) E r; -2e (lR 2n). 

Let us now consider the transposed operator tA, defined by the formula 

<Au, v) = <u, tAv) , u, v E S (lRn) , 

where 

<u,v) = I u(x) v(x)dx. 
JR.' 

From the formula 

<Au,v) = HI ei(X-YHb,«l-r)x+ry,~) u(y) v(x)dydxd~ 

== Hei(Y-X)~ b,«l-r)x+ry, -~) u(y) v(x)dydxd~ 

(23.43) 
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it follows that if A has a r-symbol b, (x, n then tA has the (1 - r)-symbol 
tbl_,(x, ~), given by the formula 

(23.44) 

From Theorem 23.3 it now follows 

Theorem 23.4. If A E G;, then tA E G; and the r-symbol tb,(x,~) orA can be 
expressed in terms of the r-symbol b,(x,~) of A by the formula 

(23.45) 

Now let A * be the adjoint of A, defined by 

(Au,v) = (u,A*v), u, VES(lRn), (23.46) 
where 

(u,V) = J u(x) v(x)dx. (23.47) 
JR' 

By analogy with Theorem 23.4 one can show 

Theorem 23.5. If A E G;, then A* E G; and the r-symbol b: (x,~) of A* is 
related to the (1-r)-symbol bl_'(x,~) of A via the relation 

(23.48) 

and can be expressed in terms of the r-symbol b,(x, ¢) of A via the asymptotic series 

(23.49) 

Corollary 23.3. If A E G;, then 

(23.50) 

In particular, the condition A = A * is equivalent to the real-valuedness of the Weyl 
symboII1A ,w(x, ~). 

23.5 The composition formula 

Theorem 23.6. Let A' E G;', A" E G;'. Then A' 0 A" E G;' +m, and if b~. (x,~) 
is the r csymbol of A' and b;, (x,~) the r2-symbol of A", then the r-symbol b,(x,~) 
of A' 0 A" has the asymptotic expansion 

br(x,~) ~ L cafJy~(a: D~b~1 (x, ~))(a{ D!b~/x, 0), (23.51 ) 
a.fJ,y.~ 
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where capyo are constants (depending on " 'I and '2) such that Coooo = 1 and the 
sum runs over sets of multi-indices IX, 13, y and b such that IX + y = 13 + b. 

In particular, we have br (x,~) - b:, (x,~) b;, (x,~) E r;, +m,- 2e (IR2n). 

Proof Taking Theorem 23.3 into account, we see that it suffices to consider 
only one arbitrary triple of the numbers " '1 and, 2' Let us take for simplicity 
'1 = 0, '2 = 1. A n can be written, using the symbol b~ (y, ~), as 

or 
(23.52) 

A' has the form 

A'v(x) = IS ei(x-yH bQ (x, 0 u(y) dyd~ = S eix'~ b~ (x,~) u(~) d~. (23.53) 

From (23.52) and (23.53) it follows that 

A' 0 Anu(x) = IS ei(x- y)' ~ b~ (x, 0 b~ (y,~) u(y) dydC (23.54) 

i.e. A' 0 An is determined via the amplitude 

From this we have A' 0 An E G;' +m,. Applying Theorem 23.2 we obtain for 
br (x, ~) 

and by the Leibniz rule (Lemma 3.3) 

br(x,~) '" L 
p,y,o,e 

o+e=p+y 

as required. 0 

( --_l-:-)_!P_! (:-f3_+_Y)_! TIP! (1- ,)!y! (00 DP b' ) (oe DY bn ) 

f3!y!b!e! ~ x 0 ~ xl' 
(23.55) 

Inserting into (23.55) the expressions for b~, b~ in terms of b: , b; we obtain 
formulae for the coefficients capyo in (23.51), which may 'so~etimes be 
simplified. For instance, one can show by analogy with Theorem 3.4 the 
following 

Theorem 23.7. Under the assumptions of Theorem 23.6 one has 

1 
bo(x,~) '" L ,(o~b~ (x, m (D~b~ (x, m· 

a IX. 
(23.56) 
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Problem 23.1. Show that the left symbol O"A./(X,~) of an operator A E G; can 
be expressed in terms of A by the formula 

(23.57) 

where A acts on the variable x. 

Problem 23.2. Show that if A' E G;·, A" E G;2, then 

Problem 23.3. Consider the polynomial 

in the variables t, r E IRn with operator coefficients (Xj IS viewed as the 
multiplication operator by x) and write it in the form 

" N! a p 
L., ~ t r Aap· 

la+PI =N lX.I-" 

Show that Aa/l is an operator with the Weyl symbol xa~/l. 

§24. The Anti-Wick Symbol. 
Theorems on Boundedness and Compactness 

24.1 Definition and basic properties of the anti-Wick symbol. Put 

(24.1) 

Then CPo ES(IRn) and IICPoll = 1, where II . II denotes the usual norm in 
L2 (IR"), generated by the scalar product (23.47). Denote by Po the orthogonal 
projection in L2 (IR") onto the vector CPo. Clearly, the Schwartz kernel of this 
projection has the form 

(24.2) 

Computing the Weyl symbol 0"0 of Po, we get, using formula (23.39) with r = t; 

(24.3) 
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Now, taking into account that 

tX > 0, (24.4) 

we obtain from (24.3) that 

0'0 (x,~) = Fv~~ 7[-n/2 exp (_X2 _ v:) = 2n exp [- (x 2+ ~2)]. (24.5) 

Now let z = (x, ~), Zo = (xo, ~o) E IR 2n. Consider the operator PZo with Weyl 
symbol O'z (z) of the form 

o 

(24.6) 

It is easily verified that 

(24.7) 

where M~o is the multiplication operator by eix . ~o and Txo is the shift operator by 
Xo in L2 (IRn), i. e. Tx u (x) = u (x - x o). Setting Uz = M~ Tx , we see that Pz can be 
written in the foru{ 0 0 0 0 

(24.8) 

from which it is obvious, since Uz is unitary that Pz is the orthogonal projection 
onto the vector cP z = Uz cPo. 0 0 

We wish to co~sider °the following operator, being a linear combination of 
operatorsPz , zEIR2n : 

(24.9) 

where a(x,~) E r;'(IR2n). As for the meaning of this formula, let us note that the 
following can be immediately verified: if u(x) ES(IRn), then (Px,~u)(xo) 
ES(IR~~~). Due to this, (24.9) makes sence if we consider it on functions 
u (x) E S (IRn), and one can easily ensure that A maps S (IRn) into S (IRn). 

Definition 24.1. An operator A of the form (24.9) is called operator with anti-
Wick symbol a (x, ~). 

The convenience of anti-Wick symbols is demonstrated by 

Proposition 24.1. If a (z) ~ 0, then A ~ 0, i. e. (Au, u) ~ 0 for u E S (IRn). 

Proof This follows from the fact that Pzo ~ 0 for any Zo E IR 2n. 0 

Corollary 24.1. If a (z) is real-valued, then 

IIA II ~ sup la(z) I, (24.10) 
ZE:R 2n 
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where 

IIA II = sup IIAull/llull· 
UES(IR'). U *0 

Proof The statement II A II ~ M is equivalent, for self-adjoint A, to the 
non-negativity of the operators M - A and A + M, which is obvious for 
M = sup I a (z) I from Proposition 24.1. D 

zeIR. 2Ir 

Corollary 24.2. For a complex-valued function a (z) one has the following 
estimate 

IIAII ~ 2 sup la(z)l. (24.11 ) 
zelR 2ft 

Proof It suffices to use Corollary 24.1 for Re a and 1m a. D 

Remark 24.1. In fact, (24.10) holds also for complex-valued functions a(z) 
(cf. Problem 24.4), although we shall not use this. 

24.2 Connection between the anti-Wick symbol and the other symbols. 

Theorem 24.1. Let A be an operator with anti-Wick symbol a (z) = a (x,~) E 

FQm(IR2n). Then A EG; and the Weyl symbol of A can be expressed as 

b(z) = n-n J e-1z-z'I' a(z')dz'. (24.12) 

Further, any r;-symbol bt(z) of A has the asymptotic expansion 

(24.13) 

where Ca are constants (depending on r;), such that Co = 1 and Ca = 0 for odd IIX I. In 
particular 

(24.14) 

Proof The relation (24.12) is obvious from (24.9), (24.5) and (24.6). In view 
of Theorem 23.3 it suffices to show (24.13) for r; = 1, i.e. for the Weyl symbol. 
Let us expand a(z') in the Taylor series at z: 

where 

1 
a(z') = L ---. (aaa(z)) (z'-zY+ rN(z',z), 

lal<N IX. 

1 

rN(z', z) = L c~ (z' -zy J aaa(z+t(z' -z)) (1- t)N-l dt, 
lal=N 0 

and where < are constants. 

(24.15) 

(24.16) 
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Inserting (24.15) into (24.12) we obtain 

where 

b(z)= L c~o~a(z)+RN' 
I~I<N 

(from which obtain in particular, Co = 1 and c~ = 0 for odd lex I), and 
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(24.17) 

(24.18) 

Let us show that RN (z) E r; -eN (IR. 2N) (from which we have, in an obvious 
manner, the required expansion (24.13)). It is convenient to rewrite RN (z) in the 
form 

1 

RN(z)= L c; JdtJdw· w~e-lwl'(o~a)(z+tw)(l-tt-l, 
I~I=N 0 

implying that 0: RN (z) has the form of a sum of terms like 

1 

J dt J dw· w~e-Iwl' (ofJ a) (z+tw) (l_t)N-l, 
o 

where I P I = N + I Y I. Clearly it suffices to estimate the expression 

(24.19) 

uniformly in t E [0, 1]. To estimate I~fJ (z) we decompose it into the sum of two 
integrals: 

I~fJ(z) over the domain Iwl < Izl/2, 
I~p(z) over the domain Iwl > Izl/2. 

For I~fJ(z) one has the estimate 

and I~p(z) can be estimated as follows: 

II~p(z)1 ~ C~fJ J e- Iwl ' (w)N+m(z)m dw ~ Ck(Z)-k 
Iwl > Iz l/2 

(24.21) 

for an arbitrary k. From (24.20) and (24.21) we immediately have the required 
estimate for I~fJ(z). 0 
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Theorem 24.2. Let A' E G;. Then there exists an operator A E G; , such that A 
is given by the anti-Wick symbol 

and A - A' E G - 00 , (24.22) 

i.e. the operator A-A' has the Schwartz kernel KA_A,(X,y) ES(IR1"). 

Remark 24.2. Not every operator A E G; has an anti-Wick symbol a E r; 
(this is clear for instance, from the fact that the Weyl symbol b (z) as defined by 
formula (24.12), must be a real-analytic function in Z E IR2"). The actual find
ing of the anti-Wick symbol from a given Weyl symbol requires the solution of 
the inverse heat equation. Theorem 24.2 shows that if one disregards symbols 
in S(IR"), this process becomes possible. 

Proof of Theorem 24.2. Let A' have the Weyl symbol b' (x, ~). Consider the 
operator Ao with anti-Wick symbol ao (x,~) = b' (x,~) and put A~ = A' - Ao. 
Then A~ E G;-le by Theorem 24.1. Denote by Al the operator with anti-Wick 
symbol a1 (x, ~), equal to the Weyl symbol of A~. We have 

Continuing by induction, we may construct a sequence of operators A j ,j = 0, 
1,2, ... , with anti-Wick symbols aj(z) Er;-lje(IR1"), such that 

N -1 

A' - L AjEG;-leN • 

j~O 

Let a(z) Er;(IR2") be such that 

(24.23) 

Then if A is the operator with anti-Wick symbol a (z), (24.22) follows from 
(24.23) as required. 0 

24.3 Theorems on boundedness and compactness 

Theorem 24.3. The operator A E GO can be extended to a bounded opera-
2 " Q tor on L (IR ). 

Proof In view of Theorem 24.2 and Corollary 24.2 the statement reduces to 
the case A EG-oo, where it is obtained from the obvious estimate 

(24.24) 

resulting from the Cauchy-Bunjakovskij-Schwarz inequality (cf. also Appen
dix 3). D 
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Theorem 24.4. The operator A E G; for m < 0 can be extended to a 
compact operator on L 2(JRn). 

Proof First note, that the operators in G- 00 are Hilbert-Schmidt operators 
(cf. Appendix 3), hence they are compact. 

N ow let A E G;, m < O. Using Theorem 24.2, we may assume that A has the 
anti-Wick symbol a (z) E r; (JR 2n). Let X (z) E ego (JR 2n), X (z) = 1 for I z I ~ 1. Put 
aL(z) = X (zjL) a(z) and let AL be the operator with the anti-Wick symbol aL(z). 
Then sup la(z)-aL(z)I-+O as L-++oo and in view of Corollary 24.2 we 

Z EIR 2n 

therefore have IIA-ALII-+O as L-++oo. 
But A L is compact for any L since ALE G - 00. From this the compactness of A 

also follows. D 

24.4 Problems 

Problem 24.1. Prove the boundedness theorem in the same way as Theorem 
6.1 was proved. 

Problem 24.2. Prove the compactness theorem 24.4 without using the 
theory of the anti-Wick symbol. 

Hint: Verify with the help of polar decomposition of A, that compactness of 
A is equivalent to compactness of A * A; show that compactness of A * A is 
equivalent to compactness of EN = (A * A)N and obtain the latter for large N from 
the fact that KBN (X,Y)EL2 (JR 2 n). 

Problem 24.3. Consider the system of vectors {cP zL elR" defined in 24.1. 
Show that the map I: f -+ (J, cP z) defines an isometric embedding of L2 (JRn) into 
L2 (JR 2n), i. e. 

(24.25) 
1R" 

(one says in this case that the vectors ({Jz constitutes an overcomplete system with 
respect to the measure (2 n) - "dz in the space JR 2"). 

Problem 24.4. Show that an operator A with an anti-Wick symbol a(z) can 
be written in the form 

A = I*MJ, (24.26) 

where Ma is the multiplication operator by a (z) in L2 (JR 2") and the operator I: 
L2 (JR") -+ L2 (JR 2n) was introduced in Problem 24.3. Derive from this the validity 
of (24.10) for complex-valued functions a (z). 

Problem 24.5. Introduce the Wick symbol c (z) of an operator A E G; with a 
Weyl symbol b (z) by the formula 

c(z) = n-" S e-1z-z'I' b(z')dz'. (24.27) 
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Show that C (z) can be expressed in terms of b (z) via the asymptotic series 

(24.28) 

where Co = 1 and Ca = 0 for odd 1 a I. 
Verify that the Wick symbol c (z) of A can be expressed by the formula 

(24.29) 

Derive from this that 

sup Ic(z)1 ~ IIAII. 

Problem 24.6. Let a (z) --+ 0 as 1 z 1--+ + 00. Show that the operator A, defined 
by the formula (24.26) is compact. 

Problem 24.7. Let A be a compact operator in L2 (JR.") and let c (z) be defined 
by the formula (24.29). Show that c(z)--+O as Izl--+ + 00. 

Problem 24.8. Let A E G; for some m E JR. and let b (z) be the Weyl symbol of 
A. Show that the boundedness of A is equivalent to sup Ib(z)1 < 00. 

ZE1R 211 

Hint: Use Corollary 24.2, Problem 24.5 and the construction from the proof 
of Theorem 24.2. 

Problem 24.9. Let A and b (z) be as in the foregoing problem. Show that the 
compactness of A is equivalent to the condition b (z)--+O as Iz 1--+ + 00. 

Hint: Use Problems 24.6, 24.7 and the construction in the proof of 
Theorem 24.2. 

Problem 24.10. Show that a differential operator with polynomial coef
ficients in JR." has a polynomial in z = (x, ~) as its anti-Wick symbol. 

Hint: On polynomials one can solve the inverse heat equation, since the 
Laplacian is nilpotent on the polynomials of a given degree; if b (z) is a 
polynomial Weyl symbol of A, then its anti-Wick symbol has the form 

-~d 00 1 ( LI)k 
a(z) = e 4 b(z) = L .. -- b(z). 

k=O k. 4 
(24.30) 

Problem 24.11. Compute the coefficients Ca in formula (24.13) for T = t, i.e. 
in expressing the Weyl symbol through the anti-Wick symbol. Show that this 
series can be written in the form 

d 00 1 (LI)k 
b (z) '" e4 a (z) = L .. - a (z) . 

k=O k. 4 
(24.31) 

Hint: In computing the coefficients Ca one may assume that a (z) is a 
polynomial. 
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Problem 24.12. Let A be a differential operator with polynomial coefficients 
on JR". Show that A may be uniquely expressed in any of the two forms 

A = L capaa(a+)p, (24.32) 
a. P 

A = L c~p(a+)Paa, (24.33) 
a.p 

+ (a a) (a a) where a = XI - ax l "" ,Xn - aXn ,a = XI + ax l "" ,xn + aXn ,and ()(, f3 

are n-dimensional multi-indices, the sums (24.32) and (24.33) are finite and caP' 
<P are complex constants. Show that in this case the anti-Wick symbol a (x, ~) 
and the Wick symbol C (x, ~) of A are given by the formulae 

a (x,~) = L caP (x+ i~t (X- i~)P , (24.34) 
a. P 

C(X,~) = L c~p(x-i~)P(x+i~Y. (24,35) 
a, P 

§25. Hypoellipticity and Parametrix. Sobolev Spaces. 
The Fredholm Property 

25.1 The class of hypoelliptic symbols and operators 

Definition 25.1. We shall write a(z)EHr;·mo(JRN), if a(z) ECCXl(JR.N) and 
there is an R such that the following estimates hold for I z I ~ R 

Clzlmo~ la(z)1 ~ C1lzlm, 

laaa(z)1 ~ Cala(z)llzl-~!a!, 

where C, C I' Ca are positive constants. 

From this it follows that a (z) E r; (JR.N). 

(25.1 ) 

(25,2) 

This class of symbols has properties close to those of the symbols in §5. 

Definition 25.2. By HG;' mo(JR.n) or HG;' mo we denote the class of operators 
A, given by the r-symbols 

Clearly, HG;·moc G;. 
For the justification of Definition 25.2 we need 

Proposition 25.1. If it is true for some r E JR. that bT E H r;· mo, then it is true 
also for all r E JR.. 
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Proof The proof is based upon Theorem 23.3 and the following Lemma 
proved in the same way as Lemmas 5.1-5.3 and Propositions 5.2-5.4. 

Lemma 25.1. 1) The classes Hr;,mo(JRN ) satisfy: 
a) if a(z) EHr;·mo, then a-1(z) EHr;mo' -m (Izl ~ R) and (oaa)ja Er;q!a! 

(lzl~R); 
b) ifaEHrm,mo a'EHrm',m~ then aa'EHrm+m',mo+m~. 

e' e' e ' 
c) if a EHr;,mo and r Er;' where m1 < mo, then a + r EHr;,mo. 

2) The classes HGm,mo satisfy: 
d) if A EHGm,mo A' EHGm',m~ then A· A' EHGm+m',mo+m~. 

(l' (l' Il' 

e) if A EHGm,mo then tA EHGm,mo and A* EHGm,mo· 
1/ ' 1/ q , 

f) if A E HG;' rno and REG;, where m1 < mo, then A + R E HG;' mo. 

Exercise 25.1. Prove Lemma 25.1. 

Exercise 25.2. Prove Proposition 25.1. 

25.2 The Parametrix and regularity. By analogy with Theorem 5.1 we can 
prove 

Theorem 25.1. If A EHG;·mo then there is an operator BEHG;mo' -m such 
that 

BA = 1 + Rl , AB = 1 + R2 (25.3) 

where RjEG-ro,j= 1,2. If B' is another operator in G;' for which either B'A 
- IEG-ro or AB' - IEG-ro, then B' - BEG-ro. 

Exercise 25.3. Prove Theorem 25.1. 

Corollary 25.1. Let A E HG;' mo. Then the following statements hold: 
a) IfuES'(JRn) and Au ES(JRn), then UES(JRn). 

b) If U ES'(JRn) and Au E ctro(JR"), then U E ctro(JRn). 

Proof Follows in an obvious way from Theorem 25.1 and the results in 
23.2. 0 

25.3 Sobolev spaces. Consider for arbitrary s E JR the operator Ls, differing 
from the operator with the left symbol b(x,~)=(1+1~12+lxI2)SI2 by an 
operator in Gf, s' < s. It is easily seen that Ls E HGf' s. 

Definition 25.3. The space QS = QS (JR") consists of the distributions 
UES'(JRn) for which Ls UEL2(JRn). 

By analogy with Theorems 7.1 and 7.2 we can prove 

Theorem 25.2. 1) If A E G; then A maps 

(25.4) 
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2) If A EHG;,mo, UES'(IRn) and AUEQ" then UEQs+m O • 

Exercise 25.4. Prove Theorem 25.2. 
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Since the class U G~ contains all differential operators with polynomial 
m 

coefficients, it is clear that Theorem 25.2 implies 

Corollary 25.2. 

U QS = S'(IRn). 
s 

Now we introduce a Hilbert space structure on QS. Note that we may assume 
that L- s is a parametrix of Ls in the sense of Theorem 25.1. Then 

L-sLs = 1+ Rs , 

Let p > s, p an even integer. Put 

(u, v)s = (Lsu, Lsv) + L: (xa DP Rsu, x a DP Rsv). 
lal+ IPI~p 

From the representation 

(25.5) 

(25.6) 

it is clear that (25.5) defines a pre-Hilbert structure on QS. By analogy with 
Proposition 7.2' one verifies that 

Proposition 25.2. The scalar product (25.5) defines a Hilbert space structure 
on QS. 

Exercise 25.5. Prove Proposition 25.2. 

Finally, by analogy with the argument in §7, one proves the following 
statements. 

Proposition 25.3. The scalar product (".) in L2 (IRn) induces a duality 
between QS and Q -s (the exact formulation as in Theorem 7.7). 

Proposition 25.4. The operator A E G; can be extended to a continuous 
operator A: QS-+ Qs-m and to a compact operator A: QS-+ Qs-m-E for E > 0. The 
embedding operator QS~ QS-E, E > 0, is compact for any s EIR. 

Exercise 25.6. Prove Propositions 25.3 and 25.4. 

25.4 The Fredholm property. By analogy with Theorem 8.1 is proved 

Proposition 25.5. If A EHG;,m, then A EFred(Qs, Qs-m)for any sEIR. The 
space 1m (A I Q') in Qs-m is the orthogonal complement to Ker A* with respect to 
the scalar product ( . , . ) in L2 (IRn). 

Note that 

Ker (A I Q') = Ker (A IS'(IR"») = Ker (A IS(IR"») 

for any A E HG;' mo. 

(25.7) 
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To extend Proposition 25.5 to operators A EHG;·mo(with mo < m), it is 
necessary to regard A not as an operator from QS into Qs-m, but as an operator 
in the topological vector spaces S (IR"), S' (IR") and similar spaces or, as an 
unbounded operator 

As.s': QS-+ QS', (25.8) 

where s' ~ s - mo, with the domain DA . consisting of those U E QS such that 
AUEQs'. • .• 

Definition 25.4. Let E1 and E2 be two topological vector spaces, A an 
unbounded operator from E1 into E2 with the domain DA• The operator A is 
called Fredholm operator if the following conditions are fulfilled: 

a) dimKer A < + 00; 

b) 1m A in a closed subspace in E2 ; 

c) dim Coker A < + 00. 

Theorem 25.3. 1) The operator A EHG;·mo defines a Fredholm operator 
from S(IR") into S(IR") and from S'(IR") into S'(IR"). 

2) The operators As. s' of the form (25.8) defined by A are,for s' ~ s - mo, also 
Fredholm operators. 

Remark 25.1. We consider the weak topology in S' (JRn). Since in Definition 
25.4 the topology appears only in b), it is clear that the Fredholm property also 
holds in all stronger topologies. 

Proof of Theorem 25.3. Let the duality between S(IR") and S'(IR") be given 
by the extension of the scalar product (', .) from L2 (IR"). Note that the finite
dimensionality ofKer A and Ker A* follows from Theorem 25.1 since due to 
the inclusion 

Ker AcKer BA c Ker(I+R1 ) 

the question reduces to the case A = 1+ R1 for which everything is obvious. We 
shall now consider the inclusion 

A (S'(IR"» ::::>AB(S'(IR"» = (I+R2 ) (S'(IR"». 

For the operator 1+ R2 the Fredholm property on S'(IR") follows from 
Proposition 25.5. Therefore the subspace A (S' (IR"» is closed in S' (IR") and 
codim A (S' (IR"» < + 00 which proves the Fredholm property of A in S' (IR"). 

Let us prove the Fredholm property of A in S (IR"). It suffices to verify 
only conditions b) and c) in Definition 25.4. We shall show that 

A (S(IR"» = {U:UES(IR"), ulKerA*}, 

where orthogonality is in the sense of L2(IR"). First, note that 

A (S'(IR"» = {u: U ES'(IR"), ul Ker A*}, 

(25.9) 

(25.10) 
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since A (S' (IR"» is closed in S' (IRn), and S (IRn) is the dual of S' (IRn). But now 
(25.9) follows from (25.1 0) since 

A (S(IRn» = A (S'(IRn» nS(IRn) 

in view of Corollary 25.1. (25.9) shows the Fredholm property of A on S (IRn). 
Finally let us verify the Fredholm property of As, s' for s' ~ s - mo. Once 

again, it only remains to verify that 

1m As.s' = {u: U E QS', ul Ker A*}. (25.11 ) 

Let UEQs', uE(KerA*)l. Then U = Av, where VES'(IRn) in view of the 
already proven relation (25.10). But from Corollary 25.1 we then obtain that 
v E QS' +m o, i.e, v E Q" since s ~ s' + mo, This shows (25.11). 0 

By analogy with Theorem 8,2 one proves 

Theorem 25.4. Let A EHG;,mo and Ker A = Ker A* = {O}. 
Then there is an operator A-I E HG;mo' -m, which is the inverse to A. 

Exercise 25.7. Prove Theorem 25.4. 

Problem 25.1. Show that the operator A EHG;,mo is Fredholm in the space 
C,oo(IRn). 

Problem 25.2. Show that if a differential operator A with polynomial 
coefficients has a r-symbol a (z) elliptic in z = (x, n then the symbol of its 
parametrix B has an asymptotic expansion in terms of homogeneous functions 
inzforlzl>1. 

§26. Essential Self-Adjointness. Discreteness of the Spectrum 

26.1 Symmetric and self-adjoint operators. Let HI and H2 be Hilbert spaces 
and suppose we are given an, in general unbounded, operator 

(26.1 ) 

As usual, DA denotes the domain of A (it is understood that this domain is given 
with A, which is then a linear map from the linear subspace D A into H 2; note that 
writing (26.1) does not imply that A is defined on all of HI)' The adjoint operator 

(26.2) 

is defined if DAis dense in HI and, in this case, D A' consists of all v E H 2, for which 
there exists a vector g E HI with 

(Au, v) = (u, g), U E D A , (26.3) 
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(on the left-hand side of (26.3) is the scalar product in H2 and on the right-hand 
side that in H I)' It is clear that g is uniquely defined and by definition A *v = g. In 
particular, we have the identity 

(Au, v) = (u, A*v), U EDA, V EDA*. (26.4) 

Definition 26.1. Let H be a Hilbert space. An operator A: H -+ H is called 
symmetric if 

(Au, v) = (u, Av), (26.5) 

Definition 26.2. An operator A: H -+ H is called self-adjoint if A = A *. 
It is obvious that a self-adjoint operator is symmetric. The converse is in 

general not true. 

Definition 26.3. An operator A: HI -+ H 2 is called closed, if the graph G A' 

consisting of all pairs {u, Au}, where u EDA , is a closed subspace in HI tf; H2 • 

Exercise 26.1. Show that if A* is defined, then it is closed. 

Exercise 26.2. Let an operator A be bounded, i.e. there exists a constant 
C> 0, such that IIAull ~ C Ilull, U EDA. Show that A is closed if and only if DA 
is a closed subspace of HI' 

The well-known closed-graph theorem (cf. Rudin [1]) states that if DA = HI 
and A is closed, then A is bounded. Obviously the same holds if DA is a closed 
subspace in HI' 

Let an operator A: HI -+ H 2 be given. We say that A has a closure A, if the 
closure GA of the graph GA is again the graph of (closed) operator, which we 
denote by A. In particular, any symmetric operator A: H -+ H has a closure if D A 

is dense. Indeed, it is enough to verify, that if Un is a sequence of vectors in D A' 

such that lim Un = 0 and lim AUn = I, thenf = O. But for v EDA we obtain 

(I, v) = lim (Aun, v) = lim (un' Av) = 0, 

from which we have f = O. Note that if A is a symmetric operator, then so is A. 

Definition 26.4. An operator A: H -+ H is called essentially self-adjoint if D A 

is dense in H and A = A*. 

In particular, A* is then an extension of A and, hence, A is symmetric. 
A criterion for essential self-adjointness is given by 

Theorem 26.1. A symmetric operator A: H -+ H with dense domain is 
essentially self-adjoint if and only if the following inclusions hold 

Ker(A* - if) c Dx, 

Ker(A* + if) c Dx. 

(26.6) 

(26.6') 
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Proof 1. The necessity of (26.6) and (26.6') is obvious. To verify their 
sufficiency, let us first note that since A* is an extension of X, it follows from 
(26.6) that Ker (A* - if) = Ker (X - if). But Ker (X - if) = 0 since X is 
symmetric. Therefore, from (26.6) it follows that 

Ker(A*-if) =0. (26.7) 

Similarly, from (26.6') we find that 

Ker(A*+if) = 0 (26.7') 

2. Let us now verify that (X - if) - 1 (defined on (X - if) (H» is bounded. We 
have 

since (X/, I) is a real number in view of the fact that X is symmetric. It follows 
from (26.8) that 11/112 ~ II (.4 - if)/11 2, i.e. 

II(X-if)-Igil ~ IlglI, gE(.4-if)(H). 

3. It is clear that X - if is closed. Therefore (.4 - if) - 1 is also closed and since 
(.4 - if) -I is bounded, its domain (X-if) (H) is closed in H. However the 
orthogonal complement of (.4- if) (H) is obviously equal to Ker (X - if)* 
= Ker (A* + if) = O. Therefore (.4- if) - 1 is everywhere defined. By similar 
reasoning, (.4+ if) -I is also everywhere defined. 

4. Let us verify that (X-if) -I and (.4+ if) -I are adjoint to each other. We 
obviously have 

«.4 -if) u, v) = (u, (X+if) v) , u, v ED::!. 

Denoting (X-if) u = 1 and (.4+ if) v = g, we obtain the required relation 

5. Let us finally verify that X = A*. We will use the following easily verified 
fact: if B is an operator in H, such that (B- 1)* and (B*)-I are defined, then 
(B-1)*=(B*)-I. We have 

A* =.4* = (.4+ if) * + if = {[(.4+if)-lr I}* + if 
= {[ (.4 + if) - I] *} - 1 + if = [(X-if) - 1]- 1 + if = .4 - if + if = .4, 

as required. 0 
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26.2 Essential self-adjointness of hypoeIliptic symmetric operators. In this 
section we shall denote by A + the operator which is formally adjoint to an 
operator A E G;, i. e. the operator A + E G;, such that 

In the preceding sections we have written A * instead of A +, but here the 
notation A * will be reserved for the adjoint operator in the sense of section 26.1. 

Theorem 26.2. Let A EHG;·mo, where mo > 0 and A + = A. In L2(IRn) 
consider the unbounded operator Ao, defined as the operator A on the domain 
CO" (IRn). Then Ao is essentially self-adjoint and its closure coincides with the 
restriction of the operator A (defined on S' (IRn» to the set 

(26.9) 

Proof 1. Denote by D the right-hand side of (26.9). Since 

(Au, v) = (u, Av), u ES(IRn), V ES' (IRn), (26.10) 

it is clear that Dc D A' and in addition 
o 

Let us verify that indeed D=DA •. Let vEDA" i.e. vEL2(IRn) and for some 
f E L2 (IRn) the identity 0 0 

(A ) ( f) U E Cooo(IRn), u, v = u, , (26.11) 

holds. But it follows from (26.10) that the same identity holds if we replace f by 
Av. Therefore Av = f, i. e. v ED as required. Thus we have demonstrated that the 
right-hand side of (26.9) equals DA~' 

2. In order to now use Theorem 26.1, we will verify the inclusion 

Ker (A6 - if) c DAo ' (26.12) 

From what we have already shown, it is clear that 

Ker(A6 - iI) = {u: u EL2(IR"), (A - i/) u = O}. 

Taking into account that A - i/ EHG;' mo, it follows from Corollary 25.1 that 
Ker(A6-i/)cS(IRn), from which (26.12) follows, since A maps S(IRn) into 
S CIRn) continuously and CO" CIRn) is dense in S CIRn). Similarly one proves the 
inclusion Ker (A6 + i/) c DAo ' which concludes the proof of Theorem 26.2. 0 
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26.3 Discreteness of the spectrum 

Theorem 26.3. Let A EHG;·mo, where mo > 0 and A + = A. Then A has 
discrete spectrum in LZ(IR"). More precisely, there exists an orthonormal basis of 
eigenfunctions ((Jj(x) E S (IR") , j = 1, 2, ... , with eigenvalues Aj E IR, such that 
IAjl-+ + CX) asj-+ + 00. The spectrum a(A) of A = A* in LZ(IR") coincides with the 
set of all eigenvalues {AJ. 

Proof The proof is similar to that of Theorem 8.3. In view of the separability 
of LZ(IR"), there exists a number Ao EIR\a(A). But then Theorem 25.4 implies 
that (A - Ao!) -I E HG Q-mo' -m and, in particular we see that (A - Ao!) -I is 
compact and self-adjoint in LZ(IR"). The remainder of the proof is a verbatim 
repetition of the proof of Theorem 8.3. 0 

Problem 26.1. Let A E G; be such that there are numbers A± E cr, such that 
ImA+ > 0, ImL < 0 and 

for some mo E IR. Show that if A + = A, then A is essentially self-adjoint. 

Problem 26.2. Let HI, Hz be Hilbert spaces and let A: HI -+ Hz, and A + : 
Hz-+HI , be such that 

(Au, v) = (u, A +v), 

Show that if A + A is essentially self-adjoint, then A+ = A* and A = (A +)*. 
Hint: Consider in HI (£J Hz the operator defined as the matrix 

Then the conditions A+ = A* and A = (A +)* are equivalent to the essential self
adjointness of the operator ~. Compute Ker (~± if). 

Problem 26.3. Let A E HG;' mo, mo > O. Denote by At the operator A +, 
restricted to CO"(IR"). Show that At = A~ and Ao = (At)*. 

Hint: Use the result of Problem 26.2, after extending the operators Ao and 
At to S(IR"). 

Remark 26.1. The result in Problem 26.3 means that the "strong and weak 
extensions coincide" for an operator A EHG;·mo for mo > 0: if uELZ(IR") and 
AUELZ(IR"), then there exists a sequence UjECO"(IR") such that Uj-+U and 
Auj-+Au asj-+ + 00 in the L2 (IR")-norm. 

Problem 26.4. Prove analogue of Theorem 8.4 on the structure of the 
spectrum, eigenfunctions and associated functions for operators A E HG;' m o, 

mo>O. 
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Problem 26.5. Let an operator A have the anti-Wick symbol a (z) E r;'(lR 2n) 
and let Ao be self-adjoint in L2 (lRn). Let a (z) --+ + 00 as 1 z 1--+ 00. Show that 
Ao has discrete spectrum in the sense of Theorem 26.3 and that Aj ---* +00 as 
j ---* +00. 

Problem 26.6. Let A E G; be such that Ao is self-adjoint in L2 (lRn) and has 
discrete spectrum such that A.j --+ + 00 asj--+ + 00. Let c (z) be the Wick symbol of 
the operator A. Show that c (z) --+ + 00 as 1 z 1--+ + 00. 

§27. Trace and Trace Class Norm 

27.1 The trace and the Hilbert-Schmidt norm expressed in terms of the 
symbol. Here we make use of notations and facts concerning Hilbert-Schmidt 
and trace class operators which are presented in Appendix 3. 

Let us begin with the formal expression for the trace in terms of the r-symbol. 
Let A E G;, let br(x,~) be the r-symbol of A and KA its kernel. We have formally 

from which 

KA (x, x) = S br (x, ~) d~ 

and 

(27.2) 

Note that (27.2) means in particular, that its right-hand side is independent 
ofr. 

Proposition A.3.2 yields 

IIAII~ = S IKA(x,y)1 2 dxdy = S IKA(x,x+zWdxdz. (27.3) 

But by (27.1) 

Therefore we have formally 

SIKA(x,x+zWdxdz = S KA(x,x+z) KA(x,x+z)dxdz 

= S eiz · (~-~) br (x+rz, 0 br (x+rz, 11) d~ dl1 dx dz 

= S eiz · (~-~) br (x,~) br (x, 11) d~ dl1 dx dz 

= SIS e- iz · ~ bJx,~) d~ 12 dx dz = S 1 br (x,~) 12 d~ dx (27.5) 
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(we have here used the shift invariance of the integral and the Parceval identity 
for the Fourier transform). As a result we obtain 

(27.6) 

where again the right-hand side is independent of r 

Proposition 27.1. The correspondence between operators A E G- 00 and 
r-symbols br (x, ~) E S (IR 2n) extends by continuity to an isometry between 
S2 (L2(IRn» and L2(IRn) such that (27.6) holds. If A E G:, then the condition 
A E S2 (L2 (IRn» is equivalent to br E L2 (IR 2n)for some r and this then holds for all r 
and the formula (27.6) also holds in this situation. 

Proof The computations (27.3)-(27.6) are justified for A E G- 00 or, what is 
the same, for KA ES (IR 2n). Since G - 00 is dense in S2 (L2 (IRn» and S (IR2n) is dense 
in L2(IR2n), the existence and uniqueness of the required isometry is obvious. 
Finally, the last statement is obvious from the uniqueness of the r-symbol. 0 

Corollary 27.1. If A E G: and m < -n, then A ES2 (L2(IRn». 

Proposition 27.2. 1) If A EG: and m < -2n, then A ES1 (L2(IRn» andfor 
any fixed m < - 2n and r E IR there exist constants C and N, such that the 
following estimate holds 

IIAII1~C L sup {la:br(z)l<z)-m+eIYI}. (27.7) 
lyl;£N z 

2) For A E G:, m < - 2n, formula (27.2) for the trace Sp A holds for any 
r EIR. 

Proof l) Choose an operator P E H G;/2.m/2 for Ker P = Ker P* = 0, 
so that p- I E H G~m/2.-m/2 exists (the existence of an operator P of this type 
follows, for instance, from Theorem 26.3). In view of Corollary 27.1, we have 
p2 E SI (L 2 (IRn ». But from the obvious representation A = p 2(P- 2A) and 
the fact that p-2 A E G~ c 23 (L 2 (lRn», it follows that A E SI (L 2(JRn». 
Therefore the inclusion 

m < -2n. (27.8) 

is proved. 
Let us now prove (27.7). It can be obtained in two ways: either by a direct 

sharpening of the arguments carried out so far (from similar estimates in the 
composition formula and the boundedness theorem) or from the closed graph 
theorem. The latter route is shorter and is commonplace for many argument of 
this type, although it is also rougher. We will carry out carefully the 
corresponding arguments. 

Introduce in G: a Frechet topology, defined by semi-norms of the form 

IIAII(N)= L sup {ia:br(z)l<z)-m+eIYI}. (27.9) 
lyl;£N z 
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We have to show that the embedding (27.8) is continuous in the natural 
Banach space topology on S, (L2(IR")). In view of the closed graph theorem (cf. 
e. g. Rudin [1]) it is only necessary to show that this embedding has a closed 
graph. This is most conveniently proved constructing a Hausdorff space M such 
that 

(27.10) 

where both embeddings G; c M and S, (L2 (IR")) c M are continuous. Now as M 
we may, for instance, take S2 (L2 (IR")), since the continuity of the embedding of 
G; and S, (L2(IR")) in S2 (L2(IR")) follows immediately from Propositions 27.1 
(formula (27.6)) and A.3.7 (estimate (A.3.29)). 

2) Now we will prove (27.2) for A E G;, m < - 2 n. Note that both its parts 
are continuous on G;. But for any m' > m, G - 00 is dense in G; in the topology of 
G;'. Therefore, it suffices to prove (27.2) for A EG-oo. 

We would like to carry out carefully the argument from A.3.5. This is triv
ial, if we present A in the form A = L 1 0 L 2, where the operators L 1 and L 2 

have kernels with enough continuous and rapidly decreasing derivatives. But 
the latter representation can be constructed by an argument similar to the one 
used in 1) of this proof. D 

27.2 A more precise estimate of the trace class norm in terms of the r-symbol. 
The estimate (27.7) is not very convenient, since it contains a weight-function 
increasing in z. At the same time, we see that IIA II, does not change if we shift the 
r-symbol by some vector Zo = (xo, ~o) E IR 2n. Indeed, if br (x,~) is the r-symbol of 
A and if we denote by Az the operator with the r-symbol br(x- xo, ~ - ~o), then 
we obtain 0 

Azou(x) = J ei(x- yHbr ((1-r)x+ry - Xo , ~ -~o)u(y) dya~ 

= J ei[(x-xo)-(y-xo)H br «l-r) (x-xo) 

+ r (y-xo), ~ - ~o) u«y-xo) + xo)dya~ 
= J eieo'(X'-y')ei(x'-y'H' bt «l-r)x' + ry', ~') u(y' +xo)dy' a~', 

where x' = x - X o, y' = y - Yo, ~'= ~ - ~o. Denote by U the unitary operator, 
mapping u(x) into (Uu) (x) = e-ieo'xu(x+xo), then we see that Azo= U-'AU, 
from which 

(27.11) 

An estimate of the trace class norm which is invariant relatively to the shifts 
of the r-symbol is given by the following 

Proposition 27.3. There exist constants C and N, such that for A E G; , 
m < - 2n, the following estimate holds 

IIAII,~C L JI8:br (z)ldz. (27.12) 
lyl;>N 
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Proof It suffices to show the estimate (27.12) In the case where 
bt(z) ECO"'(R2 n). First let, 

suppbtc{z: IZI;£Ro}, (27.13) 

where Ro is some fixed constant. Then it follows from Proposition 27.2 that 
there are constants C1 and M (depending on Ro) such that 

IIAI11;£C1 L supla;br(z)l· 
iyi;;;M Z 

But since for b (z) E CO'" (R2n) we have 

b(z) = S 

and consequently 

Ij~Zj 
j= I •... , 2n 

(27.14) 

it follows from (27.14) that we have (27.12) (with N=M+2n), provided that 
(27.13) is satisfied. 

Now, using the invariance of the trace class norm (formula (27.11» and the 
invariance of the right-hand side of(27.12) with respect to shift in the argument 
of b(z), we see that (27.12) always holds, with the same constants C and N, 
provided 

diam supp bt ;£ Ro (27.15) 

Let us finally get rid of the condition (27.15). Take a partition of unity 

00 

1 == L ({Jj(z) 
j=1 

such that diam supp ({Jj ~ Ro, there is a number I such that any ball of unit radius 
does not intersect more than I sets sUPP({Jj' and, in addition, laY({Jj(z) I ~ Cy , 

j = 1, 2, ... , with constants Cy not depending on j. Introducing the operators 
Aj with the r-symbols ({Jj (z) bt (z), we obtain 

00 OCJ 

IIA III ~ L IIAjll1 ~ C L LSI a: «(Jjbt)(z) I dz 
j= I iyi;;;N 

LSI a; bt(z) I dz, 

as required. 0 
iyi;;;N 
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Problem 27.1. Let A be determined by the anti-Wick symbol a(z) Er;. 
Show that 

Problem 27.2. Let c(z) be the Wick symbol of A EG;. Show that 

Hint: Use the polar decomposition of A and the result of Problem 24.5. 

Problem 27.3. Let A have the anti-Wick symbol a(z) Er;, m < -2n. Show 
that 

SpA = J a(x,~) dxd~. 
Problem 27.4. Let A E G;, m < - 2n, and let c (z) be the Wick symbol of A. 

Show that 

Sp A = J c (x,~) dx d~. 

Problem 27.5. Let M be a closed n-manifold and let A EL;,~(M), 
1-Q~b<Q. Show that if m<-nj2, then A ES2 (L2 (M» and if m<-n, 
then A ESI (L2 (M». 

§28. The Approximate Spectral Projection 

28.1 The Glazman lemma. In this paragraph we shall describe an abstract 
scheme of yet another method to obtain the asymptotic behaviour of eigenvalues 
which is based on the construction of an approximate spectral projection. At 
the basis on this method lies the following well-known variational lemma of 
Glazman. 

Lemma 28.1. Let A be a self-adjoint, semi-bounded from below operator 
with discrete spectrum in a Hilbert space H, i. e. A has an orthonormal basis of 
eigenvectors el , e2 , ... with eigenvalues AI' A2 , ... , such that Ak - + <X) as 
k- + 00. 

Let N (A) be the number of eigenvalues of A not exceeding A (multiplicities 
counted). Then 

N(A) = sup dimL (28.1 ) 
LcDA 

(Au, u);;; J.(u, u), u E L 

(L is a linear subspace of DA)' 
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Proof Let E).. be the spectral projection of A. Since 

dim (E).H) = SpE). = N()") , (28.2) 

then, putting L = E;.H, we see that the right-hand side of (28.1) cannot be smaller 
than the left-hand side. 

Next we show that the right-hand side of (28.1) cannot exceed the left-hand 
side. 

Let the linear subspace L c. D A be such that 

(Au,U) ~ )..(U,U) , uEL. (28.3) 

Since 

(Au,u) > )..(u,u) , uE(I-E).)H\{O}, (28.4) 

it follows from (28.3) that 

But then E). is injective as a mapping of L into E).H, from which it follows that 

dim L ~ N()") , 

as required. 0 

28.2 Properties of the spectral projections. The spectral projections opera-
tors enjoy the following properties: 

1) E;.* = E).; 
2) Ef = E).; 
3) E).(A-H)E). ~ 0; 
4) (I-E).) (A-A.!) (I-E).) > 0 

(meaning that the corresponding quadratic form is strictly greater than 0 on the 
non-zero vectors in DA ); 

5) SpE). = N()"). 
Basic in what follows is 

Proposition 28.1. Let E; be a family of operators, for which E;H c. D A and 
which satisfies conditions 1)-4). Then 5) is also fulfils, i.e. 

SpE~ = N()") = SpE;.. (28.5) 

Proof It follows from 1) and 2) that E~ is an orthogonal projection. Putting 
L;. = E~H, M;. = (I - EDH, we have, in view of 3), that (Au, u) ~).. (u, u), u E L)., 
from which, by Lemma 28.1, it follows that SpE~ = dimL). ~ N()"). Further, 
from 4), we have (E).H) (1M;. = 0, which implies dim (E;.H) = N()") ~ dimL;. 
= SpE~, proving (28.5). 0 
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Remark 2B.1. Note that under the conditions of Proposition 28.1 we do not 
necessarily have E~ = EA. (cf. Problem 28.1). 

28.3 Approximate spectral projection operator 

Theorem 28.1. Let A be an operator as in Lemma 2B.1 and {C;J A EIR afamily 
of operators such that CAH c DA and that for some t; > 0, b > 0, we have: 

1°. C: = CA; 

2°. CA is a trace class operator and 

II C; - CAIiI = 0 (V(A)' A -~) as .1-+ + OCJ, (28.6) 

where V (A) is some positive, non-decreasing function, defined for A ~ .10 ; 

3°. CA(A-A/)CA~CAI-'; 

4°. (/-CA)(A-A/) (/-CA)~ -CA I -,; 

5°. Sp CA = V(A) (1 +0 (A -~» as .1-+ + 00. 

Let us also assume that the function V (A) appearing in 2° and 5°, is such that 

(28.7) 

for some C> O. Then we have 

N(A) = V(A)(1+0(A-~» as .1-++00. (28.8) 

Proof The idea is to apply Lemma 28.1 to the linear subspace L, spanned by 
the eigenvectors of CA, having eigenvalues close to 1 (they are all close to either 1 
or 0, as we shall see later). 

Let aj be eigenvalues of C. They are real by 1 ° and by 2° and 5° satisfy the 
conditions 

Lemma 28.2. 

L laJ-ajl = O(A-~V(A», 
j 

Laj = V(A) (1+0(r~». 
j 

L aj = V(A) (1+0(A-~». 
1.;-11;;;1/2 

(28.9) 

(28.10) 

L lajl~2 L laJ-ajl~2 LlaJ-ajl=O(A-~VO.), 
1.;-11>1/2 1.;-11>1/2 j 

which together with (28.9) implies (28.10). 0 
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Lemma 28.3. Let N (A.) be the number of eigenvalues of tff~ in the interval 
[!,3/2]. Then 

(28.11 ) 

Proof Put Sj = 1 - (Xj. Then 2° can be rewritten as 

(28.12) 

and the statement of Lemma 28.2 gives that 

L (1-s) = V(,1.) (1+0(,1.- b», 
I'il~ 1/2 

or 

N(,1.)=V(,1.)(1+0(,1.- b»+ L Sj' 
I'i l ~ 1/2 

But, as in Lemma 28.2, it follows from (28.12) that 

L ISjl~2 L IS;-Sjl=O(,1.-bV(,1.», 
l'il~1/2 l'il~1/2 

giving also (28.11). 0 

Let us continue the proof of Theorem 28.1. 
a) Let LA be the linear manifold spanned by the eigenvectors of tff~ with 

eigenvalues (Xj such that l(Xj-11 ~!, so that 

by Lemma 28.3. Condition 3° implies that 

But since 
(u,u) ~ 4(tff~u, tffAu) , uEL~, 

it follows from (28.14) that 

([A-(,1+4C,11-')I] tff;.u,tff~u)~O, uEL;.. 

Because tff~ is an isomorphism of L~ onto itself, it follows that 

But by Lemma 28.1 

(28.13) 

(28.14) 

(28.15) 
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Putting )..+4C)..1-£=t, we obtain t=)"(1+0()"-£», which implies 
).. = t(1 + O(t-£», i.e. 

V(t(1+0(rt») (1+0(r d» ~ N(t). 

Using condition (28.7) we see that 

V(t(1+0(rt») = V(t) (1+0(t-d», 

hence 

V(t) (1+0(r cl» ~ N(t). (28.16) 

b) Let M). = (L).)1. Obviously we have 

(u,u) ~ 4«/-8).) u,(/-8).)u), uEM).. (28.17) 

It therefore follows from 4° that 

([A-(A-4CA 1 - t )I]v,V) f; 0, vEDAnM).. (28.18) 

From (28.18) we see that 

for any e' > 0 which implies by analogy with the reasoning in the proof of 
Lemma 28.1, that 

Now, arguing as in step a) of this proof, we obtain 

N(t) ~ V(t) (1+0(t- cl». (28.19) 

The estimates (28.16) and (28.19) together give the required asymptotic formula 
(28.8). 0 

28.4 Sufficient conditions on V(l). Condition (28.7) looks difficult to verify. 
We therefore give here a simpler sufficient condition. 

Proposition 28.2. Let V(A) be a positive, non-decreasing function defined and 
differentiable for A f; AD. Assume that 

(28.20) 

Then V(A) satisfies (28.7). 

Example 28.1. The function V(A) = Aa, where (i. > 0 satisfies (28.20) for 
e f; <5. 
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Proof of Proposition 28.2. Set 

cp (2) = V' (2)jV(2). 
Then 

V(2) = V(2o) exp (J
o 
cp(r)dr). 

This gives 

{ (
.t+c.t'-' ) (.t )} V(2+ C2 1-,) - V(2) = V(2o) exp I cp (r) dr - exp I cp (r) dr 

{ (
.t+c.t'-' )} 

= V(2) exp {cp(r)dr -1 . (28.21) 

Since Icp(2)1 ~ C2,-b-l, then for £=I=b we obtain 

.t+c.t'-' .t+c.t'-' 
J cp(r)dr~CI J r,-b- 1 dr=C2 [(2+C2 1 -'y-b_2,-b] 
.t .t 

For £ = b, we obtain the same estimate 

.t+c.t'-' .t+C)'-' 
J cp ( r ) dr ~ C 1 J r - 1 dr = C 1 In (1 + C 2 - ') ~ C 22 -, = C 22 - b . 
A 

It now follows from (28.21) that 

(we used here that eX - 1 - x as x -> 0), but this is the required inequality 
(28.7). 0 

28.5 The idea for applying Theorem 28.1 (an heuristic outline). Let an 
operator A have the Weyl symbol b (z), Z E IR2n. Put 

V(2) = (2n)-n J dz. (28.22) 
b(z)<' 

The spectral projection E).. ofthe operator A can be defined as the operator 
X).. (A), when X).. (-) is the characteristic function of the ray (-00, A]. Let us 
consider the operator g;. with the Weyl symbol X)..(b(·». It is natural to expect 
that it).. for large A should imitate the spectral projection operator E)... It then 
remains to note that 

Sp~. = (2n) -n J X;. (b(z» dz = V(2). 
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The technical implementation of this idea consists in applying Theorem 28.1. 
However, in view of the necessity to consider the composition of operators, we 
have to smooth the characteristic function x;... In general, we arrive at a situation, 
which show the necessity of dealing with pseudodifferential operators with 
parameter, giving us the possibility of verifying 10_50. 

28.6 The exact construction. Let us introduce a function X (t, A, x), t, A, 
x EJR., A ~ 1, x> 0, such that 

A {1 for t ~ A, 
X (t, ,x) = 0 for t ~ A + 2x. (28.23) 

and such that the following estimate for the derivatives holds 

(28.24) 

The existence of X (t, A, x) is easily verified, for instance, in the following 
manner. Let 1/f (t , A, x) be the characteristic function of the set {(t, A, x) 
t ~ A + x}. Then we may put 

1 
X(t,A, x) = - J tjI(r, A, x) Xo((t-r)jx) dr, 

x 

where Xo(v) E CO'" (JR.1), Xo(v) = 0 for Ivl > 1 and J Xo(v) dv = 1. 
Let now A have a real Weyl symbol 

such that for some C> 0 and Ro > 0 

(28.25) 

(28.26) 

(it follows from (28.25), that (28.26) holds either for b (z) or for - b(z); we fix the 
sign in such a way that A becomes semi-bounded from below, this fact should be 
obvious from what follows. Put 

e(z,A,x) = X(b(Z),A,X) (28.27) 

and now, choosing x = A I -v, where v> 0, define cff;.. as the operator with the 
Weyl symbol 

e(z,A) = X(b(Z)),A I - v), (28.28) 

where v > 0 will be chosen later. Let us note immediately that 

{ 
1 for b (z) ~ A, 

e(z, A) = 0 for b(z) ~ A + 2A 1 - v • 
(28.29) 
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Now we try to estimate the derivatives in z of e (z, A). 
Note that estimates for the class H r;, mo, with mo > 0 can be written in the 

form 

(28.30) 

where as Q' one can take, for instance, Q' = Qlm or possibly larger values, 
Now, differentiate (28.28): 

o~e(z,A)= L Cy,y,(oY,b(z» ... (oY'b(z» (~k; (t,A,A1-V)1 ), 
y,+ ... +y,=y t r=b(z) 

lyjl>O 

(28.31) 

where the sum runs over all possible decompositions of I' into a sum 1'1 + ... + 'Yk 
with an arbitrary number of terms k ~ I 1'1. 

Denote by Tk(z, A) the sum of all terms corresponding to a fixed k in 
(28.31). It follows from (28.31), (28.30) and (28.24) that 

(28.32) 

Due to (28,29) we can replace A by b(z) and rewrite (28.32) in the form 

la:Tk(z, )..)1:::: Cyb(dll-Q')IYI. )..kv-Illyl, 

where f.L is an arbitary real number. 
Since k ~ 11'1, this implies that 

(28.33) 

(28.34) 

These estimates are true for A ~ 1 and for I z I ~ Ro. In addition, we have the 
obvious relations 

le(z,A)I~C, Izl~Ro, 

oYe(z,A) = 0, Izl ~ Ro, A ~ ..1.0 , 

if I y I > 0 and Ao is sufficiently large. 

(28.35) 

(28.36) 

It is obvious from (28.34) that it is advantageous to take J1. such that 
v < J1. < Q', implying the necessity of selecting v such that v < Q', which we will 
assume in the sequel. Under some complementary conditions this will guarantee 
the applicability of Theorem 28.1. 

28.7 Equipotential surfaces of the symbol and the properties of V (l). In this 
section, we assume that the equipotential set {z: b (z) = A} for large A, is a smooth 
hypersurface and moreover that 

Vb (z) =!= 0 for (28.37) 
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where Vb(z) = (ob , ... , ':lab) is the gradient of b(z). 
oz, uz,_ 

Let V (A) be defined by the formula (28.22). Since the 2n-form 

dz = dZ I 1\ ... 1\ dZ 2n 

is the differential of the (2n - I)-form 

2n I" I ~ (j) = - L...,(-I)J+ zjdz i 1\ ... 1\ dZj 1\ ... 1\ dZ2n 
2n 

j=1 

(the cap on dZj denotes that dZj is omitted), we can transform the integral in 
(28.22) into an integral over the surface b(z) = A: 

f dz = f (j). (28.38) 
h(z) <I.. h(Z)=A 

Let nz be the unit outward normal vector to the surface b (z) = A at z, i. e. 

Vb(z) 
n =c-:::-:~-.,. 

Z IVb(z)l· 

Denoting by dSz the area element of the surface b (z) = A, we derive from (28.38) 
that 

V()') = (2n)-n J (z· nz)dSz = (2n)-n J 1V~:)I(z.Vb(Z».(28.39) 
2n b(z)='< 2n b(z)=l 

Now, we will calculate V'(A). Note that the distance at z from the surface 
. . . .1).(1 +0(1» 

b (z) = A to the near eqUIpotential surface b (z) = A + .1Als equal to I b ( ) I . 
Therefore V z 

V' (A) = (2n)-n J dSz 
b(z)=.l. IVb(z) I 

Comparing (28.39) and (28.40), we see that 

V'(A) [ . J-1 
V( ');£ mm (z· Vb (z» 

/I. b(z)=.l. 

The formula (28.41) implies 

Proposition 28.3. Le t 

Iz·Vb(z)I~Cb(z)1-", Izl~Ro, c>o. 

(28.40) 

(28.41) 

(28.42) 
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Then 

V'(A)/V(A) = 0(,1"-1), (28.43) 

Remark 28.2, It follows from (28.42) that Vb (z) =t= 0 for I z I ~ Ro, so it is not 
necessary to require this in advance. Also, the geometric condition (28.42) 
guarantees that the surface b(z) = A is star-shaped with respect to the origin, 
i.e. any ray, starting from 0, intersects this surface in exactly one point and at 
a non-zero angle. 

Exercise 28.1. Prove that (28.42) is satisfied if b (z) is an elliptic polynomial. 
Hint: Use the Euler identity for homogeneous functions. 

Problem 28.1. For dimH = 2 construct an operator A, such that for some A 
there is an operator E~ for which the conditions 1) - 4) are satisfied, but E~ =t= E;.. 

Problem 28.2. On the torus 'If" = IR" /2n Z" consider the operator A = - L1 
+ Q, where L1 is the Laplace operator and Q any bounded self-adjoint operator 
on L2 ('If"), with II Q II < M. Let N (A) be the number of eigenvalues of A, smaller 
than A. 

Using the approximate spectral projection operator S;., which equals the 
exact spectral projection operator for - L1, show that 

where No(A) is the number of points of the lattice Z", belonging to the ball 
I x I ~ vi Derive from this the asymptotic formula 

§29. Operators with Parameter 

29.1. The class of symbols and operators. The estimates (28.34) obtained for 
e (z, A) in §28 motivate the following 

Definition 29.1. Denote by r;,': the class of functions a (z, A) defined for 
z e IR 2", A ~ ,10, infinitely differentiable in z and satisfying 

(29.1) 

Here m, /1-, (1, u e IR, (1 > 0, U ~ 0, 
It is clear that if a,ermj,llj J'=l 2 then a a erm,+m"Il,+Il, where 

J ~j. a J ' " 1 2 Q, a , 
II = min (Ill 11 2) u=min(ul (2) Further ifaerm,ll then o1aerm-1I11I,p.-aI11 
~ t:" 't:' , ,. , Q. a Z Q. a . 

Note that if aer;,': then for any fixed A~Ao, a(z,A)er;(IR2"), which 
allows us to define a class of operators A (A), depending on a parameter and with 
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Weyl symbols a (z, 2) E r;,':. This class of operator-valued functions A (2) acts, 
for instance, on S(IRn) and we will denote this class by G;":. 

29.2 The composition formula 

Theorem 29.1. Let ajEr~~'::, j= 1,2; and let Aj(2) be the corresponding 
operator-Junctions. Then Al (2) 0 A2 (2) E G;",,+m,,/l, +/l" where {] = min ({]I, (]2), 

u=min(u l ,u2) and where the Weyl symbol b(z,2) oj the composition 
B(2) = Al (2) 0 A2 (2) is given by 

b = " (-l)!P! 2-!dP! (8 a DP a ) (8 PD a a) + r 
L. 'f3' ~ x I ~ x 2 N, 

IHPI;;;N-l 0( •• 

(29.2) 

where 

(29.3) 

Proof The proof could be carried out according to the scheme used for 
proving Theorem 23.6, introducing first the corresponding class of amplitudes 
and repeating the arguments from §23. However, for brevity, we will give a direct 
proof. 

To begin with, we obtain a formula for the composition B = Al 0 A2 of the 
operators Al and A2 with Weyl symbols a l (z), a2 (z) E CO'(IR2 n). Clearly 

J (X+XI -) (XI +y ) Bu(x) = a l -2-'~ a2 -2-,17 

If KB(x, y) is the kernel of B, we obtain that then 

(29.4) 

Now using formula (23.39) (with '<=t), that yields an expression for the 
symbol in terms of the kernel 

(29.5) 

Putting x 2 /2 = X 3 , we can also write 

(29.6) 
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From this and (29.4) we find that 

Instead of XI and X3 we introduce new integration variables 

. IO(X I ,X3 )1 so t~at XI = X4 + Xs - X, X3 = X4 - Xs· Observmg that o(x, x) = 2", we 
obtam 4 s 

or 

b (X, ~) = 22 " J at (y, f/) a2 (z, () 

x e2i [(x-z)q+(y-xH+(z-y)·,J dydzdf/d(. (29.7) 

Note that the exponent in (29.7) may also be written as 

111 n 111 
2i X Y z = 2i L Xj Yj Zj 

~ f/ ( j= I ~j f/j C 
From the form of this exponent, the possibility of integrating by parts 

follows, resulting in the appearance of decreasing factors of the type <x- z) -N, 

<y-x) -N, <f/-O -N, « -0 -N. Therefore, thepointsy, f/, Z," wherey= Z= x, 
f/ = (=~, play the most important role in the integral (29.7). This leads to the 
idea of expanding al (y, f/) and a2 (z, () in a Taylor series at y = X and z = x. First, 
make the change of variables y' = y - X, z' = z - X, f/' = f/ -~, (' = ( -~. 
Omitting the dashes, we obtain 

b (x,~) = 22" J al (x+ y, ~ +f/) a2 (x+z, ~ +0 

x e2i(y,-q) df/d( dydz. (29.8) 

We shall view this integral as an iterated integral with the order of the 
differentials df/ d( dy dz. Write out the expansions 

adx+y,~+f/)= L < o~al(x,~+f/)+r~I)(x,y,~,f/), (29.9) 
lal;;;N-l r:t.. 
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Ii 
a2(x+z,~+O = L pZ I ae a2(x, ~+O + rA,Z)(x, z,~, 0, 

IPI;;;N-! . 
(29.10) 

where 

1 

r~l)(x,y,~"J) = L Ca J (1-,t- 1 d,· ya(a~al) (x+,y,~+1'/), (29.11) 
lal=N 0 

1 

rA,Z)(X,Z,~,n= L CpJ(1_,)N-ld,zli(aea2)(X+TZ,~+n· (29.12) 
IPI=N 0 

Inserting these expressions into (29.8), we obtain 

(29.13) 

where rJJ) (x,~) has the form of a linear combination of terms of four types: 
r~:1 (x, ~), being the same type of integral as the summands in (29.13), but 

with IO(+PI~N; 

x e2i (y·(-q) d1J de dydz; (29.14) 

rJ,6,)p (x, ~) = J zli [rV) (x, y,~, 1'/)] [ae a2 (x, ~ + OJ 

x e2i (Y·i-q) dl'/ d( dydz; (29.15) 

Let us calculate one of the integrals in (29.13). For this, note first that 

ya e 2iY ·i = (~DiJ (e 2iy . i), (29.17) 

zP e - 2 iz . ~ = ( _ ~ D ~)Ii (e - 2 iz . ~) , (29.18) 

and carry out the integration by parts, using these identities. We obtain 
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ya zp 
22n J r:x!{3! [o~al(x,~+t/)] [aea2(x,~+OJ e2i(Y"-Z'~) dt/d(dydz 

22n-ldPI. (_1)la l 
= a!{3! J[a~Dg a1 (x, ~ +t/)] [aeD~a2 (x, ~ + OJ 

which gives terms with compact support in the formula (29.2). 
Now, note that formula (29.8) and all the following computations remain 

valid for arbitrary symbols a j in the classes r;. This fact can be established 
by substituting the oscillatory integral (29.8) for a convergent one, but it can 
also be verified by a standard passing to the limit from compactly supported 
symbols, as in § I. 

Assume now that the symbols a1 and a2 are as in the formulation of the 
theorem. It sufficies to prove the inclusion (29.3) for each of the remainders r~:1, 
r~~~ , r~~)p, r~7). As far as r~:1 is concerned, this inclusion is trivial, since it has the 
same form as the terms of the sum in (29.13). 

To estimate r~~~ , r~~)p and r~7) it is convenient as before to integrate (29.14)
(29.16) by parts (using (29.17) and (29.18». As a resultya is replaced by Dr. and zli 

by De and we arrive at the situation of having to estimate, uniformly in T 1, 

T 2 E [0,1], symbols of the type 

J [a~Dgal (X+T1Y, ~+t/,1)] [aeDea2(x+T2Z, ~+(, 1)] 

xe2i(y-C-z'~)dt/d(dydz, 1r:x+{3I~N. (29.19) 

Differentiating (29.19) with respect to x and~, we find that the derivative a~a~ of 
this expression is a linear combination of terms of the form 

J[ :1a+ Y':1(J+IJ' ( , :1(J+Y":1a+/J" r , 
U x U~ a1 X+Tly,~+t/,I\.)] [ux U~ a2(x+T2z,~+ .. ,I\.)] 

xe2i(y"c-z'~)dt/d(dydz, y'+y"=y, <5'+<5"=<5. (29.20) 

Using the identities 

e 2i (y{-zry) = (1 + lyl2 + IrJI2)-M(l- ~,1z,{)Me2i(Y'Hry), 

e 2i (y{-zry) = (l + Id + Is 12)-M (1 - 1,1 )M e 2i (y.{-z.ry) 
4 y,ry 
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and introducing the notation 

we see that (29.20) reduces to a linear combination of expressions of the form 

J [8;:;v' a1 (X+!IY' ~+11, ,l)] [c5;:'t" a2 (X+!2Z, ~+" ,l)] 

x (y, rJ)-2M (z, n-2Me2i(yl;-z'~)JrJ J{ dy dz, 

where x', x", Vi, v" are 2n-dimensional multi-indices, such that 

Ix'If;N, Ix"If;N, Iv'I+lv"If;lyl+lbl· 

The integral (29.21) can be estimated in absolute value by 

c J <X+!IY' ~+l1)m'-Q,lx'+v'l. ,li<,-<1,lx'+v'l 

X <X+!2 Z, ~+Om'-Q,lx"+v"1 . ,li<,-<1,lx"+v"1 

x <Y, 11) -2M <Z, 0 -2M al1 a( dy dz, 

which, due to (29.22), does not exceed the expression 

(29.21) 

(29.22) 

(29.23) 

Here the power of A corresponds exactly to the statement of the theorem, so that 
it suffices to estimate the integral in (29.23) by the desired powers of <x, O. 

Note, that the integral in (29.23) coincides with the product of the integrals 

J <X+!1 y, ~ +l1)m,-Q,N-Q,lv'l <y, 11) -2M al1 ay, 

J <X+!2 Z, ~+Om'-Q,N-Q,lv"1 <Z, 0 -2M a( dz. 

(29.24) 

(29.25) 

Let us estimate the integral (29.24). Decompose the domain of integration 
into two parts 

Dl = {y,l1: Iyl + 1111 ~ t (lxl + I~ I)}, 

D2 = {y,l1: IYI + 1111 > t (lxl + I~ I)}' 

and denote the integral over Dj by Ij,j = 1,2. Since the Lebesgue volume of Dl 
does not exceed C1 <x, 0" and since the integrand can be estimated over Dl by 
C2<x, ~)m,-Q,N-Q.lv'l, we have for II the estimate 

(29.26) 

Consider now 12, We may assume that Ixl + I~I f; 1 (for Ixl + I~I < 1 the 
desired estimates are trivial). Then, using the obvious estimate 
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and taking M sufficiently large, we obtain 

(29.27) 

From (29.26) and (29.27) it follows that (29.24) can be estimated by 

C<x, ~>m,-e,N-e,lv'l+n. 

Taking into account that similar estimate holds for (29.25) we see that (29.23) 
does not exceed 

C <x, ~> m, +m,-(e, +e,)N- e, Iv'l- e,lv"I+2n . A,I" +1', -N(u, +u,)-uly+bl 

which guarantees the inclusion 

(29.28) 

Now, increasing N and considering the additional terms which appear in 
the sum (29.2), we see that (29.3) follows from (29.28), thus proving the 
theorem. 0 

29.3 Positivity of operators with parameter 

Theorem 29.2. Let a (z, A) E r;,':, 0' > 0, a (z, A) ~ t: > 0, t: a constant, and 
assume that the estimates 

(29.29) 

hold, where ao > 0 and ao does not depend on y. If A()") is the operator with 
the Weyl symbol a(z, A), then for sufficiently large A we have A(A) ~ ° (i.e. 
(A(A)U, u) ~ 0for U E S(IRn». 

For the proof, we need the following lemma which allows us to use the anti
Wick symbol. 

Lemma 29.1. Consider an operator B(A) with anti-Wick symbol a(z, A) Er;,': 
and let b (z, A) be its Weyl symbol. Then 

a-b= L cy(o:a)+rN , 
0< lyl<N 

where c =Ofior odd Iyl and r Erm-eN,I'-aN y N e, a . 

Proof Similar to the proof of Theorem 24.1. 

Exercise 29.1. Prove Lemma 29.1. 

(29.30) 
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Proof of Theorem 29.2. Let Bo()') be an operator with the anti-Wick symbol 
a (z, A) and let bo (z, A) be the Weyl symbol of Bo (A). Consider now the operator 
BI (A) with the anti-Wick symbol a (z, A) - bo(z, A) and denote by bl (z, A) its Weyl 
symbol. By induction we may construct a sequence of operators Bo, B1 , B2 , •.. , 

such that Bj is the operator with the anti-Wick symbol a - bo - b l - ... - bj _ l , 

where bo, bl , •.. , bj _ 1 are the Weyl symbols of the operators Bo, BI , ... , Bj _ 1 • 

It follows from Lemma 29.1 that if 

then A Erm-2ek.Il-2Gk Put 
k e, G • 

Thus, A = Ak+ Qk' 
An induction in k shows that bj (z, A) for j > 0 is of the form 

bj = I Cy,j(oYa)+rN,j' (29.31) 
2j;>lyl<N 

where Cy,j are constants and rN,jEr;,~eN,r(1N, Therefore the operator Qk has 
an anti-Wick symbol of the form 

qk(Z,A) = a(z,A) + I Cy [o~a(z,A)] + r~(z,A), (29.32) 
2;>lyl<N 

where r~(z,A)Er;,~eN'Il-GN. Taking (29.29) into account, we obtain 

qk(Z,A) = a(z,A) (1+Je- 2 Go s(z,Je» , 

where s (z, A) is such that 

SUpIS(Z,A)I~C, Je~Jeo, 
zeR lIt 

and C is independent of A. In particular, it is clear that qk (z, A) ~ e/2 > 0 for 
sufficiently large A implying 

(29.33) 

in view of Proposition 24.1. 
Now note that for large k 

IIAk(A)II-+O as A-++OO. (29.34) 

Indeed, it suffices to verify that this holds for the Hilbert-Schmidt norm 
II A (Je) 112 . But 

IIAk(A)II~=(2n)-nJlbk(Z,AWdz-+O as A-++OO, 
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if we choose k so large that 

m-2ek<-n, fl- 2(Jk<0. 

B 
It follows directly from (29.33) and (29.34) that A ~ 4 I, proving 

Theorem 29.2. D 

§30. Asymptotic Behaviour of the Eigenvalues 

Consider an operator A with a real Weyl symbol b(z) EHr;·m" mo > O. By 
Theorem 26.2, A is essentially self-adjoint and by Theorem 26.3 it has discrete 
spectrum. Since b(z) has no zeros for large Izl, then, changing sign if necessary, 
we may assume that 

(30.1 ) 

holds, where C1 , C2 are positive constants. It is easy to show that in this case the 
operator is semi-bounded from below. Indeed, repeating the argument of the 
proof of Theorem 24.2 and using Theorem 24.1, we see that there exists an 
operator A' with the anti-Wick symbol 

b(z) + L cy BY b(z), (30.2) 
O<lyl<N 

such that A - A' is bounded. But then it suffices to verify the semi-boundedness 
from below for A', which follows from the semi-boundedness from below of any 
function of the form (30.2), which in turn is a consequence of the fact that 

( BYb(Z») b(z) + L cyBYb(z) = b(z) 1+ L cy-- , 
O<lyl<N O<lyl<N b(z) 

where all the terms in the parenthesis, except the first one, tend to 0 as Iz 1 --* 
+00. Let (/ be a positive number such that the following estimates hold 

(30.3) 

(as we have already remarked in 28.6, one may take, for instance, e' = e!m, 
although this might not be the best value for e'). Finally assume that 

Iz' Ilb(z) 1 ~ Cb(Z)l-", 

where 0 ~ x < 1, c > O. Set 

V(A) = (2n)-n S dz, 
b(z)<). 

and let N (A) be the number of eigenvalues of A, not exceeding A. 

(30.4) 

(30.5) 
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Theorem 30.1. Let the operator A have the Weyl symbol b (z) E Ceo (IR 2"), 
satisfying conditions (30.1), (30.3) and (30.4) with x < e'. Thenfor any t: > 0, one 
has the asymptotic formula 

N(J) = V(J) (1+0(J"-e'+£». (30.6) 

Proof We will make use of Theorem 28.1 with the approximate spectral 
projection operators tff;. constructed in section 28.6. Recall that tff;. has a real
valued Weyl symbol e (z, J), equal to 1 for b (z) ~ J and 0 for b (z) ~ J + 2A i-v 
and if v < e' the estimates (28.34)-(28.36) guarantee that 

e(z,J)Er~}, e>O, 0'>0. (30.7) 

We have to verify that all the conditions of Theorem 28.1 are fulfilled. The 
condition tfft = tff). is obvious since e (z, J) is real-valued. The fact that tff). belongs 
to the trace class follows from Proposition 27.2. 

Denote the Weyl symbol of an arbitrary operator A by a(A). Obviously 

(1(tff;-tff).) = L caP[ogo~e(z,J)] [o~o~e(z,J)]+(e2-e)+rN' (30.8) 
O<la+PI<N 

where rN E r ;,;Ne, -2Nii. Note that all terms in the sum, except for rN, are 
supported where J~a(z)~J(1+2A-V), and if we apply Proposition 27.3 to 
each term, we obtain the estimate 

But it follows from Proposition 28.3 that 

V' (J)jV(J) = 0 (J "-1), 

which, by Proposition 28.2, gives the estimate 

Therefore 

1\ tff; - tff).l\l = 0 (J"-V V(J». (30.9) 

In addition, it follows from Proposition 27.2 that 

Sptff). = (2n)-" S e(z,J)dz 

= V(J) + 0 (V(J+2Al-v) - V(J» = V(J) (1 + 0 (J"-V». (30.10) 
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Note that we must take v < (1'. Choosing v = (1' ....: G, where G > 0, we may 
rewrite (30.9) and (30.10) in the form 

Iltffi-tffllll = O(A."-e'+'v().» 

Sptffl = V(2) (1+0()."-e'+'». 

2. Let us now verify requirement 3° of Theorem 28.1: 

We write this inequality in the form 

Next we compute the Weyl symbol of tffl (U - A) tffl . We have 

O"(tffl(U-A» = L cap(J~Jge) (J~J~().-a(z»)+rN' 
la+PI<N 

h r m-N(I2+Q).l-Nii 
were rN E min( -) 0 . Q,Q, 

Applying once again the composition formula, we obtain 

h - rm-N(e+iD I-Nii h . fi' d 1 were rN E min(e.~).o· , t e sum IS Illite an cooo = . 

(30,11) 

(30.12) 

(30.13) 

(30.14) 

It is clear that the remainder iN cannot affect (30.13), and therefore we will 
estimate the compactly supported terms. 

We will show that for IYll + IY21:oF 0 and for some i2 > ° and a > 0, we have 
the estimates 

(30.15) 

To begin with let Y3 = O. Then (30.15) holds in view of the fact that 
1).-a(z)1 ~ 2).1-. on the support of (JY1e)(JY'e). Let Y3:oF 0, then 

Note that (1' - V/IY31 ~ (1' - v > O. Therefore 
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where (11 = (}' - v. Taking into account, that the inequalities A ~ a ~ A + 2AI - v 
and (z}mo ~ C).. hold on the support of (a Y1 e)(a Y2 e), we obtain the estimate 
(30.15) (although perhaps with smaller e and a than in (30.7». 

Therefore we obtain 

(30.16) 

Now, repeating the reasoning, used at the beginning of this section to prove 
the semi-boundedness of A, we obtain that the L2 (IRn)-norm of the operator with 
Weyl symbol (oY,e)(oY,e)(oY'(A-a» does not exceed CAl-v, so this term also 
does not affect (30.13). 

By similar arguments, one verifies that 

(30.17) 

hence this term also cannot affect (30.13). 
Finally let us investigate the function e2 (A - a) = q. The function q (z, A) has 

the following properties: 

OYqEr?·I-v 
e.O , Iyl > O. 

If P is the operator with the anti-Wick symbol q (z, A) and p (z, A) is its Weyl 
symbol, then it follows from Lemma 29.1 that q - p Errol-v. But it is clear 
that P~ -CAI- v and IIQ-PII~CAI-v. (30.13) follows from this. Putting 
v = (}' - t: in this relation, we obtain 

(30.18) 

3. Let us now verify that 

(30.19) 

for sufficiently large C> O. Applying Theorem 29.1, we see that the symbol of 
the left-hand side of (30.19) has the form 

(30.20) 

h r m-N(e+Q).I-Nii d 1 were rN E min(e.ii).O an cooo = . 
The operator RN with the Weyl symbol rN can be estimated in norm by 

IIRN II ~ CA1- Nii and so cannot affect (30.19). 
Let us estimate the principal part of (30.20), tl1e symbol 

q(z, A) = (1-e(z,A»2 (a(z) - A) + CAl-v. (30.21) 
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First note that 

(30.22) 

for sufficiently large C. Now we show that 

(30.23) 

for some Q > 0 and a > O. 
We have 

a:q = LCY'y"a{ (1-e)2 or (a-A). 

If y' '* 0 then the corresponding term may be estimated as in step 2. of this 
proof. If y' = 0, then for y '* 0 we have the estimate 

on the support of 1 - e, since a (z) ~ q (z, A) + 12. Furthermore 

(q(z,A)+2A)(a(z»-e'l yl ~ q(z, A)(a(z»-e'IYI + 2A I - v AVa(z)-e'IYI 

~ q (z, A) A - e' lylf2 <z) - e' lylf2mo + q (z, A)(a (z))" - e' lyl 

on supp(1-e)2, since AI-v~q(Z,A) and AV~a(Zr. Finally 

q (z, A)(a(z»V - e' Iyl ~ q (z, A)(a(z» -IYI (e' -vflyl) 

~ q(z,A)(a(z»-IYI'(e'-v)f2 <z)-IYI(e-v)f2mo. 

(30.25) 

(30.26) 

Now, (30.23) follows from (30.24)-(30.26). Note also that in view of the obvious 
estimate Iq(z,l)1 ~ C<Z)lnAI-v (30.23) implies that q(Z,l)Er~y-v. 

Estimating the remaining terms in the sum (30.20) in a similar fashion, we see 
that if we denote this whole sum by q (z, A), then the estimates (30.22) and (30.23) 
still hold and so q (z, A) E r;:~ 1 - v. As we have seen in the preceeding sections, we 
may take v = (!' - c, with c > O. Applying Theorem 29.2, we see that (30.19) 
holds, or 

(30.27) 

4. To complete the proof of Theorem 30.1, it remains to note that the 
requirements 10_50 of Theorem 28.1 for the construction of the "almost
projection operator" iff" have already been verified «30.11), (30.12), (30.18) and 
(30.27» and property (28.7) for Vel) follows from (30.4) and Proposition 28.3. 
An Application of Theorem 28.1 then completes the proof of the asymptotic 
formula (30.6). D 
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Problem 30.1. Compute the eigenvalues of the operator A = - A + 1 X 12 and 
verify directly the asymptotic formula (30.6). 

Hint: The operator A = -A + Ixl 2 is the quantum mechanical energy 
operator for the harmonic oscillator, and its eigenvalues may be found in any 
text-book on quantum mechanics. 

Problem 30.2. Show that if the Weyl symbol b(z) of A is an elliptic 
polynomial whose principal homogeneous part does not take values in the ray 
argA. = ({Jo, then the complex powers AZ and the (-function (z) = SpAz can be 
defined and the (-function admits a meromorphic continuation to the whole 
complex plane «::. 

Find its poles, its residues and the values of (z) at the points 0, 1, 2, .... 
Obtain here the asymptotic formula for N (it) (without estimating the remainder 
term) using the Tauberian theorem of Ikehara. 



Appendix 1 
Wave Fronts and Propagation of Singularities 

In this appendix we present the definition and the simplest properties of the 
wave front of a distribution as introduced by Hormander [6]. The concept of 
wave front is important in that it allows a microlocal (localized at a point of the 
cotangent bundle) formulation of the theorems on regularity of solutions of 
differential equations and also clarifies questions connected with the propaga
tion of singularities. The wave fronts also play an important role on spectral 
theory, and are naturally connected with pseudodifferential operators. While 
leaving out many important questions of the theory of wave fronts, I never
theless thought it useful to add this short appendix. 

A.1.1 Wave front of a distribution 

Definition A.I.I. LetXbe an open set inJRn, let (xo, ~o) EXX (JRn\ {O}) and 
UE~'(X). We shall write(xo, ~o) $ WF(u) if there exists v E t9"(X) such thatu= v 
in a neighborhood of Xo and 

if (A. 1.1) 

for sufficiently small t: > 0 and arbitrary N> 0, i. e. i5 (~) is rapidly decreasing in a 
conic neighbourhood of ~o. 

Thus WF(u) is a closed conic set in Xx (JRn\ {O}) which we call the wavefront 
of the distribution u. 

Lemma A.I.I. If <p (x) E C({'(X) and (xo, ~o)$ WF(u) then (xo, ~o)$ WF(<pu). 

Proof We have to show that if i5 is rapidly decreasing in an open cone r, then 
so is </iV. Now 

<pI; (~) = S i5 (~ - 1]) ip (I]) dl] 

= S i5(~-I]) ip(I])dlJ + S i5(~-IJ) ip(lJ)dlJ 
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and 

l<pv(~)1 ~ Csup Iv(~-,,)I+ CL J (l+I~-"IY(l+I"I)-Ld1] 
I~I~R 1~I!1;R 

~ CSUp Iv(~-")I+CL(l+I~1Y J (l+I"I)P- L d" 
I~I~R 1~I!1;R 

~ C sup Iv(~ -1])1 + CL (1 + I~ IY Rn+p- L. 

I~I~R 

Putting R = 1 ~ 11/2, we see that if ~ belongs to a cone slightly smaller than r, 
then ~ - " E r for large 1 ~ 1 and I" I ~ R. In addition, I ~ -" I '" 1 ~ 1 and Rn + P - L 

'" 1 ~ 1 (n + P - L)/2. Picking a large L we see that <pv (~) is rapidly decreasing in ~ as 
1~I--+<Xl,~Er. 0 

Corollary A.1.1. In Definition A.l.l we may put v = <p u, for <p E C~ (X). 

Proof We may choose first vas in the definition and then <p such <p = 1 in a 
neighborhood of xo and <p u = <pV. It remains only to apply Lemma A.l.l. 0 

Lemma A.1.2. Let n: Xx(Rn\o)--+x be the natural projection and 
UE~/(X). Then 

nWF(u) = singsuppu. 

Proof a) If xo ~ sing supp u pick <p E C~ (X) such that <p = 1 in a neigh
bourhood of xo, <p = 0 in a neighbourhood of sing supp u. Then we see that 
<pUEC~(X), from which <puES(Rn) i.e. xo~nWF(u). 

b) Let xo~nWF(u). Then for any ~o ERn\ {O} there exists a function 
<p,. (x) E C~ (X) and a conical neighbourhood r,. of ~o such that <p,. (x) = 1 near 
Xo and (~) m decreases rapidly in r, .. Let r", ... , r," be a covering of 

N 

Rn\ {O}. Putting <p = n <P'j we see that <pu(~) decreases rapidly everywhere so 
j=1 

that <pUEC~(X) i.e. UECOO in a neighbourhood of Xo so xo~singsuppu. 

Proposition A.I.I. Let u E ~' (X) and (xo, ~o) ~ WF(u). Then there exists a 
classical properly supported\fDOA E CLO(X) such that (JA == 1 (modS- oo) in a 
conic neighbourhood of (xo, ~o) and Au E C~ (X). 

Proof Let cp E CO'(X), cp = I in a neighbourhood of Xo and suppose q;u(~) 
decreases rapidly in a conic neighbourhood of ~o. Let X (~) be supported in this 
neighbourhood with X (t~) = X m for t ~ 1, 1 ~ 1 ~ 1 and X (~) E Coo (X) with X (~) 
= 1 in some smaller conic neighbourhood of ~o. Then X (~) <pu (~) decreases 
rapidly so that X (D)(<p(x) u(x» E Coo. But then", (x)x (D)(<p(x) u(x» E C~(X) 
if", E C~ (X). We may pick", so that", (x) = 1 in a neighbourhood of Xo and then 
the \fDO A = 1/1 (x) X (D)cp(x) satisfies all the required conditions. 0 

Proposition A.I.2. Suppose we are given u E~/(X), (xo, ~o) EXX (Rn\ {O}) 
and an operator A E CLm(x) with principal symbol am (x, ~). So that Au makes 



Wave Fronts and Propagation Singularities 231 

sense let either u E tt' (X) or A be properly supported. Finally assume that 
am(xo,~oH=O and Au E COO (X). Then (xo,~o)$WF(u). 

Proof a) By the standard construction of a parametrix in a conic 
neighbourhood of (xo, ~o) (cf. §5), we obtain a properly supported 'PDO 
BE CL -m(x) such that aHA == 1 (modS- 00) in this neighbourhood. Obviously 
BAu E Coo (X) so that replacing A by BA we could obtain A = I (mod S- 00) in the 
same conic neighbourhood of the point (xo, ~o). 

b) Now let Xm = 1 in a neighbourhood of ~o, X(~) E COO (lR") , and Xm 
homogeneous of order 0 in ~ for I ~ I ~ 1. Let cp (x) E Cf{' (JRn), cp = 1 In a 
neighbourhood of Xo and the supports of cp and X be chosen so that 

From this we obtain 

xeD) cp(x)A-x(D) cp(X)ECoo, 

and by X (D) cp (x) Au E Coo (X), it follows from (A.1.2) that 

X (D) cp(X)UEcoo(JRn). 

c) Now we show that 

(A.1.2) 

(A.1.3) 

(A.1.4) 

from which it follows that X (~) cpu (~) E S (JRn) and in particular, that cpu (~) 
decreases rapidly in a conic neighbourhood of ~o as required. (A.1.4) follows 
from the following lemma and (A.1.3) 

Lemma A.1.3. Let v E tt' (JR n), X (~) E S;, o. Then for Q (x, supp v) ~ 1 we have 

(A.1.5) 

Proof Since ~a X (~) E S;, t 1al it all reduces to the case IX = O. Further since 
v = I Da va with continuous Va' we may reduce to the situation where v is 

lal~p 

continuous. 
We have 

x (D) V (x) = J ei(x-y)·~ X(~) v(y)dya~. (A. 1.6) 

Integrating by parts and using the formula 

from (A.1.6) we obtain 

xeD) v (x) = J ei(x-y)~« _Ll~)N x(m Ix- yl-2N v(y) dya~, (A.1.7) 
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which makes sense for Q (x, supp v) ~ 1. Picking N so large that (- L1~t 
X(~)ES;~-l, we see that the integral (A.1.7) converges absolutely and is 
estimated by C (x) - 2N for Q (x, supp v) ~ 1. 0 

Remark A.I.I. The condition am (xo, ~o) =t= 0 is sometimes called ellipticity 
of A at (xo, ~o). It is easy to formulate and prove the hypoelliptic analogue of 
Proposition A.1.2. We leave this for the reader as an excercise. 

Corollary A.1.2. For A E CLm(x) denote 

char (A) = {(x,~) EXX (IRn\ 0): am (x, ~) = O}. 

Then if Au = fECoo(X) we have WF(u) cchar (A). In particular, ifchar(A)=9 
we have u E Coo (X). 

Corollary A.1.3. If u E ~' (X), then 

WF(u) = n char (A) . 
A eCLO(X) 
AueCOO(X) 

(A.1.8) 

This holdsfor u E f»' (X) if we take the intersection only over properly supported A. 

The importance of Corollary A.I.3 is that (A.I.8) shows how to define 
W F (u) invariantlyas a closed conic subset of r* X when X is a manifold. We 
now generalize Proposition A.l.2 even more, by weakening the requirement 
Au E COO (X). 

Proposition A.1.3. Again let A E CLm(X), u E f»' (X) and either A be properly 
supportedoru E@"'(X). Then, assumingam(xo , ~o) =t= Oand(xo, ~o) $ WF(Au), we 
have (xo, ~o) $ WF(u). In other words, 

WF(u) c char (A) v WF(Au). (A.1.9) 

Proof By proposition A.l.l there exists a properly supported P E CLo (X), 
with (Jp == 1 (modS- 00) in a conic neighbourhood of (xo, ~o) and 
(PA)(u) E Coo (X). But then, from Proposition A. 1.2 it obviously follows that 
(xo, ~o) $ WF(u). 0 

Proposition A.1.4 (Pseudolocality of '1'00). Let u E f»' (X), A E L;. b (X) 
o ~ 8 < Q ~ I and assume either A is properly supported or u E IF' (X). Then 
If(xo, ~o) <t W F(u), we have (xo, ~o) <t W F(Au). In other words, 

WF(Au) c WF(u). (A. 1.10) 

Proof The condition (xo, ~oH WF(u) amounts to the existence of a properly 
supported '1'00 PECLO(X) such that PUECoo(X) and (Jp == 1 (modS- oo) in a 
conic neighbourhood of (xo, ~o). Now let Q be a properly supported '1'00 
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QECLO(X) such that qo(xo,~oH=O, (qo be principal symbol of Q) (1QES- oo 
outside of some sufficiently small conic neighbourhood of (xo, ~o) and 

Let us demonstrate that QAu E Coo (X). We have QA - QAP E L - 00 so it suffices 
to show QAPu E COO (X). This however, is obvious since Pu E COO (X). Now 
(xo, ~oH WF(Au) follows from Proposition A.1.2. 0 

Corollary A.1.4. If A E CLm(x), then 

WF(Au) c WF(u) c WF(Au) v char (A) . (A.1.11) 

Corollary A.I.S. If the operator A E CLm(X) is elliptic, then 

WF(Au) = WF(u) (A. 1.12) 

Exercise A.1.1. Compute the wave fronts of the following distributions: 

a) D (x); 
b) D(X') EB 1 (x"), x'EIR\ x"EIR"-k; 

c) Ds, where S is a smooth submanifold in IR" «Ds, <p) is defined as the 
integral of the function <p restricted to the surface S with respect to the induced 
measure); 

d) (X+iO)-l on IRl; 

e) the indicator function of an angle in IR 2 (the function which is equal to 1 
in the angle and 0 outside it). 

A.1.2 Applications: Product of two distributions, 
trace of a distribution on a submanifold 

1) LetujE~'(X),j = 1,2. What does U1 • U2 mean? It should be the ordinary 
product U1 • U2 if, for example, Ul and U2 are continuous or if one of them is 
smooth, and it should be a natural extension (e. g. by continuity in some sense). It 
will turn out that we can define U 1 . U 2 under the condition 

(A. 1. 13) 

i.e. if there are no (x,~) E WF(u 1) such that (x, -~) E WF(U2). 
Since the product is a bilinear operation, then using a partition of unity we 

may assume that Ul , U2 are in 8' (IR") and have sufficiently small supports so that 
u1 W is rapidly decreasing outside a cone r1 and u2 (~) is rapidly decreasing 
outside a cone r2, whereby r1 + r2 c IR"\ {O} (i.e. r1 and r2 do not contain 
opposite points). In the usual situation one hasu1 u2 (~) = (Ul * U2)(~)' where 

(A. 1.14) 
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In our case this integral converges absolutely also, since either 1 UI (~ - rt) 1 or 
IU2(rt) 1 rapidly tends to zero as Irtl-++oo. Put 

(A 1.15) 

Why is this an extension by continuity? We can for instance show that 
if x ECO'(lR"), [x(x)dx=l, x(x)=e-"x(e-Ix) and u(£)=U*X£(ECO'(lR"», 
then lim u~£) u~£ = UI U2 in the topology of!!)' (lR") where UI U2 is understood in 

£ .... 0+ 

the sense of (A1.15). 

Example A.l.l. Let Uk E!!)' (lR 2), 

From this we see that WF(Uk) is the set of all normals to the line X2 = kXI' 
lying over 1tk-1 (supp Xk), where 1tk: (XI' kx l ) -+ XI. Consider now the con
volution Uk * uo: 

(Uo * Uk)(~) = J Xo (~I - rtl) Xk (rtl + krt2) drt 1 drt2 

= J XO(1l1) all1 . J Xk(k1l2) a1l2 = 1 xo(O) Xk(O); 

from which 
1 

Uo Uk = k Xo(O) . Xk(O) . 8(x). 

The limit as k ---+ 0 does not exist, which is natural, since for k = 0 condi
tion (A. 1.13) fails. 

2) Let U E!!)' (X), Ya submanifold of X, NY the family of all normals to Yin 
T* X (the normal bundle to Y.) If WF(u) (\ NY = 0, then the trace U 1 y is defined 
naturally in the same sense as for products. Indeed, localizing we may assume 
that Y= {Xl = ... = xk = O}. For UECO'(X) we have 

~ = J U(~l' ... , ~")a~l ... a~k. (A. 1.16) 

But by hypothesis vectors ofthe form (~1' ... , ~b 0, ... , 0) are not contained 
in WF(u), so U decrease rapidly in their direction and the integral (A1.16) is 
defined. In particular, if U E!!)' (lR"+ 1) satisfies a differential equation of order m 
of the form 
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where the hyperplane t = ° is non-characteristic, i. e. am (0, x, 1,0) =l= ° then all 

the restrictions Ok~ I are defined and lie in .@'(IRn). This means in particular ot (=0 

that the Cauchy data make sense. Thereby u 11=10 is a smooth function of to with 
values in .@'(IRn). 

A.I.3 The theorem on propagation of singularities 

First, we state the simplest version of the theorem on propagation of 
singularities. 

Theorem A.I.I. Let P E CLm(x) have a real principal symbol Pm (x, ~), 
U E.@' (X) and either P is properly supported or u E C' (X) so that Pu makes sense. 
Then if I is any connected interval of a bicharacteristic of the function Pm (x, S) 
not intersecting W F(Pu) then either leW F(u) or I n W F(u) = 0. 

In other words, in the complement of WF(Pu), the set WF(u) is invariant 
under the shifts along the trajectories of the Hamiltonian system 

I ~ = - oPm, ox 
. _ °Pm 

X - o~ . 
(A.1.17) 

02U 
Example A.l.2. Let us prove that the wave equation - - L1 u = ° III 

OX6 
IRn+ 1 cannot have solutions with isolated or compactly supported singularities. 
We have m=2, P2(X,~)= -~6+ 1~12. The system (A.1.17) has a solution 
~ = const, Xo = - 2 ~ot, x = 2 U Let ° E sing supp u. Then there exists a point 
(0, 0, ~o,~) E WF(u), so by Proposition A.1.2 it is obvious that I ~ 12 = ~6. By 
Theorem A.U. (- 2~0 t, 2~ t, ~o,~) E WF(u) for any t and, in particular, 
( - 2~0 t, 2~ t) E sing supp u for any t which also yields the required result. 

We now give a proof of Theorem A.I.I. due to V.N. Tulovsky. It is based on 
the following proposition describing wave fronts in terms of the action of 
distributions on rapidly oscillating exponentials. 

PropositionA.I.5. Let UE.@'(X). Then the condition (xo,~oHWF(u) is 
equivalent to the following condition; 

A. There exists £ > ° such that if f/> (x, e) is a smooth real valued function 
definedfor Ix - Xo 1< £ and e E (IRN\ 0), is a homogeneous function in e of degree 1 
such that f/>x (xo, eo) = ~o for some eo =l= 0, then for an arbitrary symbol 
<p E CS°({lx-xo 1< £} X IRN) vanishing for Ix-xo I"?:. £/2 there exists a conical 
neighbourhood r of the point eo in IRN\ ° such that 

(A.US) 
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Proof 1) Let condition A. be satisfied. Take cp E CD (IR n), such that cp == 1 in 
a neighbourhood of xo, cp = 0 for I x - Xo I ~ e/2 and cP (x, e) = <x, e> so that 
N = n, eo = ~o' We then see that <u(x), cp (x) e- ix '8> = cpu (e) decreases rapidly 
in a conic neighbourhood of ~o. But from this it follows that (xo, ~o) If WF(u). 

2) Let (xo, ~o)$ WF(u). We will verify that condition A is satisfied. Let cP 
and cp be as described in the condition. Without loss of generality, we can assume 
u E IS" (IRn). Express the left-hand side of (A.U8) in terms of u (~): 

(u(x), cp(x, e)e-i4>(x.6») = f u(~)ei[x.~-4>(x.6)lcp(x, e)dxa~, (A.U9) 

where the integral is understood as an oscillatory integral. Picking a small conic 
neighbourhood r l around ~o in IRn such that u(~) decreases rapidly in r l we can 
decompose this integral into the sum II + 12 , where in II the integral with respect 
to ~ is taken over r l , and in 12 over IRn\rl . Let us estimate II and 12 separately. 

a) In II we integrate by parts with respect to x with the help of the exponent 
e- i4>(x,8). We put 

to obtain the identity tLe- i<1> = e- i<1>. The coefficients of tL and L are 
homogeneous in e of degree -1. Since CPAxo, eo) = ~o + 0 we have 
ICPx(x,e)I+O if Ix-xol<e and eEr, where r is a sufficiently small conic 
neighbourhood of eo. We have 

II = J LN (e ix ' ~ cp (x, e» u(~) e- i<1>(x,8) dx a~ . 

Since 
~Erl 

then in view of the decrease of u(~) in r l we obtain 

(A. 1.20) 

b) To estimate 12 it is necessary to integrate by parts with respect to x again 
with the help of the exponent ei(x·e-4>(x,8)1. Choosing a sufficiently small conic 
neighbourhood r of eo we have ~ - CPAx, e) + 0, e Er, ~ EIRn\rl , Ix-xo 1< e, 
from which 

gradx(x' ~ - CP(x, e» + 0, 

for the same x, ~, e which allows us to carry out a standard integration by parts. 
In fact it is obvious that for some C> 0 
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Putting 

we obtain, CLei[x' ~-4>(x.8)J = ei[x'~-4>(x.8)], and hence 

12 = S ei[x~-4>(x.8)J [LN <P (x, 8)] it (~) dx d~ . (A.1.21) 
~ER'\r, 

Since Ii (~) satisfies I it (~) I ~ C (1 + I ~ I)N, for sufficiently large C, N l' then for 
sufficiently large N the integral (A.I.21) becomes absolutely convergent and for 
8 Er, Ix-xo 1< e can be estimated by Cp (8) -p for an arbitrary p. This together 
with (A.1.20) yields the required statement. 0 

Remark A.I.2. If the point (xo, ~o) and the functions <P and cP depend on a 
parameter and all the conditions are satisfied uniformly, then the constant CN in 
(A.U8) can be selected so as to not depend on the parameter. 

Proof of theorem A.1.I. 1) For simplicity consider first the operator 

P = ~~. Let Pu = f, (xo, ~o)$ WF(f). The bicharacteristic of the symbol 
lOX. 

~. of P, which passes through (xo, ~o), is of the form (xb, (XO)n + t, ~o) where (xo). 
is the n-th coordinate of X o, xb is the collection of its (n -1) first coordinates and 
t is the parameter along the bicharacteristic. Let I be an interval on this 
bicharacteristic containing (xo, ~o) and not intersecting WF(f). We will show 
that either Ie WF(u) or 1 n WF(u) = 0. 

Let <P (x, 8) and cP (x, 8) be determined as in Proposition A.1.5. Put 

Then supp <Pc is close to (xb, (xo). + t) and near this point the function CPc is 
defined. It is clear that by the choice of <p, cP one can make <Pc and CPt to be any 
functions for which the conditions of Proposition A.l. 5 are fulfilled at (xb, (xo). 
+ t, ~o). We have 

(A. 1.22) 

from which, by the condition In WF(f) = 9 and by Proposition A.1.5, it 
follows that for the values of t of interest to us, the estimate 

(A.l.23) 
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holds uniformly in t. Here r is a sufficiently small conic neighbourhood of 80 , 

But from this 

(A.L24) 

Therefore, if for some t the function <u, <fJte-i<ll,) decreases rapidly for 8 in r, 
then this holds for all t, yielding the required result. 

2) Now let P be any classical first order 'PDO (i.e. PEe L I (X») with real 
principal symbol Pi (x, ~). Again we will carry out the computation (A.L22). For 
this we only have to find the dependence on the parameter r for the functions qJ 

and <1>, so that 

(A.L2S) 

rapidly decreases for 8 in the cone r and uniformly in r, where for r = ° the 
conditions of Proposition A.LS are satisfied for the point (xo, ~o). 

The condition of decreasing for (A.L2S) leads to the equation for <1>, 

(A.L26) 

which we can solve (for small r) for arbitrary <1> I r=O' In doing so, it is important 
to note that along the bicharacteristic (x(r), ~(r» of the function PI (x, S) we 
will have 

(A.L27) 

(cf. §17), provided this is so for r = 0, which we will assume. For the 
homogeneous components of qJ, we obtain transport equations which are again 
solved for arbitrary qJ I r= 0 by analogy with the transport equations for q _ j from 
§20. The solution procedure (cf. §17) shows, that the support of any 
homogeneous component of qJ propagates along the bicharacteristics of the 
function P 1 (x, ~). Thanks to this the proof in this case for small r may be ended in 

8 
a similar way to the case of the operator i- i -8 . 

xn 
Let us now remark, that the necessity of restricting ourselves to small T is of 

no importance, since it is enough to prove theorem A.L1 for arbitrarily small 
parts of the bicharacteristics, since as an obvious consequence it will then be true 
also for large connected pieces. 

3) Finally consider the case of an operator P of arbitrary degree m. Let Q be 
a classical elliptic properly supported 'PDO of degree (l-m) with real principal 
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symbol q(x, ~). Put Pi = PQ. Then Pi E CLi(X) and the principal symbol of Pi is 
of the form 

Pi (x,~) = Pm (x, ~) q(x,~). 

Note that in Theorem A.l.l, in view of Corollary A.l.4, it suffices to consider 
only null bicharacteristics. But from the relations 

(Pi)~ = (Pm)~ q + Pm . q~ = (Pm)~ q for Pm = 0 

(Pi)x = (Pm)x q + Pm . qx = (Pm)x q for Pm = 0 

the null bicharacteristics of Pi and Pm differ only by a change of parameter. 
Corollary A.1.5, being taken into account the result of theorem A.U for P 
follows from the same result about Pi already proved in 2). 0 

Problem A.I.1. Let A be a distribution determined by an oscillatory integral 

<A,cp) = Je iCZl (x.6) a (x, 0) cp(x) dxdO, 

where cP is a non-degenerate phase function, a (x, ~) E sm (X X JRN) (cf. § 1). Show 
that 

Problem A.1.2. Let two distributions Ui , U2 E ~' (X) satisfy (A. 1. 13) 
allowing them to be multiplied. Show that 

Problem A.1.3. Prove that for the operator D!, for any positive integer k, 
the same theorem on propagation of singularities is true as for Dn. What form 
does Theorem A.l.l take? 



Appendix 2 
Quasiclassical Asymptotic Behaviour of Eigenvalues 

Observables in quantum mechanics can be represented by operators of the 
form 

(A.2.1) 

where the parameter h > 0 is the Planck constant; the operator A(h) is well 
defined on S (JR") for example, if the function b (z) belongs to r; (IR 2n). 

Classical mechanics is the limiting case of quantum mechanics, when the 
Planck constant can be considered to be negligible. This motivates an interest in 
the asymptotic properties of operators of the form (A.2.1) as h--+O; the 
corresponding asymptotic analysis is called quasi-classical or semi-classical. 

A.2.t Basic results 

The change of variables ~ --+ h - 1 ~ transforms (A. 2.1 ) into 

(A(h)U)(X) = ~n J ei(x-YHlh be; y, ~) u(y) dyd~; (A.2.2) 

where the symbol no longer contains the parameter h, which now is included in 
the exponent instead. 

We will say that b(z) is the Weyl h-symbol of A (h) or, briefly, the h-symbol 
(in this appendix, we will not use the .-symbols of chap. IV, which avoids any 
confusion). Clearly, the I-symbol is then the ordinary Weyl symbol. 

Between the h- and l-symbols the following relation exists. Making the 

change of variables x--+ v'hx, y--+ v'hy, ~--+ v'h~ in (A.2.2), this expression 
becomes 

In the space of functions on IRn introduce the dilatation operator 

(A.2.4) 
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It is easily seen that Th is unitary on L2(IRn). Using this operator, (A.2.3) can 
be written as ThA(h)U = A~~~ThU or 

A T. - 1 A(h) T. 
(h)= h (1) h' (A.2.5) 

where Am is the operator with the 1-symbol b(h)(Z) = b( Vh z). Therefore the 
operator with h-symbol b(z) is unitarily equivalent to the operator with the 
1-symbol b(h)(Z). 

We will be interested in the quasicalssical asymptotic behaviour of the 
eigenvalues. 

Definition A.2.t. Let A(h) be a self-adjoint operator semi-bounded from 
below. Nh (A) denotes the number of eigenvalues of the operator not exceeding A 
(counting multiplicities). If there are points from the continuous spectrum of A(h) 

in the interval (- 00, A], then by definition Nh(A) = + 00. 

Remark A.2.1. The Glazman variational principle (28.1) remains valid also 
for Nh(A); the proof (cf. §28) can be taken over with minor changes to the case 
Nh(A). 

To formulate the basic result, we need the following 

Proposition A.2.t. Let A(h) be an operator with the real h-symbol 
b(z) E H rQm,mo, mo ~ O. Then for any fixed h > 0 the operator A(h) is essen
tially self-adjoint. 

Proof For ma > 0 the proposition follows from Theorem 26.2. An analysis 
of the proof of Theorem 26.2 shows that the strict inequality ma > 0 is only 
needed in order to ensure A ± i I E H G;,mo. Under the assumptions of the 
proposition, for mo = 0 and h = 1 the inclusions A ± i I E H G;'o follow 
from the estimates 

Ib(z)± il >b(z), 

I aY(b(z)± i) I ~ Cy Ib(z) I Izl-qlYI 

= Cylb(z)±illzl-QIYllb(z)l/lb(z)±il ~ Cylb(z)±illzl-QIYI. 

For h =l= lone has to use (A.2.5) and the fact that b(h) E H rqm• mo (as for b (z) but 
with other constants in the estimates of the derivatives). 

Let A(h) have a real h-symbol b(Z)EHrqm• a. As in §30 changing the sign if 
necessary we may assume that b (z) ~ C> 0 for I z I ~ Ra. Put 

V(A) = (2n)-n S dz. (A.2.6) 
b(Z)<A 

The main goal of this appendix is the proof of the following theorem. 



242 Appendix 2 

Theorem A.2.t. Let A(h) have a real h-symbol b (z) E H r;, 0, b (z) ~ C> 0 for 
Izl ~ Ro. Let ,1.0 be such that V(Ao) < + 00. Then, for almost all ,1.<,1.0 and 
arbitrary 8 > 0 we have the asymptotic formula 

(A.2.7) 

Remark A.2.2. Between the asymptotic formulae in h as h-+O and the ones 
in A as ,1.-+ + 00 there is an intimate relation which can be explicitly exhibited 
when b (z) is homogeneous: b (tz) = tS b (z), t> 0, s> O. In accordance with 
(A.2.5) the operator with the h-symbol b(z) is conjugate to the operator with 
symbol b(h)(Z) = hs/2 b(z), so that Nh (A) = N (h- s/ 2 A). 

Remark A.2.3. Theorem A.2.1 is analogous to Theorem 30.1. In the latter 
we assumed the essential inequality b(z) ~ C Iz 1m., c> 0, mo > O. Theorem A.2.1 
states the weaker dependence of the asymptotic behaviour in h on the behaviour 
of the symbol at infinity. 

A.2.2 The idea of proof of Theorem A.2.t. 

The proof of the theorem is based on the same considerations as the proof of 
Theorem 30.1. We will construct an approximate spectral projection ff'h in the 
following way. Let Xl be the indicator function of the interval ( - 00, A]; we 
construct a family of functions Xh.l, converging to Xl as h -+ 0, The operator ff'h 

has the h-symbol Xu. (b (z)), where b (z) is the h-symbol of A(h)' 

We will show that the family ff'h has the following properties: 

1°. ff'h* = ff'h; 

2°. §h is a trace class operator and 

3°. ff'h (A(h) - AI) ff'h ~ Chi<; 

4°. (l- ff'h) (A(h) - AI) (l- ff'h) ~ - Ch"; 
5°. Sp §h = h- n yeA) (1 + O(hj); 

here 0 < x < 1/2 and the function yeA) in 5°, is a pOSltIve, non-vanishing 
function, defined on the interval [A, ,1.+8] and differentiable from the right at A. 
Note also that 1m ff'hcDA"" where D A,,, is the domain of A(h)' 

In the presence ofa family of operators, with properties 1 °_5°, theorem 28.1, 
reformulated in the new terminology is fundamental in obtaining the asymptotic 
formula (A.2.7). For convenience we formulate the following result. 

Proposition A.2.2. Let A(h) be a family of essentially self-adjoint bounded 
from below operators; ff'h afamily of operators such that 1m ff'h c D A,,, and having 
the properties 1 °-5°. Then 
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Proof Similar to the proof of Theorem 28.1. 

Exercise A.2.1. Prove Proposition A.2.2. 

A.2.3 Symbols and operators with parameters 

243 

To study the approximate spectral projection, it is convenient to introduce 
class of symbols, depending on a parameter (cf. 29.1). 

Definition A.2.2. Denote by Em.1-' the class of functions a(z, h), defined for 
z E IR2n, 0 < h ~ ho, infinitely differentiable in z and satisfying the estimate 

la;a(z, h)1 ~ Cy(z)m-Qlylhl-'-rrlyl. (A.2.8) 

Here m, /l, (1, 11 E JR., (1 > 0, 11 :£ 1/2. 

Obviously, if ajEL~~:;j, j=l, 2, then a1 a2 EL;,',,+m,.I-',+1-'2, where 
(1 = min«(11' (12),11= max (111 ,(12)' 

Note that for any fixed h, 0 < h ~ ho, from a E E;: it follows that 
a(z, h) E rQm(IR2n) and (A.2.2) properly defines a class of operators A(h) 
depending on a parameter and acting on S(IRn) (the parameter dependence 
appears either in the symbol or in the exponent). The corresponding class of 
operators will be denoted by S;: . 

From definition A.2.2 it follows, that for 11 > 0 the derivatives of the symbol 
can be estimated by powers of h which are increasing as h--+O. However the 
influence of the increasing powers of h disappears under the action of the 
corresponding h-symbol of the operator. In particular, one has 

Proposition A.2.3. Let A (h) ES~:::, /l > 0,11 < 1/2. Then A (h) is bounded in 
L2 (JR.n) uniformly in h for 0 < h :£ ho. 

Proof Let a(z,h) be the h-symbol of the operator A(h) and Am(h) the 

operator with 1-symbol a(h)(z,h) =a(Vhz,h). By (A.2.5) the operators A (h) 
and Al~»(h) are unitarily equivalent, i.e. 

IIA (h) /I = /I Al~\(h) /I. (A.2.9) 

Let us now show the boundedness of the operator Ai~\(h). Selecting 0 < (1' 
< min «(1,1 - 2(1) we have 

18; dh)(z,h) I = hlrl/218: a(y, h) Iy = y'h z I 

:£ Cyhlyl/2 (yh z) - elyl hlt-"Irl :£ CyhIYI(1/2 -,,)+It( yh z) - e' Iyl 

:£ C;hIYI(1/2-"-e'/2)+It(z) -e'IYI. 

In (A.2.! 0) we used the obvious inequality 

(A.2.10) 

(l+yhlzl)-":£ C(yh+ yhlzl)-"= Ch-,,/2(Z)-" for x>O. 
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Thus, a<h)(Z, h) ErQO(IR2 n) uniformly in h and by Theorem 24.3 the operator 
Al~>,(h) is bounded in L2(IRn) uniformly in h. 0 

Let us now introduce expressions for the trace of an operator in terms of its 
h-symbol. It follows from (A.2.5) that 

(A.2.11) 

Using (27.2) we obtain 

(A.2.12) 

With the help of similar arguments the estimates of the trace class norm (27.12) 
can be transferred to the case of h-symbols: 

Proposition A.2.4. There exist constants C and N such that for the operator 
A (h) with the h-symbol b (z, h) the following estimate of the trace class norm holds 

IIA(h)lIl~Ch-n L hlyl/2 jla;b(z,h)ldz. (A.2.13) 
lyl;i;N 

A.2.4 The h-anti-Wick symbols 

For the operators (A.2.2), where the action depends on the parameter h, we 
have the following analogue of the anti-Wick symbols introduced in §24. 

The whole construction in section 24.1 can be carried out if, instead of CPo (x) 
we take the function 

as the starting point. An operator A(h) with an h-anti-Wick symbol a(x,~) is 
defined by analogy with (24.9): 

(A.2.14) 

where Qx. ~ = ~- 1 px• ~ ~ are the projection operators, playing the role of px . ~ in 
definition (24.9). 

All the results from §24 can with no effort be extended to the case of 
h-anti-Wick symbols. In particular, it follows from (A.2.14) that an operator is 
non-negative whenever its h-anti-Wick symbol is non-negative. 

It is easy to compute that the kernel of the projection operator Qo on the 
vector Po is equal to (nh) -n12 e-(x'+Y')/(2h), whereas the h-Weyl symbol 0"0 (x, 0 
of Q ° is equal to 

O"o(x,~) = 2"e-(x'H')lh (A.2.15) 
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Using (A.2.14) and (A.2.1S) we obtain a formula connecting the h-Weyl symbol 
b(z) and the h-anti-Wick symbol a(z): 

Iz-z'I' 
b(z) = (nh)-n J a (z') e - ~h~dz'. (A.2.16) 

From (A.2.16), by the same reasoning as in the proof of Theorem 24.1 we can 
obtain the following analogue of Lemma 29.1. 

Lemma A.2.1. Let B(h) be an operator with the h-anti-Wick symbol 
a(z, h) E Em,!, and b(z, h) its symbol. Then 

Q,rI 

a-b= L h1yl /2 cy(a;a)+rN , 

O<lyl<N 

where C = 0 fior odd I" I and r E Em-QN.!'+(\/2-rI)N y . ( N Q.rI • 

A.2.S The composition formula 

For operators of the classes S;,·;: the composition formula holds in the 
following form. 

Theorem A.2.2. Let aj E E~~;j, j = 1, 2; let A j (h) be the corresponding 
operators. Then 

A (h) 0 A (h) E sml +m2·!'l +1'2 
) 2 Q." ' 

where (2 = min«(2), (22), a = max (a) ,a2), where for the h-symbol of the 
composition b(z, h) we have 

(A.2.17) 

where 

(A.2.18) 

Proof We may obtain the proof just by copying the proof of Theorem 29.1. 
So that we do not repeat the calculations of Section 29.1 here, we will, wherever 
possible, refer to the proof of Theorem 29.1. 

Using (A.2.S), we obtain: 

Al (h) 0 A2 (h) = T,,-I (AI (h))~~\ T" 0 T,,-I (A2 (h))m T" 

= T,,-I [(AI (h))m 0 (A2 (h))~~\l T". 

For the symbol b' (x,~, h) of the composition of the operators (Aj(h))~~)) with 

symbols a~h)(z,h) = aj(yhz,h) we have according to (29.4)-(29.18) (in which 
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the nature of the dependence on the parameter is not used), the following 
representation 

b'(x)! h)= " (-1)lfJl rl"+fJl(o"DfJa(h») (ofJD"a<h»)+r (A.2.19) 
,0" L... 'f3' ~ x 1 ~ x 2 N • 1"+fJl<N IX. • 

Note that 

(0" DfJ a<h») (OfJ D" a(h») = h 1«+ fJl [(0" DfJ a ) (ofJ D" a )](h) 
~xl ~x2 ~xl ~x2' 

Therefore, passing from the Weyl I-symbol in the equality (A.2.I9) to the 
h-Weyl symbol according to (A.2.S), we obtain the terms in the sum (A.2.17). 

The estimate of the remainder (we are talking about the Weyl I-symbol) 
is reduced, as in section 29.1, to the uniform estimate in !1,!2 E [0, I] of 
integrals of the form 

/(x, e) = J e2i(y-C-z'~) [o~Dea\h)(x+tlY' e+1],h)] 

x [ogD~a~)(x+t2Z, e+(,h)] d1]d( dydz, 

11X+f3I~N. 

(A.2.20) 

By analogy with the above, we obtain that the Weyl I-symbol I (x, ~) cor
responds to the Weyl h-symbol 

J(x, e) = hl«+fJl J e2i(Y'i-Q) [O~Deal (x+ t 1 Vhy, e + vh1], h)] 

x [ogD~a2 (X+t2 Vhz, e + vh(. h)] d1] d( dy dz, (A.2.21) 

11X+f3I~N. 

It is necessary to prove that 

uniformly in t 1 , t2 E [0, 1]. 
Differentiating (A.2.21) with respect to x and e, we see that the derivative 

O~O~RN is a linear combination of expressions of the form 

hl"+fJl-N J e2i(y-C-z'~) [o~+Y' ogH' a1 (x+t1 Vhy, e+ Vh1],h)] 

x [oe+ Y" O~H" a2 (x+t2 Vhz, e + Vh(, h)] d1] d( dy dz, 

y' + y" = y, (j' + (j" = (j . 
(A.2.22) 

In the same way as in Section 29.1, if we integrate by parts we obtain 
decreasing factors of the type (y, 1]) -2M, (z, 0 -2M. It is only necessary to take 
into account that in differentiating a 1 (a2 ) in y and 1] (z and 0 there appears a 
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factor h 1/2. Therefore (A.2.22) lead to a linear combination of integrals of the 
type 

where 

hldfil-N+I",+><,1/2 J e2i(Y'\-z'~)<y, 1]) -2M<Z,O -2M 

x [a~:t, al (X+'I Vhy, ~ + Vh1], h)] 

x [a~:t'a2 (X+'2 Vhz, ~ + VhC h)] d1] d( dydz, 

VI = IX + f3 + y' + 15', 

V2 = IX + f3 + y" + 15", 

IVII~N+ly'+(j'I; 

IV21 ~ N + Iy" + 15" I· 

The absolute value of (A.2.23) can be estimated by 

where 

hS J <X+'I Vhy, ~+ Vh1],h)m,-~,N-~'Iy'H'1 

x <X+'2 Vhz, ~ + Vh(' h)m,-~,N-~2IY"H"1 

x <y, 1]) -2M <z, 0 -2M d1] d( dy dz, 

If one takes into account the relations 

and (A.2.24), then the exponent s can be estimated as follows: 

(A.2.23) 

(A.2.24) 

(A.2.25) 

S = III + 112 - 0"1 I)!' +<5' 1- 0"21Y" +<5" 1- N(O"I +0"2) 

+(N-IIX+f3D (0"1 +0"2- 1)+ IXII (1/2-0"1)+ IX21 (1/2-0"2) 

~ III + 112 - 0" Iy+(j 1- N(O"I +0"2)· 

We see that the power of h in (A.2.25) corresponds to the statement of 
the theorem. Next, estimate the integral in (A.2.25) in terms of the necessary 
power of (x, ~). Note first that it splits into the product of integrals 

1= J <x+ 'I Vhy, ~ + Vh 1])m,- e,(N+Iy'H'I)<y, 1]) -2M d1] dy, 

I' = J <X+ '2 Vhz, ~+ Vhom2-~2(N+Iy"+O"I)<z, 0 -2M d( dz. 

(A.2.26) 

(A.2.26') 

We will estimate the integral (A.2.26). Assume that ml - QI N < 0; if this 
is not the case, then in the expansion (A.2.17) we can take N' terms so that 
m 1 - Q 1 N' < 0 and examine the remainder r N', representing the remainder r N' 
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as rN plus the finite sum within the limits N ~ la+,B1 ~ N'. Using the obvious 
inequality 

a special case of the inequality 

and applying (A.2.27) with x=lm1-elN-elly'+J'II, we obtain for the 
integral (A.2.26) the estimate 

I ~ <x, Om 1 - ~IN- ~,1y'+b'l J < r 1 Yhy, Yh 1])" <y, 1]) - 2M dl] dy 

~ <x, Oml-~IN-~,1y'+b'l J <y, 1]),,-2M dl] dy 

(A.2.28) 

Combining (A.2.28) with the corresponding estimate for (A.2.26'), we obtain the 
necessary power of <x, 0 in the estimate of (A.2.2S) so that the inclusion 
(A.2.18) is proved. D 

A.2.6 Proof of Theorem A.2.1 

The plan of the proof is as follows: first we construct an approximate spectral 
projection and successively verify the properties needed to apply 
Proposition A.2.2. 

1. Let X (t, A, J) be the function introduced in Section 28.6: 

{
I for t ~ A, 

X(t,A,J) = 0 for t~A+2J, 

I (O/ot)kX(t,A,J) I ~ CkJ- k. 

Set x = 1/2 - 8,8> 0 and 

e(z, h) = X(b(Z),A,h"). 

(A.2.29) 

(A.2.30) 

(A.2.31) 

(We omit the unimportant argument A of e(z, h)). The operator fFh is defined as 
the operator with h-symbol e (z, h). 

The function e (z, h) is infinitely differentiable with respect to z and 

{ 
1 for b (z) ~ A , 

e(z,h)= 0 forb(z)~A+2h". 

Let us estimate the z-derivatives of e (z, h). Differentiating (A.2.31) with respect 
to z gives: 
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a: e(z,h) = 
akx 

cy, .. y,(aY,b(z)) ... (aY'b(z)) atk (t,A,h) It=b(z)' 
y, + .. +y,=y 

(A.2.32) 

The summation in (A.2.32) runs over all possible decompositions ofy into a 
sum Yl + .. . +Yb where k ~ Iy I. Taking (A.2.30) and b E H rtO into account, 
we obtain for an individual term in (A.2.32) the estimate 

I (aY'b) ... (aY'b) (akx(t},h) I )1 ~ Ch-hlblk 
at t=b(z) 

k 

X 11 I aY,b/b I ~ Ch- k"lbl k(l + Izl)-eIYI. (A.2.33) 
i= I 

Note also that on the support of e (z, h) 

Ibl<A+h". (A.2.34) 

Therefore, from (A.2.32)-(A.2.34) we obtain the estimate I a: e(z, h) I 
~ Ch-k"<z) -eIYI, i.e. 

e(z,h)EL~:2. (A.2.35) 

2. We need now to verify, that all the conditions of Proposition A.2.2 are 
fulfilled for ff'h' ff'h is symmetric due to the real-valuedness of the symbol, and 
bounded by (A.2.35) and proposition A.2.3, hence ff'h* = ff'h' The fact that ff'h is 
of trace class follows from Proposition A.2.4. 

We denote the h-symbol of an arbitrary operator A by <T(A). In order to 
estimate the trace class norm II ff'h2 - ff'h III , we need to compute the h-symbol of 
the operator ff'h2 - ff'h' 

By the composition formula (A.2.17) 

<T(ff'h2-ff'h) = -e(z,h)+e(z,h)2+ L caphldPI(D~age) 
lal+IPI<N 

x(DPaae)+hNr hNr EL- 2eN.(I-2><)N 
x ~ N, N Q." . (A.2.36) 

All terms on the right-hand side of (A.2.36) except rN are supported on 
{z: A < b(z) < A + 2h"}, so the trace class norms of the corresponding operators 
by Proposition A.2.4, can be estimated by 

C[V(A+2h") - V(A)]h-n. (A.2.37) 

The trace class norm of the remainder can be estimated by 0 (h - n +><) for 
sufficiently large N. 

Now, note that V(A) is a non-decreasing function; by the well-known 
Lebesgue theorem it is almost everywhere differentiable. In what follows, we 
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assume that the)... under consideration belongs to the set of full measure where 
V is differentiable. Then (A.2.37) is transformed into the desired estimate 

(A.2.38) 

In addition, by (A.2ol2) we have 

Sp ff'h = (21th) -n J e (z, h) dz = h- n [V (A) + O(V(A) - V(A+ 2hX»] 

= h- n V(A)(1 + o (h") . (A.2.39) 

Consequently, we have satisfied 1 0, 2° and 5° of Proposition A.2.2 (ff'h* = ff'h' 

(A.2.38) and (A.2.39». 

3. Now let us verify 3° of Proposition A.2.2. For this we need the h-symbol 
of ff'h(A(h) - AI) ff'h' So we begin by computing it. We have 

+ hl.+P1C (D·oP e) (DPo·b) + r .p x ~ x ~ N, (A.2.40) 
l~I·+PI<N 

r E IJm-2NQ.N(1-x). 
N Q.x 

The operator RN , corresponding to the symbol rN , is bounded for m - 2N Q 

< 0 and II RN II = 0 (h N (1 - x» = 0 (h"). Let us show that 

rn E Z;-ZI·+PI e, x+(1-ZX)la+PI I rL + f31 > O. 
Yap e, x , (A.2.41) 

for rn =hla+PI(o·oPe)(oPo·b) 'r.p . x ~ x ~ . 

For this we construct in a standard way a function cp (z, h) ECOCl(JRZn), for 
which 0 ~ cp(z, h) ~ 1, 

{
1, forzEsuppoze, 

cp(z,h)= 0, for b(z)~A+3hX,b(z)~A-hX 

and which, like e (z, h) in the first part of this proof, is determined with the help of 
the smoothed characteristic function X (t, A, ,1+ 2h") of the interval (A, ,1+ 2h") 
by the formula cp(z,h) = X(b(z), A, A+2hX). 

By analogy with (A.2.33) and (A.2.34) we verify that 

(A.2.42) 

Now note that for IrL+f31 > 0 

(A.2.43) 
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Let us show that qJ . (b - A) E L~::. Obviously I qJ . (b - A) I ~ Ch" and computing 
the derivative with respect to z we obtain 

a: [qJ' (b-A)] = (aYqJ) (b-A) + L co(ar0qJ) (aO(b-A)). (A.2.44) 
101> 0 

Owing to (A.2.42) for the first term we have 

(A.2.4S) 

and for the other summands of (A.2.44) we get 

I aY-°qJ)(aO(b-A)) I = I ar0qJ I' Ibl . I (aOb)jb I 
~ Ch-"Irol (z) -ely-ol-elol ~ Ch"-"IYI(z) -eIYI. (A.2.46) 

The estimates (A.2.4S) and (A.2.46) show that qJ (b - A) E L~::, from which, 
taking (A.2.43) into account, (A.2.41) follows. Thus, the finite sum in (A.2.40) 
belongs to L; ~e. I -" and the operator fFh (A(h) - AI) can be written in the form 

(A.2.47) 

where IIRII = 0 (h l -") = o(h") and (}(QI) = e' (b-A). 
Using (A.2.47) we have 

(A.2.48) 

We will compute the symbol of QI fFh : 

(}(QI fFh) = e2 . (b-A) + L cOfJhlo+/lI(a~ag [e' (b-A)]) 
O<lo+/lI<N 

x (aea~e) + r N • (A.2.49) 

Introducing as before the function qJ and using e . qJ (b - A) E L~::, we see that 
the norm of the operator corresponding to the finite sum and the remainder in 
(A.2.49), can also be estimated via 0 (hI - "). 

Consider the principal part of the symbol - () (fFh (A(h) - AI) fFh), viz. the 
function q (z, h) = - e(z, h)2 (b(z) - A). For q and its derivatives with respect to z, 
the following estimates hold 

q(z,h) ~ -Ch"; 

laYql = I L co(aOb)(arOe2)+2(b-A) Lco(aY-Oe)(aOe) I 
101> 0 0 

~ L cah-"Ir ol (z) -elYI 1..1.1 + Ch"h-IYI"(z) -elYI 
101>0 

~ Ch"(1-I YIl(z)-eIYI. 

(A.2.S0) 

(A.2.S1) 
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We shall denote by P the operator having Weyl h-syrnbol q(z, h) and by Q 
the one having h-anti-Wick symbol q(z, h). From (A.2.S1) it follows that 

and therefore, by LemmaA.2.1, (J(P-Q)El:;,;~·I-" and thus IIP-QII 
= 0 (hi - "). It is furthermore obvious from (A.2.50) that Q ~ - Ch" and since 
P = Q + (P - Q) it follows that P ~ - Ch". Thus, we have for the principal part 
and consequently for the whole operator ffh (A(h) - AI) ffh the estimate 

(A.2.52) 

4. Now we will verify that 

(A.2.53) 

The symbol of the left hand side of (A.2.53) (after getting rid of paren
theses) is 

(J(ffh(A(h)-AI)ffh) - (J(ffh(A(h)-AI) 

- (J «A(h) - AI) ffh ) + (b (z) - A). (A.2.54) 

In step 3 of this proof, it was shown that in the first two summands of (A.2.54) 
the principal terms are distinguished e2(b-A) and e(A-b), and the operators 
corresponding to the remainders are estimated in norm by 0 (hi - "). The third 
summand in (A.2.54) is analogous to the second. Thus we obtain 

(A.2.55) 

and the operator R with the h-symbol r admits the estimate 

Now consider the operator P with h-symbol 

q(z, h) = (l-e(z,h)? (b(z) - A). 

Arguments similar to the ones used in section 29.3 in proving the positivity of an 
operator with positive symbol show that 

(A.2.56) 

Here the operator Qk has the h-anti-Wick symbol 

qdz,h)=q(z,h)+ L cyhIYI/2iJ;q(z,h)+rN(z,h), (A.2.57) 
2;;;lyl<N 
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where rN E Em-2g N,(\/2-xlN; and therefore the operator with the h-symbol rN 
g,x 

can be estimated in norm by O(h I-x). 
For the operator Ak in (A.2.56) we have Ak E S;:2Qk,O-2xlk and therefore 

IIAkll = oW -") with an apropriate choice of k. 
We keep the notation qk for the right-hand side of (A.2.S7) but without the 

remainder rN and Qk denotes the corresponding operator with the h-anti-Wick 
symbol qk' 

Let qJ (z, h) be the function introduced in the preceeding part of this proof. 
Decompose qk into two parts 

(A.2.S8) 

In step 3 it was shown that qJ (b - A) E L~:: from which it is obvious that 
qJ(1-e)2(b-A)EL~::. With calculations, analogous to (A.2.44)-(A.2.46) in 
step 3 it can be shown that 

{(). h1yl/2('Pq(z h)EL- elyl,"+(1/z-">lyl 
't' Z' fl. x . 

Consequently, the operator having the h-anti-Wick symbol qJ qk can be estimated 
in norm by 0 (h"). 

Finally we will show that for small h 

(A.2.S9) 

and that therefore Qk ~ - Ch". For this note that 

(A.2.60) 

whereDh = {z: b(z,h) ~A+2h"}. Relation (A.2.60) is obvious, since (1-e(z,h)) 
x (1- qJ(z, h)) = 0 for z $Dh and 1 - e(z, h) = 1 for z EDh. Therefore in Dh 

(A.2.61) 

Now note, that in Dh 

from which it follows that 
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Consequently, the sum on the right hand side of (A.2.61) is estimated by 
Ch 1 -"=0(1), i.e. 

(1- q» qk = (1- q» (b - A) (1 + 0 (1» ~ O. 

Thus we have verified the requirements 1 °-5° of Proposition A.2.2 (the 
relations (A.2.38), (A.2.39), (A.2.52) and (A.2.53» and we may apply the 
proposition. Hence Theorem A.2.1 is proved. 0 

A.2.7 The behaviour of Nh ().) for V().) = + 00 

Theorem A.2.1 discusses the quasi-classical asymptotic behaviour for the 
eigenvalues A < Ao, where V(Ao) < + 00. The membership b(z) EHrem, 0 does 
not rule out the existence of A such that V(A) = + 00 (for symbols of Hr;,mo, 
mo > 0, this situation cannot occur). In this case, the following theorem serves 
as a supplement to Theorem A.2.1 ; 

Theorem A.2.3. Let b(z) satisfy the conditions of Theorem A.2.1 and 
V(A) = + 00. Then, for any Eo> 0 

lim h"Nh(A+Eo) = + 00. 
h~O 

Proof For each N we will construct a space Hil such that the inequality 

(A.2.62) 

holds and, for sufficiently small h 

(A.2.63) 

By the Glazman lemma, we obtain then from (A.2.62) and (A.2.63) the in
equality Nh ().. + ch") ~ h-" N which implies the result of the theorem. 

Introduce the set QA = {z: b(z) ~ A}. It is obvious from the definition of V(A), 
that V(A) = (21lr" mesQA, so that under the conditions of the theorem we have 
mesQ).= +00. 

Now let Q, be a family of open sets with smooth boundaries, satisfying the 
following conditions 

(1) Q, are bounded, Q,c Q).; 

(2) W. = (2n)-"mesQ,-+ + 00 as E-+ +0; 

(3) x E Q" implies inf I x - y I ~ E i. e. the distance between Q, and i3Q). 
is not less than E. Y EIR"\Q' 

Now construct a smoothed characteristic function of Q, (this is possible 
along the lines of the construction in 28.6). 
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Let 2h" < € (as always 0 < x < 1/2) and 1{!.(z, h) the characteristic 
function of the (h")-thickening of the set [] •. Put 

x.(z,h) = h- 2n " JIfI.(y,h) Xo«y-z)h-")dy, 

where Xo(v) EC;'(IR2 n), Xo~O, Xo(v)=O for Ivl~1 and Jxo(v)dv=1. It is 
obvious that 

supp x.e QA. (A.2.64) 

In addition, it is easily verified that I a: X.(z, h) I < Ch-"IYI, and from this estimate 
and the compactness of the support of x. we have 

x.(z,h) El:;'':c''o. (A.2.65) 

Let f/'h be an approximate spectral projection as constructed in A.2.6. 
Denote by F;, the operator with the h-anti-Wick symbol e(z,h), by S.,h the 
operator with the h-symbol x. (z, h) and by E., h the operator with the h-anti-Wick 
symbol x. (z, h). The following relations hold between the operators f/'h, F;" S.,h 

and E.,h: 

F;, ~ E.,h; 
8J E - R' S-oo,l-2>< 
@.,h- .,h- E Q," , 

(A.2.66) 

(A.2.67) 

(A.2.68) 

Here (A.2.66) and (A.2.68) follow from Lemma A.2.1, whereas (A.2.67) is 
obvious since X. ~ e due to (A.2.64). 

Now consider the operator S.,h' In the same way as in part 2 of the proof of 
Theorem A.2.1100king at the h-symbol of the operator S.~ h - S., h we obtain the 

(A.2,69) 

where w.. h is the volume of the (2h"}-thickening of the set Q£. But w.. h - W. 
= 0 (h") since the open set Q£ is bounded and has smooth boundary. Therefore 

(A.2.70) 

Similarly we obtain 

(A.2.71) 

From (A.2.70) and (A.2. 71), as in Lemmas 28.2 and 28.3, we may obtain an 
asymptotic expression for the number N of eigenvalues of S •. h belonging to 
[1/2,3/2] : 

(A.2.72) 
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The space spanned by the corresponding eigenvectors is denoted by JIt fl. Now 
we will prove that H fI = §hJlt fI satisfies (A.2.62) and (A.2.63). 

Let I] EJit fI, then for §h we have the estimate 

(A. 2.73) 

Indeed, using (A.2.66)-(A.2.68), we get 

(§hl],I]) = (F;.I], 1]) + (RI], 1]) ~ (E., hI], 1]) + (RI], 1]) 

= (If •. hI], 1]) + «R+R')I],I]) ~ (lj2+0(h 1 -"»(I],I]). 

By the Cauchy-Schwarz inequality we have 

from which, by (A.2.73), it follows that 

or 

(A.2.74) 

Now let ~ EHfI; then ~ = §hl], where I] EJitFI' We recall the inequality, 
obtained in proving Theorem A.2.1, 

(A.2.75) 

(which is independent of the behaviour of V (A». From (A.2.74) and (A.2.75) it 
follows that 

«A (h) - AI)~,~) = «A(h) - AI) §hl], §hl]) ~ Ch"(I], 1]) 

~ (4+ O(h 1 -"» (§hl], §hl]) Ch" = O(h") (~,~). 

Thus, on HfI, we have 

In addition, from (A.2.74), it follows that §h is injective on JIt fI, hence 

The proof of the theorem is now completed since the volume W. may be 
chosen as large as we like. 0 
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Hilbert-Schmidt and Trace Class Operators 

A.3.t Hilbert-Schmidt operators and the Hilbert-Schmidt norm 

Definition A.3.t. Let HI and H2 be two Hilbert spaces. A bounded linear 
operator K: HI -+ H2 is called a Hilbert-Schmidt operator if for some 
orthonormal basis {ea } in HI we have 

(A.3.1) 

The set of all Hilbert-Schmidt operators K: HI -+ H 2 is denoted by 
S2 (HI' H2), or S2 (H) in case HI = H2 = H. The following proposition describes 
the basic features of these operators. 

Proposition A.3.t. 1) The left hand side of(A.3.1) is independent of the choice 
of orthonormal basis {ea } (the square root of the left-hand side is called the 
Hilbert-Schmidt norm of the operator K and denoted by IIKII2). 

2) IIK*1I2=IIKII2. 
3) IIKII ~ IIKII2, where IIKII is the usual operator norm. 
4) every operator KES2(HI ,H2) is compact. 
5) if K is a compact self-adjoint operator in the Hilbert space H, then 

OCJ 

IIKII~ = L AJ, (A.3.2) 
j= I 

where AI, A2, ... are all the non-zero eigenvalues of K counting multiplicities. 
6) If {ea} is an orthonormal basis in HI' then the scalar product 

(A.3.3) 

with K, L ES2 (HI' H2) is independent of the choice of basis {ea } and defines on 
S2 (HI' H2) a Hilbert space structure with the corresponding norm II· 112. 

7) if $(Hj ), j = 1,2, is the algebra of all bounded operators in Hj , then 
S2(HI,H2) is a left ft'(H2)-module and a right ft'(HI)-module, moreover 

IIAKII2 ~ IIAIIIIKI12, A Eft'(H2), KES2(HI,H2), 

IIKBI12~ IIKII2I1BII, BEft'(HI)' KES2(HI,H2). 

(A. 3.4) 

(A.3.5) 
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S 2 (H) is in particular, a two-sided ideal in It' (H). 

Proof Let {/P} be an orthonormal basis in H 2 • Then 

L IIKeaI1 2= L I(Kea,/PW= L I(ea, K*/p) I = L IIK*/p1l2, (A.3.6) 
a, P a. P P 

from which 1) and 2) follow. If now x = 1: Xa ea E H 1 , then 

II Kx 112 = II~XaKear ~ (~IXaIIiKeaIlY 

~ (~IXaI2) (~IIKeaIl2) = IIKII~ IIx1I 2, 

from which 3) follows. To prove 4) we approximate K ES2 (Hl' H 2 ) by finite
dimensional operators (operators of finite rank). Namely, let e1 , e2 , •.• be all the 
vectors of an orthonormal basis {ea}, such that Kea * 0 ( it follows from (A.3.1) 
that this set is at most countable). Then clearly 

N 

ro 

Kx = L (X, e) Kej , 

j=l 

(A.3.7) 

and putting KNx= L (x,e)Kej we obtain IIK-KNII2~ IIK-KNII~ 
j=l 

OCJ 

= I II Kej 112 ---+ 0 as N ---+ 00 as required. 
j=N+ 1 

Statement 5) follows from 1) if we choose a basis of eigenvectors of K. 
Now we will prove 6). Note first that 

from which the convergence ofthe series (A.3.3) follows for K, L E S2 (HI, H2)' 
It is clear that (K, Kh = IIKII~ and hence (K, Lh is independent of the choice 
of basis. 

Note that the algebraic properties of the scalar product are clearly satisfied 
by (A.3.3) and to proof 6) it only remains to demonstrate the completeness of 
S2 (Hl' H 2 ) with respect to II . 112' For this it is most convenient to establish an 
isomorphism between S2 (Hl' H 2) and 12 (Ml X M 2), where M j is a set of 
cardinality dim Hj • The space 12 (M) for an arbitrary set M consists of the 
functions on M different from zero in at most countably many points and such 
that I I/(a) 12 < + 00. We may view this space as L2 (M) if Mhas the a-algebra 

generated by one-point sets with measure 1 for each one-point set. 
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The required isomorphism between S2 (HI' H 2) and F (MI x M 2) is 
established by associating with each K E S2 (HI' H 2) its matrix Kap = (Kea ,/P), 
where {ea}, {/P} are orthonormal bases in the spaces HI and H 2. The fact that 
this association is an isometric isomorphism is clear from the calculation (A.3.6). 

Now we will prove 7). Since II AKe, II ~ II A 1111 Ke, II, the estimate (A.3.4) and 
therefore the fact that S2 (HI' H 2 ) is a left Y (H2)-module, are clear from the 
definitions. To prove (A.3.5), guaranteeing the possibility of introducing on 
S2 (HI' H 2 ) a right Y (HI)-module structure pass to the adjoint operator: 

as required. 0 

Now let X and Y be two spaces with positive measures and HI = L2(Y), 
H2 = L2(X). In this situation, the operators K ES2 (HI' H 2 ) are described as 
follows 

Proposition A.3.2. The operators K ES2 (HI' H 2) are exactly those which can 
be represented as 

(Kf) (x) = J K (x, y) f(y) dy (A.3.8)-
Y 

with a kernel K (x, y) E L2 (X X Y). We then also have 

IIKII~ = JJ IK(x,y)1 2 dxdy (A.3.9) 
XxY 

(in these formulas dx and dy denote the measures on X and Y respectively). 

Proof Let {e,(y)} and {/P(x)} be orthonormal bases in L2(y) and L2(X), 

and K E S2 (HI, H2)' Note that {/P (x) ea (y) } constitutes a complete orthonormal 
basis in L2(XX Y) and if we put 

K(x,y) = I (Ke,,/p) /P(x) e,(y) , (A. 3.1 0) 
,.fJ 

then K(x,y) EL2(XX Y) and the operator of the form (A.3.8) coincides with K, 
since these operators both have the same matrices in the bases {e,} inHI and {/P} 
in H 2 • The Parseval identity guarantees (A.3.9). 

Conversely, if K(x,y) EL2(XX Y), then decomposing K(x,y) in the basis 

{/P(x) e,(y)}, we obtain 

K(x,y) = I CafJ/P(x) e,(y) , 
'.fJ 

But from this it is obvious that in the base {e,} and {/P}, the matrix of K is 
c,p = (Ke" /P) which implies that K ES2 (HI' H2)' 0 
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A.3.2 Trace class operators and the trace 

Definition A.3.2. Let H be a Hilbert space and S2 (H) the ideal of Hilbert
Schmidt operators on H. Let SI (H) = (S2 (H»2 be the two-sided ideal in ft> (H), 
the square of S2 (H), consisting of operators which can be written as finite sums 

(A.3.11) 

The ideal S I (H) is called the trace class and the elements of S I (H) are called trace 
class operators on H. 

Proposition A.3.3. 1) Let A E S I (H) and {ea} an orthonormal basis in H. 
Then 

(A.3.12) 
a 

and 

SpA = L(Aea,ea) (A.3.13) 

is independent of the choice of orthonormal basis {ea}. This expression is called the 
trace (Spur in German) of the operator A. The trace is a linear functional on 
SI (H) with Sp A ~ 0 for A ~ O. We may rewrite the scalar product (K, Lh using 
the trace, as 

(K, Lh = Sp(L* K), K, L ES2 (H) (A.3.14) 

2) If A is a compact self-adjoint operator with non-zero eigenvalues AI' ).2, ... 

(counting multiplicity), then A ESI (H) if and only if 
00 

L IAjl < +00. (A.3.1S) 
j=1 

and 
00 

SpA = L Aj . (A.3.16) 
j= I 

3) If A ESI (H), then 

SpA~ = SpA (A.3.17) 

4) If A ESI (H) and B Eft> (H), then 

Sp (AB) = Sp (BA) (A.3.18) 

Proof 1) if A is expressed in the form (A.3.11) then 

(Aea, ea) = L (Bj Cjea, ea) = L (Cjea, B/ ea), 
j j 
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which implies (A.3.i2) and 

I(Ae.,e.) = I(Cj,Bth, (A.3.i9) 
j 

from which it is obvious, in particular, that Sp A is independent of the choice of 
basis. 

(A.3.i4) is obvious. 

2) Now let A* = A. If A ES1 (H), condition (A.3.iS) and (A.3.i6) holds, 
because we may take for {e.} a basis of eigenvectors. Conversely, if (A.3.iS) 
holds and if {e.} is a basis of eigenvectors, Ae. = A. e., then defining Band C by 
the formulas 

Be. = V11J e. , Ceo = A.I V11J e., 

we see that B, C ES2 (H) and A = BC so that A ES1 (H). 

3) Let us verify (A.3.17). Writing A in the form (A.3.ii), we have 
A* = I Ct Bt and from (A.3.19) 

j 

which proves (A.3.i7). 

4) Finally we will verify (A.3.i8). First let B be unitary. Then AB and BA are 
unitarily equivalent since AB = B- 1 (BA)B. Hence (A.3.i8) for B unitary is a 
consequence of the independence of the trace on the choice of basis. To prove 
(A.3.18) in general, note that both parts of (A.3.i8) are linear in B and the 
following statement holds 

Lemma A.3.t. An arbitrary operator BE.2 (H) can be expressed as a linear 
combination of four unitary operators. 

Proof Since we may write 

B+B* 
Bi = B1 = --2-

B-B* 
B*-B ----

2 - 2 - 2i 

it suffices to verify that a self-adjoint operator may be expressed as a linear 
combination of two unitary ones. We may assume that II B II ~ 1. But then the 
desired expression takes the form 

B = 1 [B+q//-B2] + 1 [B-ql/-B2]. 

Therefore Lemma A.3.1 and hence Proposition A.3.3 are proved. 0 
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A.3.3 The polar decomposition of an operator 

Let Hi andH2 be Hilbert spaces. Recall that a bounded operator U: Hi-+H2 
is called a partial isometry if it maps isometrically (Ker U)l onto 1m U. It follows 
that 

U*U=E, UU*=F (A.3.20) 

where E is the orthogonal projection onto (Ker U)l in Hi and F is the orthogonal 
projection onto 1m U in H2 (in this case 1m U is a closed subspace of H2). If 
Ker U = 0 and 1m U = H2, then U is a unitary operator. 

Definition A.3.3. The polar decomposition of a bounded operator A: 
Hi-+H2 is the representation of A in the form 

A=US (A.3.21) 

where S is bounded self-adjoint and non-negative on Hi and U: Hi-+H2 is a 
partial isometry such that 

Ker U = Ker S = (1m S )1 (A.3.22) 

Proposition A.3.4. The polar decomposition of a bounded operator A: 
Hi -+ H2 exists and is unique. 

Sketch of the Proof From (A.3.21) we have A * = SU*, from which A * A 
= SU*US = SES. But ES = S by (A.3.22) so that 

A*A = S2 (A.3.23) 

and hence 

(A. 3.24) 

(v' A * A is defined by means of the spectral decomposition theorem). 
In fact let C= A* A and let Bbe any bounded selfadjoint operator in Hi such 

that B2 = C and B ~ O. We will prove that B = S, where S is given by (A.3.24). 
Being a function of C, S commutes with every operator commuting with C. In 
particular, BS = SB because BC = CB = B3. Hence 

(S-B) S(S-B) + (S-B) B(S-B) = (S2_B2) (S-B) = O. 

Both terms on the left-hand side are non-negative operators so both vanish. 
Hence so does their difference (S - B)3 and therefore (S - B)4 = O. This 
obviously implies S - B = 0 because S - B is selfadjoint. 

For the details concerning spectral and polar decompositions the reader may 
consult e.g. F. Riesz, B.Sz.-Nagy [1]. Further formula (A.3.21) defines U 
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uniquely in view of (A.3.22) thus proving the uniqueness of the polar 
decomposition. 

To show the existence construct S by the formula (A.3.24) and define U by 

Ux = 0 for xlImS 

U(Sx) = Ax for x EHI 

(A.3.25) 

(A.3.26) 

To verify the correctness of this definition, it suffices to show that if Sx = 0 then 
Ax = O. But this follows immediately from (A.3.23) together with 

IISxllz = (Sx,Sx) = (Szx,x) = (A*Ax,x) = (Ax,Ax) = IIAxll z, 

which shows that U is a partial isometry. 0 

Definition A.3.4. If A = US is the polar decomposition of A, we will write 
S= IAI. 

Proposition A.3.S. Let J be an arbitrary left ideal in the algebra 2' (H). Then 
A E J if and only if 1 AlE J. 

Proof This is clear since A = U IA I, U* A = IA I. 0 

Corollary A.3.1. We have 

A ESz (H) ¢> IA 1 ESz (H), 

A ES1 (H) ¢> IA 1 ES1 (H). 

By using the polar decomposition, we may, as a complement to 4) of Proposition 
A.3.3 prove 

Proposition A.3.6. If A, BESz(H), then 

Sp (AB) = Sp (BA) . 

Proof Using the identities 

4AB* = (A + B)(A + B)* - (A - B)(A - B)* 

+ i(A + iB) (A + iB)* - i(A - iB)(A - iB)*, 

4B*A = (A+B)*(A+B) - (A-B)*(A-B) 

+ i(A+iB)*(A+iB) - i(A-iB)*(A-iB), 

we see that it suffices to verify that 

Sp(AA*) = Sp(A*A), A ESz(H) (A.3.27) 

However, using the polar decomposition A = US, we see that S ES2 (H) and 
hence SZ ES1 (H) and since 

A*A=Sz, AA*=USzU*, 
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then in view of part 4) of Proposition A.3.3 

Sp(AA*) = Sp(US2U*) = Sp(U*US2) = SpS2 = Sp(A*A), 

as required. 0 

A.3.4 The trace class norm 

Definition A.3.S. The trace class norm of the operator A ESI (H) is the 
expression 

IIAlll = SpIAI· 

Proposition A.3.7. 1) The following inequalities hold 

IIAII2~IIAII1' AESl(H); 

IIBAlil ~ IIBIlIiA 111' A ES I (H), BE2 (H); 

IIABlll ~ IIA 111 IIBII, A ES I (H), BE2 (H); 

A ES I (H), 

as well as the relations 

IIA*lIl= IIAlIl' 

IIAlil = sup ISp(BA)I, 
BE!t'(H) 
IIBII;> 1 

A ES I (H); 

AESl(H). 

(A.3.28) 

(A.3.29) 

(A.3.30) 

(A.3.30') 

(A.3.31) 

(A.3.32) 

(A.3.33) 

2) The trace class norm defines a Banach space structure on Sl (H). 

Proof 1) a) Let us prove (A.3.29). Suppose A = US is the polar decom
position of A. Then 

IIAlil = IISlll = SpS, 

IIAII~ = Sp(A*A) = SpS2, 

so that (A.3.29) is equivalent to the inequality 

(A.3.34) 

(A.3.35) 

(A.3.36) 

which becames evident if we express Sp S2 and Sp S in terms of an eigenbasis 
of S. 

b) To prove (A.3.32) note that A* = SU*, AA* = US 2 U* and IA* 1= USU*, 
hence 

SpIA*1 = Sp(USU*) = Sp(U*US) = SpS= SpIAI. 
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c) Now we will prove (A.3.31). Suppose {ea} is an orthonormal basis of 
eigenvectors of S with eigenvalues Sa' 

(A.3.37) 

We have 

(A.3.38) 

d) To prove (A.3.30) let BA = VT be the polar decomposition of BA. Then 

IIBAIII = SpT= Sp(V*BA) = Sp(V*BUS). 

Now note that IIV* BUll ~ IIBII. The remaining argument is as in c). 

e) The estimate (A.3.30') follows from the estimate (A.3.30), since IIABIII 
= II(AB)*III= IIB*A*III· 

f) The relation (A.3.33) now readily follows from the estimate 

ISp(BA) I ~ IIBAIII ~ IIBIlIIAIII' 

where we have equality for B = U*. 

2) a) We will prove that the trace class norm 11·111 has the usual properties 
of a norm: 

IIA'+A"II I ~ IIA'III + IIA"II I , A', A"ESI(H); 

IIAAIII=IAIIIAIII' AESI(H), AE<C; 

IIAIII=O<=>A=O. 

Here only the first relation is non-trivial. To prove it we use (A.3.33) 

IIA' +A"II I = sup I SpB(A' +A") I = sup I Sp(BA') + Sp(BA") I 
IIBII~1 IIBII~1 

~ sup (ISp(BA')1 + ISp(BA") I) 
IIBII~1 

~ sup (ISp(B'A')I+ISp(B"A")I) = sup ISp(B'A')1 
IIB'II~I IIB'II:::;1 
11B"1I~1 

+ sup I Sp(B"A") 1= IIA'III + IIA"II I · 
IIB"II~1 

b) We want to verify the completeness of S I (H) in the norm II . III. Let 
n = 1,2, ... , An ESI (H) and IIAn - Am III -+0 as n, m-+ + 00. Then by (A.3.29) 
and part 6) of Proposition A.3.1 there exists an operator A E S2 (H) such that 
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lim II An - A liz = O. To verify that A E S I (H), let A = US be the polar decom-
n-> 00 

position of A and put Cn = U* An. Obviously 

lim IICn-Sllz = 0, n-> 00 

lim IICn-Cmll l = O. 
m, n'" 00 

(A.3.39) 

(A.3.40) 

Let {ea} be an orthonormal eigenbasis of S with eigenvalues Sa' From 
(A.3.39) it follows that 

Sa = (Sea, ea) = lim (Cnea, ea) . (A.3.41) 
n-> 00 

To prove that A ES I (H) it suffices to verify that l>a < + 00. This, in turn, 
follows from (A.3.41) and the estimate 

(A. 3.42) 
n a 

which holds in view of the inequality 

(A.3.43) 

which is easily derived from (A.3.33). 
It remains to prove that 

lim IIAn-A III = O. n-> 00 

Let e > 0 and select N so large that 

(A.3.44) 

Let us prove that 

(A.3.45) 

From (A.3.43) it follows that 

lim Sp (BAn) = Sp (BA) for any BE fe (H) . n-> 00 

But by (A.3.44), this gives 

I Sp (BAn) - Sp (BA) I ~ e for n ~ N, 

if IIBII ~ 1. It only remains to use (A.3.33) to arrive at the desired (A.3.45). 0 
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A.3.S Expressing the trace in terms of the operator kernel 

To express the trace in terms of the operator kernel is very simple from the 
formal point of view although difficult technically (it is difficult to justify an 
easily discovered formal formula). In this section, we introduce a formal scheme 
which should be justified in detail in each concrete case. 

Let X be a space with measure dx and K a trace class operator on LZ (X) with 
kernel K(x,y). We would like to write K in the form 

(A. 3.46) 

(this can for instance be done as follows: let K = US be the polar decomposition, 

and take L, = U yS, L z = yS). Denote by L, (x, y) and L z (x, y) the kernels of 
L, and L z . Formally, we have 

K (x, y) = S L, (x, z) L z (z, y) dz . (A.3.47) 

Since we may also write K = (Lf) * L z , where L! has kernel L!(x, y) 

= L, (y, x), then by Propositions A.3.3 (formula (A.3.14)) and A.3.2 justifying 

(A.3.48) 

(where Kj E Sz (Lz (X)), K/x, y) is the kernel of K) we have 

Sp K = (Lz, L!)z = S L, (y, x) L z (x,y) dx dy = S L, (x, z) L z (z, x) dz dx, (A.3.49) 

or 

SpK= SK(x,x)dx, (A.3.50) 

Actually, a justification of the formal calculations (A.3.47)-(A.3.50) is 
possible, for instance, when X is a compact manifold with boundary, dx is a 
measure on X determined by a positive smooth density and the kernel K(x,y) is 
continuous. An example of these kind of arguments based on the Mercer's 
theorem is carried out in § 13 in proving Theorem 13.2. 

Note the basic difficulty in the justification: the kernel K (x, y) is only defined 
up to a set of measure zero in X x X, but in (A.3.50) there enters the restriction of 
K(x, y) on the diagonal in X x X - which is a set of measure O. 

Another version of this kind of argument is to try and obtain the integral 
(A.3.50) as a limit of integrals on a small neighbourhood of the diagonal 
appropriately normalized (cf. Gohberg and Krein [1], chapter III, §10). We omit 
the details, since this is not used in the main text of this book. 

Exercise A.3.1. Show that 

IIABII, ~ IIAllzIIBI12' 
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Exercise A.3.2. Show that 

IIBII = sup I Sp(AB) I. 
A ESdH) 
IlAIl,::;;! 

Exercise A.3.3. Let I be a two-sided ideal in Yf(H) and assume 0 ~ A ~ B 
with BEl. Show that A E 1. 

Hint: Show that A 1/2 = CB 1/2, where C E ft' (H) and II C II ~ 1 . 



A Short Guide to the Literature 

Here we only mention the works most closely connected with the material 
covered in the book. We make no claims whatsoever on bibliographical 
completeness. I have tried as far as possible to avoid referring to short 
communications, so that mostly monographs and detailed papers or survey 
articles are referred to. 

Chapter I 

The concept of a pseudodifferential operator ('PDO) originated in the the
ory of multidimensional singular integral operators (cf. Michlin [1] and the 
references therein). Subsequently, singular integro-differential operators em
erged (cf. Agranovich [1] and references therein). The term "pseudo differential 
operator" was coined by Friedrichs and Lax [1]. In the present form 'PDO 
appeared basically in the work by Kohn and Nirenberg [1] (where the 'PDO 
which we call "classical" were considered). The symbol classes S;'o and the 
corresponding operator classes were introduced by Hormander [2]. The 
theorem on the invariance of the class of'PDO under changes of variables is also 
due to him (cf. Hormander [1], [2]). The proof of this theorem given here is based 
on ideas of Kuranishi. 

The Fourier integral operators (FlO) were introduced and systematically 
studied in Hormander [6]. The closely related concept of a canonical operator 
had been studied earlier by Maslov in connection with various asymptotic 
problems (cf. Maslov [1], [2], Maslov and Fedoryuk [1], and Duistermaat [3]). 
Hormander's work was also preceeded by the works of Eskin [1], [2], Egorov [1], 
[2], containing the ideas developed by Hormander. In the works by Niren
berg and Treves [1] and Egorov [1-4] 'PDO and the simplest FlO were used 
to study local solvability and regularity of solutions for general operators of 
principal type. 

In the exposition of the theory of oscillatory integrals, FlO, and in the 
construction of algebras of 'PDO, I basically follow Hormander [6]. 
Hypoellipticity in § 5, is presented in the spirit of Hormander [2]. In the same 
work there is given described here in detail a sketch of the theory of Sobolev 
spaces. More complete information on Sobolev spaces can be found in 
Hormander [7], Nikolskii [1], Sobolev [1], Besov, II'in and Nikolskii [1], Lions 
and Magenes [1]. An elementary presentation of the basic facts in the theory of 
'PDO can be found in the book by Wells [1]. 
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Note that what we call FlO are usually called local FlO. To avoid an 
excessive increase of the volume of the book, I deliberately left out the 
considerably more subtle and complex theory of global FlO. Global FlO or 
their equivalent, the canonical Maslov operator, are however necessary in a 
series of applications (for instance in the theory of hyperbolic equations or in 
spectral theory). Therefore, after the reader has acquired familiarity with local 
FlO and their applications, he has to learn about global FlO (this might be done 
for instance from the papers by H6rmander [6] and Duistermaat and 
H6rmander [1] or from the lectures of Duistermaat [1 D and Maslov canonical 
operator theory (for instance, from the book by Maslov and Fedoryuk [1 D. 

Concerning other questions of the theory of \}IDO and FlO, we refer the 
reader to the monographs by Friedrichs [1], Eskin [3], Taylor [1], Duistermaat 
[1], Treves [1], Grushin [2] and the papers by Agranovich [1], Kumano-go [1], 
[2], Beals and Fefferman [1], Beals [1], [2], [3], and Calderon [1]. 

Let us mention the important results found by Calderon and Vaillancourt [1] 
making more precise the boundedness theorem (for example they considered 
operators of the class L~.b with O~e=b<1) (cf. also Watanabe [1] and 
Kumano-go [3]). As for the action of \}IDO on V'-spaces, see Muramatu [1] 
and Illner [1], for the action on Holder classes, see Durand [1], and for the 
action on Gevrey classes and classes of analytic functions see Volevic [1], 
Du-Chateau and Treves [1], and Baouendi and Goulaouic [1]. 

Operators with complex phase-function were considered by Kucerenko [1], 
Miscenko, Sternin and Shatalov [1], and by Melin and Sjostrand [1]. 

Research on the index problem, for which \}IDO provided an essential tool, 
excerted a strong influence on the development of the theory \}IDO: cf. Atiyah 
and Singer [1], Fedosov [1], Atiyah, Bott and Patodi [1], Hormander [5], Atiyah 
[1], [2]. The technique of\PDO was used in the work by Atiyah and Bott [1] on 
the Lefschetz theorem. 

Important concrete applications of\}lDO to classical problems in the theory 
of partial differential equations can be found in Oleinik and Radkievic [1], and 
Maz'ya and Paneyah [1]. 

Chapter II 

The description of the structure of complex powers of elliptic operators in 
terms of\}lDO and the theorem on merom orphic continuation of the kernel of 
complex powers and of the (-function are due to Seeley [1], [2], [3]. Variations 
and generalizations of this theory can be found in Nagase and Shinkai [1], 
Hayakawa and Kumano-go [1], Kumano-go and Tsutsumi [1], Smagin [1], [2]. 
The Tauberian technique was first exploited in the classical work of Carleman 
[1]. A survey of several variants of the Tauberian technique is given in 
H6rmander [4]. The proof of the Ikehara Tauberian theorem given here, is close 
to the one given in the book by Lang [1]. 

Let us mention an important application of the results of Seeley, namely, the 
already mentioned work of Atiyah, Bott and Patodi [1], where a new 
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presentation of index theory is given. For a self-adjoint, non-semibounded 
operator A, Atiyah, Patodi and Singer [1] studied the function 

'1A (z) = L (sign A) IA)z. 
j 

We mention also the papers by Ray and Singer [1], [2] on analytic torsion 
close to this circle of ideas. 

The papers by Seeley [2], [3] also contain a study of the (-function for an 
operator corresponding to an elliptic boundary problem. We did not touch upon 
the spectral theory of boundary problems, for this the reader is referred to the 
monograph of Berezanskij [1]. 

The merom orphic continuation of the (-function is intimately related with 
the asymptotic behaviour of the trace of the resolvent (as). --+ (0) and with the 
asymptotic behaviour of the 8-function 

8(t)= Le-J./ as t--+ +0 

(cf. for instance Duistermaat and Guillemin [1 D. These questions are considered 
in the papers by Fujiwara [1] and Greiner [1]. 

Pseudodifferential systems, elliptic in the sense of Doug lis and Nirenberg are 
studied from this view point by Kozevnikov [1]. The asymptotic behaviour of 
N ().) as ). --+ + CIJ (without an estimate of the remainder) for hypo elliptic 
operators on a compact manifold with boundary was obtained by Moscatelli 
and Thomson [1]. 

A discussion of the theory of pseudo differential boundary problems with 
parameters can be found in Agranovich [2]. 

As we have noted in the main text, the theorem on the continuation of the 
(-function does not allow us to obtain any substantial information concerning 
the eigenvalues of non-self-adjoint operators. A survey of different questions of 
the spectral theory of non-selfadjoint differential and pseudodifferential can be 
found in Agranovich [3]. 

Chapter III 

Theorem 16.1., which is due to Hormander, is proved in [4]. Chapter III is an 
extensive presentation of this work, supplemented with an exposition of all the 
indispensable auxiliary facts. The work by Hormander [4] also contains some 
results bearing on the case of a non-compact manifold and some results on Riesz' 
means (concerning this, see also Hormander [3]). 

The description of the structure of the operator exp( -i t A) as an FlO, is 
essentially based on ideas from geometric optics (concerning this, see the book 
by Babic and Buldyrev [1]). These ideas were exploited by Lax [1] to construct 
asymptotic solutions and a parametrix of hyperbolic systems. Hormander [4] 
developed the method of Lax and arrived at the indicated description of the 
structure of the operator exp( -it A), which is essentially equivalent to a 
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description of the singularities ofthe fundamental solution of a pseudodifferen
tial hyperbolic equation. Note also that for large t, the operator exp( -i t A) 
already is a global FlO (cf. the literature guide to Chapter I.). The possibility of 
representing the exponential operator exp( -t A) and its kernel in terms of 
Feynman type integrals is studied in a series of works (cf. e.g. Maslov and 
Shishmarev [1]). 

Notice, that the method of obtaining the asymptotics behaviour of spectral 
function by considering a hyperbolic equation, was first employed by Levitan 
[1]. Let us also mention Levitan [2], which contains important supplements to 
the work of Hormander [4]. 

Further results on the asymptotic behaviour of eigenvalues, which connect 
this question with the geometry of the bicharacteristics, can be found in the 
papers of Colin de Verdi ere [1], Chazarain [1], Duistermaat [2], Weinstein [1], 
Shnirelman [1]. Note in particular the work by Duistermaat and Guillemin 
[1], where under certain assumptions, the second in the asymptotics of N(J...) 
as J... -+ 00 is obtained for an selfadjoint elliptic operator on a closed manifold. 
Using FlO Rozenblyum [1] got very sharp results on asymptotic behaviour of 
eigenvalues for operators on a circle. 

Concerning the geometry of the spectrum cf. also the book by Berger, 
Gauduchon and Mazet [1], an article by Molcanov [1] and interesting papers 
by Gilkey [1], [2], [3]. 

We did not touch on questions connected with the spectral asymptotics of 
non-smooth or degenerate operators and boundary problems. Regarding this, 
we refer the reader to the lectures of Birman and Solomyak [1] and their survey 
[2], where an extensive bibliography on spectral asymptotics can also be found. 
A survey of a number of important results concerning eigenfunction expansions 
can be found in the article by Alimov, II' in and Nikisin [1]. 

Chapter IV 

Essentially the theory of '1'00 in IR" emerged long ago in connection with 
mathematical questions of quantum mechanics. (cf. e.g. Berezin [1], Berezin and 
Shubin [1], [2]). Several versions of this theory can be found in the works of 
Rabinovic [1], Kumano-go [1], [2], Grusin [1], Shubin [1], [5], Beals [2], Feigin 
[2]. 

In Beals [3] and Shubin [5], there is discussed the structure of operators, which 
are functions of '1'00 in IR" with uniform (in x) estimates of the symbols 
(such as in Kumano-go [1]). 

Various questions, related to the Fredholm properties of '1'00 on non
compact manifolds, are considered by Cordes and McOwen [1]. Recently a 
number of papers have appeared devoted to '1'00 on nilpotent Lie groups (in 
particular on the Heisenberg group). Cf. e.g. Rothschild and Stein [1]. 

The construction given here of the algebra of '1'00 in IR n is close to the one in 
Shubin [1]. The concept of the anti-Wick symbol was introduced by Berezin [2] 
and is a variation of Friedrich's construction [1] (see also Kumano-go [1], [2]). 
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Concerning applications of the Wick and anti-Wick symbol and also more 
general symbols, see the papers by Berezin [2], [3], Berezin and Shubin [1], and 
Shubin [2], [3]. With the help of inequalities for Sp exp( -it A), the asymptotic 
behaviour of the eigenvalues is obtained in the work Berezin [2] (without 
remainder estimate). The results of §25 and §26 are essentially contained in the 
work of Shubin [1] (see also [4]) - The method of approximate spectral 
projection and all the results in §2S-30 are contained in Tulovskij and Shubin 
[1]. A significant modification of this method was offered by Feigin [1], [2]. 

We mention that the method of approximate spectral projection is essentially 
a variational method. Variational methods began with the classical work of H. 
Weyl [1], [2]. To find the asymptotic behaviour of eigenvalues for operators in 
IRn, one can also apply the Tauberian method, cf. the work by Kostyucenko [1]. 
A survey of all results on the spectral asymptotics for operators in IR n can be 
found in the already cited work by Birman and Solomyak [2]. 

Appendix 1 

On the basis of the earlier concept of singular support of a hyper function, 
due to Sato [1], H6rmander [6] introduced the concept of a wave-front for a 
distribution. The theorem on propagation of singularities in the form given here 
is due to Duistermaat and H6rmander [1] (see also H6rmander [S]). The proof 
given here is due to Tulovski. Another presentation can be found in the lectures 
by Nirenberg [1]. In a number oflater works more subtle questions connected to 
the propagation of wave fronts have been considered (see e.g. the work by Ivrii 
[1] and references therein). 

Appendix 2 

In this appendix the results of Roitburd [1] are presented. A closely related 
result but without an estimate of the remainder term was obtained by Berezin 
[2]. Other information on quasi-classical asymptotic formulae and references to 
the literature, can be found in the monograph by Maslov and Fedoryuk [1]. 
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