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Preface to the Second Edition

I had mixed feelings when I thought how I should prepare the book for
the second edition. It was clear to me that I had to correct all mistakes and
misprints that were found in the book during the life of the first edition. This
was easy to do because the mistakes were mostly minor and easy to correct,
and the misprints were not many.

It was more difficult to decide whether I should update the book (or at least
its bibliography) somehow. I decided that it did not need much of an updating.
The main value of any good mathematical book is that it teaches its reader
some language and some skills. It can not exhaust any substantial topic no
matter how hard the author tried.

Pseudodifferential operators became a language and a tool of analysis of
partial differential equations long ago. Therefore it is meaningless to try to
exhaust this topic. Here is an easy proof. As of July 3, 2000, MathSciNet
(the database of the American Mathematical Society) in a few seconds found
3695 sources, among them 363 books, during its search for “pseudodifferential
operator”. (The search also led to finding 963 sources for “pseudo-differential
operator” but I was unable to check how much the results of these two searches
intersected). This means that the corresponding words appear either in the title
or in the review published in Mathematical Reviews. On the other major topics
of the book the results were as follows:

Fourier Integral operator: 1022 hits (105 books),

Microlocal analysis: 500 hits (82 books),

Spectral asymptotic: 367 hits (56 books),

Eigenvalue asymptotic: 127 hits (21 books),

Pseudodifferential operator AND spectral theory: 142 hits (36 books).

Similar results were obtained by searching the Zentralblatt database.

And there were only 132 references (total) in the original book. So I de-
cided to quote here additionally only three books which I can not resist quoting
(in chronological order):

1. J. Briining, V. Guillemin (eds.), Mathematics Past and Present. Fourier
Integral Operators. Selected Classical Articles by J.J. Duistermaat, V.W.
Guillemin and L. Hormander., Springer-Verlag, 1994.

2. Yu. Safarov, D. Vassiliev, The Asymptotic Distribution of Eigenvalues of
Partial Differential Operators, Amer. Math. Soc., 1997.

3. V. 1vrii, Microlocal Analysis and Precise Spectral Asymptotics. Springer-
Verlag, 1998.



VI Preface to the Second Edition

These books fill what I felt was missing already in the first edition: treat-
ment of more advanced spectral asymptotics by more advanced microlocal
analysis (in particular, by Fourier Integral operators).

By the reasons quoted above I did not add anything to the old bibliography
at the end of the book, but I made the references more precise whenever this
was possible. In case of books I added some references to English translations
and also switched the references to the newest editions when I was aware of
the existence of such editions.

I made some clarifying changes to the text in some places where I felt these
changes to be warranted. I am very grateful to the readers of the book who
informed me about the places which need clarifying. Unfortunately, I did not
make the list of those readers and I beg forgiveness of those whom I do not
mention. However, I decided to mention Pablo Ramacher who was among the
most recent and most thorough readers. His comments helped me a lot.

I am also very grateful to Eugenia Soboleva for her selfless work which she
generously put in helping me with the proofreading of the second edition.

I hope that my book still has a chance to perform its main function: to teach
its readers beautiful and important mathematics.

March 21, 2001 Mikhail Shubin



Preface to the Russian Edition

The theory of pseudodifferential operators (abbreviated ¥DO) is compara-
tively young; in its modern form it was created in the mid-sixties. The progress
achieved with its help, however, has been so essential that without ¥DO
it would indeed be difficult to picture modern analysis and mathematical
physics. ¥DO are of particular importance in the study of elliptic equations.
Even the simplest operations on elliptic operators (e.g. taking the inverse or
the square root) lead out of the class of differential operators but will, un-
der reasonable assumptions, preserve the class of W¥DO. A significant role is
played by ¥DO in the index theory for elliptic operators, where ¥DO are
needed to extend the class of possible deformations of an operator. ¥DO ap-
pear naturally in the reduction to the boundary for any elliptic boundary prob-
lem. In this way, WDO arise not as an end-in-themselves, but as a powerful
and natural tool for the study of partial differential operators (first and fore-
most elliptic and hypoelliptic ones). In many cases, ¥DO allow us not only to
establish new theorems but also to have a fresh look at old ones and thereby
obtain simpler and more transparent formulations of already known facts. This
is, for instance, the case in the theory of Sobolev spaces.

A natural generalization of WDO are the Fourier integral operators (abbre-
viated FIO), the first version of which was the Maslov canonical operator. The
solution operator to the Cauchy problem for a hyperbolic operator provides
an example of a FIO. In this way, FIO play the same role in the theory of
hyperbolic equations as WDO play in the theory of elliptic equations.

One of the most significant areas for applications of W¥DO and FIO is the
spectral theory of elliptic operators. The possibility of describing the structure
of various nontrivial functions of an operator (resolvents, complex powers, ex-
ponents, approximate spectral projection) is of importance here. By means of
YDO and FIO one gets the theorem on analytic continuation of the ¢ -function
of an operator and a number of essential theorems on the asymptotic behaviour
of the eigenvalues.

This book contains a slightly elaborated and extended version of a course
on ¥DO and spectral theory which I gave at the Department of Mechanics
and Mathematics of Moscow State University. The aim of the course was a
complete presentation of the theory of ¥DO and FIO in connection with the
spectral theory of elliptic and hypoelliptic operators. I have therefore sought to
make the presentation accessible to students familiar with the standard Anal-
ysis course (including the elementary theory of distributions) and, at the same
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time, tried to lead the reader to the level of modern journal articles. All this
has required a fairly restrictive selection of the material, which was naturally
influenced by my personal interests.

The most essential material of an instructional educational nature is in
Chapter I and Appendix 1, which also uses theorems from §17 and §18 of
Chapter III (note that §17 is not based at all on any foregoing material and
§18 is based only on Chapter I). We unite all of this conventionally as the
first theme, which constitutes a self-contained introduction to the theory of
¥YDO and wave fronts of distributions. In my opinion, this theme is useful to
all mathematicians specializing in functional analysis and partial differential
equations.

Let me emphasize once more that the first theme can be studied indepen-
dently of the rest.

Chapters II and III constitute the second and third themes, respectively.
From Chapter II the reader will learn about the theory of complex powers and
the ¢-function of an elliptic operator. Apparently the theorem on the poles
of the ¢-function is one of the most remarkable applications of ¥DO. The
derivation of a rough form of the asymptotic behaviour of the eigenvalues
is also shown in this chapter. In Chapter III there is a more precise form of
the theorem on the asymptotic behaviour of the eigenvalues. This theorem
makes use of a number of essential facts from the theory of FIO, also presented
here. Let us note that it is in exactly this way that further essential progress in
spectral theory was achieved, using, however, a more complete theory of FIO
which falls outside the framework of this book (see the section “Short Guide
to the Literature”).

Finally, Chapter IV together with Appendices 2 and 3 constitute the final
(fourth) theme. (Appendix 3 contains auxiliary material from functional anal-
ysis which is used in Chapter IV and is singled out in an appendix only for
convenience. Advanced readers or those familiar with the material need not
look at Appendix 3 or may use it only for reference, whereas it is advisable
for a beginner to read it through.) Here we present the theory of ¥DO in IR"
which arises in connection with some mathematical questions in quantum me-
chanics.

It is necessary to say a few words about the exercises and problems in this
book. The exercises, inserted into the text, are closely connected with it and
are an integral part of the text. As a rule the results in these exercises are used
in what follows. All these results are readily verified and are not proved in the
text only because it is easier to understand them by yourself than to simply
read them through. The problems are usually more difficult than the exercises
and are not used in the text although they develop the basic material in useful
directions. The problems can be used to check your understanding of what you
have read and solving them is useful for a better assimilation of concepts and
methods. It is, however, hardly worthwhile solving all the problems one after
another, since this might strongly slow down the reading of the book. At a first
reading the reader should probably solve those problems which seem of most
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interest to him. In the problems, as well as in the basic text, apart from the
already presented material, we do not use any information falling outside the
framework of an ordinary university course.

I hope that this book will be useful for beginners as well as for the more
experienced mathematicians who wish to familiarize themselves quickly with
¥YDO and their important applications and also to all who use or take an inter-
est in spectral theory.

In conclusion, I would like to thank V.I1. Bezyaev, T.E. Bogorodskaya, T.I.
Girya, A.L. Gusev, V.Yu. Kiselev, S.M. Kozlov, M.D. Missarov and A.G.
Sergeev who helped to record and perfect the lectures; V.N. Tulovskij who
communicated to me his proof of the theorem on propagation of singularities
and allowed me to include it in this book; V.L. Roitburd who on my request
has written Appendix 2; V.Ya. Ivrii and V.P. Palamodov who have read the
manuscript through and made a number of useful comments and also all those
who have in any way helped me in the work.

M.A. Shubin
Interdependence of the parts of the book
Chapter I
1
L
§18 Chapter [1 Chapter IV Appendix 3

l l l

§17 | Appendix 1 Chapter III Appendix 2
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There are so many books on pseudodifferential operators (which was not
the case when the Russian edition of this book appeared) that one naturally
questions the need for one more. I hope, nevertheless, that this book can be
useful because of its selfcontained approach aimed directly at the spectral the-
ory applications. In addition it contains some ideas which have not been de-
scribed in any other monograph in English. (I should mention, for instance,
the approximate spectral projection method which is a universal method of
investigating the asymptotic behaviour of the spectrum — see Chapter IV and
also a review paper of Levendorskii in Acta Applicandae Mathematicae *.)

Certainly many new developments have taken place since the Russian edi-
tion of the book appeared. The most important ones can be found in the mono-
graphs listed below.

September 3, 1985 M. A. Shubin
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Chapter I
Foundations of ¥DO Theory

§1. Oscillatory Integrals

1.1 The Fourier transformation. The simplest example of an oscillatory
integral is provided by the Fourier transform of a function (or distribution) of
tempered growth. Let S (IR") be the Schwartz space of functions u (x) e C*(IR")
all derivatives of which decrease faster than any power of | x| as | x| — o0, i.e. for
arbitrary o, 8

sup |x* (0% u) (x)| < + . (1.1)
xeR"
As usual x here stands for (x,, ..., x,); « and f§ are multiindices, so for example
a=(ay,..., 0, and o, is a non-negative integer; x* = x{'... x5 0 = (0, ...,0,)
0 o018 )
Where 81=a, 8ﬂ=5f10£"=m Wlth |ﬁ| :BI + ... +ﬂ" The

left hand sides of (1.1) define a collection of semi-norms in S (IR") which turn
S(IR") into a Fréchet space.
The Fourier transform of a function u(x) € S(IR") is given by the formula

(Fu) (&) = 4(&) = fe ™ Cu(x)dx, (1.2)

where £eR”, x - E=x¢+ ...+ x,&,, i= 1/: and dx=dx,...dx, is
Lebesgue measure on IR". The integral in (1.2) is taken over the whole of IR",
which will always be the case unless a domain of integration is explicitly
indicated.

It is well known that the operator F defines a linear topological isomorphism

F:S(R") - S (IR"

and that the inverse operator (the inverse Fourier transformation) is given by the
inversion formula

(F 1) (x) = u(x) = fe™ fa(g)de, (1.3)
where d¢ = 2n)™"d¢, ... d&

M.A. Shubin et al., Pseudodifferential Operators and Spectral Theory

© Springer-Verlag Berlin Heidelberg 2001



2 Chapter I. Foundations of ¥DO Theory

Now we are going to show how to extend the Fourier transformation (1.2) to
continuous functions u(x) satisfying the following condition: there exist
constants C > 0 and N > 0 such that

lu(x)| < CHY, (1.4

where (x) stands for (1 + [x[)!/? and |x|* = x? + ... + x2. We will define
u(€) € §' (IR"), the dual space of S(IR"), i.e. the space of all continuous linear
functionals on S(IR"). So we want to regularize the integral

yy = [fe™™ tu(x) y () dxdt, (1.5)

with w () e S(IR™), an integral which we will also regard as the value of the
functional # at the element y (&). If u(x) € S(IR") it is obvious that

Kyy = [a@) v d,

since in this case (1.5) converges absolutely.

We give two equivalent means of regularizing (1.5) both differing from the
well-known method, based on the Parseval identity, and both extendable to
considerably more general situations.

First method. Put D; = % (%, D=(D,,...,D,)and Dy =(1+D?+ ...
+ D3)*'? (usually we will make usje of {(D)* with k a non negative even number so
that (D)* becomes a differential operator). The vector D will also be used to
indicate differentiation in the £ variable. To avoid confusion we then denote by
D, the just described vector D and by D, the same vector but acting on the &
variable. We have

e = (x)TH(Dke ™ E, (1.6)

To begin with, suppose that u(x) € S(IR"). Then inserting this expression for
e~ ™ % in (1.5) and integrating by parts, we obtain

Ky = [fe™™ tu(x)<x) "D w () dx dE. (1.7)

This integral is now defined not just for u (x) € S (IR") or for absolutely integrable
u(x). Indeed, if u (x) satisfies (1.4) and k£ > N + n, then (1.7) converges absolutely
and we can consider it as the required regularization of (1.5).

Exercise 1.1. Verify that formula (1.7) defines a continuous linear functional
ieS'(R" for k> N+ n.

Second method. Suppose that ¢ (x)e C§¥(IR") (the space of compactly
supported infinitely differentiable functions on IR") and that ¢ (0) = 1. Put
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L=[fe ™ p(ex) u(x) y() dxdf, ¢>0. (1.8)

This integral converges absolutely. It turns out that there is a limit /=lim /,
e-0

independent of the choice of ¢ (x). Indeed, carrying out in (1.8) the same
integration by parts as before, we get

I=[fe ™ g (ex) u(x){x) *(D* w (&) dxde,

and if k > N + n, by the Lebesgue dominated convergence theorem, the limit as
¢—0 exist, and equals {4, y> as defined by formula (1.7).

Exercise 1.2. Verify that for different values of k formula (1.7) leads to the
same functional 4.

1.2 Definition of the oscillatory integral and its regularization. Now consider
an integral more general than (1.5)

Ip(au) = [[e®*? a(x,0) u(x)dxdb. 1.9

Here 0 cIRY, xe X, where X is an open set in IR" and u(x)e C?(X), i.e.
u(x) € C*(X) and there is a compact set K X such that u|,. , = 0. To describe
a(x,0) and & (x, 6) we introduce a number of definitions.

Definition 1.1. Let m, ¢ and 6 be real numbers; 0 <0 <1,0=< 9 £ 1. The
class ST ; (X x IR") consists of functions a (x, 8) € C* (X x IR") such that for any
multi-indices «, f and any compact set K< X a constant C, j x exists for which

103082 (x,0)| S C, 5. ((OY™ eI 2101, (1.10)

where x e K and 0 e R".

Instead of ST, (X x RY) we simply write S™ (X x RY). Furthermore, instead
of S7' 5 (X x IRY) we will sometimes simply write Sgs- Wealsoput S~ = s

Definition 1.2. We call @ (x, 0) a phase function if ® (x,0) € C* (X x (IR¥\ 0)),
& (x,0) is real valued and positively homogeneous of degree 1 in 6 (i.e.
@ (x,10) = t®(x,0) for any xe X, 0 eIR¥ and ¢ > 0) and @ (x, §) does not have
critical points for 6 # 0, i.e. @, 4(x, 0) * 0 for xe X and 6 e R\ 0 (&, , denotes
the gradient of @ (x, #) with respect to x and 6).

Definition 1.3. An integral (1.9) in which a(x, §) € S35 (X x RY) and & (x, §)
is a phase function is called an oscillatory integral.

Exercise 1.3. Verify that if a(x,0)eSy;(XxIRY) then 050%a(x,06)

eSy; el (X xRY). Verify also that for b(x,0) €Sy, (X xIRY) we have
a(x,0) - b(x,0)eS";™ (X xIRY).
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Our immediate goal is the regularization of the oscillatory integral (1.9)
which is not, generally speaking, absolutely convergent.

The following lemma allows us to write down an equality of the type (1.6) in
the general case.

Lemma 1.1. There exists on X xIR¥, an operator
L= Za(x 9) + Zb(x 0) +c(x 0), (1.11)

such that a;(x,0)eS° (X xIRY), b, (x,0)eS~ (X xR"), c(x,0) eS™' (X xR")
and defining the formal adjoint ‘L by the formula

n

‘Lu(x,0) = Z — (a u)y— Y 4 (byu) + cu, (1.12)

k=1 0x, X
we have
Lel® = '? (1.13)

Exercise 1.4. The operator ‘L may also be written in the form (1.11) with
other a;, b, and c, still belonging to the same classes as stated in the definition of
L.

Exercise 1.5. Show that if M ='L then L ='M.
Proof of Lemma 1.1. We have

0 icb_la_(pnb iia)_-a¢ i®
T 0x, 0x,

0 ¢ 26,

J

N n
(Z z@?WV% 3 - M)5)€¢

i=1 =1 axk 0x,

o 1
> 1 =-—e"p,
14

where y (x, 0) e C* (X x (IRV\ 0)) is positively homogeneous of degree —2 in 6.
Therefore

therefore

0P |*

+Z

<Zm2

ji=1

6xk

0P 0 "0 0 . .
—7 2 i o _ ,id
P

=1 k=1 0%, 0x,

and it remains only to get rid of the singularity at § = 0. Let x () € CZ(IR"),
x(0) =1 for |6| < L and y(0) =0 for |6] > %. Let us put

0P 0 z

- 21 07 37 o= Y i-0 v ot
- = l( X)ll/ 60 60 = X W ax X
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It is obvious that Me'® = ¢'® and one can easily verify that all the coefficients of
the operator M have the required properties. The same is also true for L = ‘M (cf.
Exercise 1.4). It only remains to note that 'L = M in view of Exercise 1.5.  [J

We will achieve the regularization of (1.9) using two different methods.

First method. To begin with, let m < — N so that (1.9) converges absolutely.
Utilizing (1.13) write in this integral (‘'L)* ¢'® instead of ¢'® and integrate by parts
k times. In this way we get

Ip(au) = [[®*? [¥(a(x,0) u(x))dxdf. (1.14)

Exercise 1.6. Verify that this operation is well defined.

Putting s = min (g, 1 —§), from Exercise 1.3 we deduce L*(au)eS;;*
(XxIRM).If o > 0and § < 1 (so that s > 0), which will always be assumed in the
sequel, then formula (1.14) already allows us to define the integral Iy (au) for an
arbitrary m, if we select k so that m — ks < — N. This, of course, makes the
integral (1.14) absolutely convergent.

Exercise 1.7. Demonstrate that for fixed a and &, I, (au) considered as a
functional of u e C{ (X), defines a distribution on X i.e. is an element of 2’ (X)
(the dual of C (X)).

Second method. Picking y(0) e CE(IRY) such that x(f) =1 in a neigh-
bourhood of 0 eIR¥, we put

Ip  (au) = [[ x(c0) eV a(x,0) u(x)dxdf, ¢>0. (1.15)
Integrating by parts as in the first method, we get
Iy (au) = [[e®=9 L*(x(e0) a(x,0) u(x)) dx db . (1.16)

Note that
[03x(e6) | < C,<6>~ ", (1.17)

where C, does not depend on ¢ for 0 < ¢ < 1.

Exercise 1.8. Verify the estimate (1.17).
We now see that using the dominated convergence theorem we may pass to
the limit as ¢ — 0in (1.16). In this way lim I, , (au) exists and is equal to I, (au) in
£-0

the sense of formula (1.14). In particular, it follows that the integral (1.14) does
not depend on k (provided k is sufficiently large) and also that the limit of (1.15)
as ¢ — 0 is independent of the choice of cut-off function y.

In what follows we will more or less freely deal with oscillatory integrals,
assuming that they could be regularized by one of the above methods.
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Exercise 1.9. Prove that the oscillatory integral I,(au), for fixed @
and u, represents a continuous linear functional on the Fréchet space
S75(XxR"). Here the topology is given by the semi-norms equal to the
infima of the constants C, , . in (1.10). Verify that the closure of §~* (X x R")
in S7,(X xR") contains S} ;(X xR") for arbitrary m’' < m. In this way we
can view regularization as an extension by continuity of a linear functional.

1.3 Smoothness of distributions defined by oscillatory integrals. Let us intro-
duce the following important notation

Co = {(x,0): xeX, 0 IRM\0, & (x,0) =0} (1.18)

()
Here &, denotes the gradient of ¢ w.r.t. 8, i.e. the vector i— ey a—(p .
00, a0y

The set C,p is a conic subset of X x (IR¥\0), i.e. together with the point
(xg,0,) it also contains all points of the form (x,, t8,) with ¢ > 0.
Denoting the natural projection by 7: X x (IR¥\0) - X we set

S¢=7IC¢, R¢=X\S¢. (1.19)

Consider the distribution 4 € 2'(X) defined via the oscillatory integral
Iy (au) by

(A, u) = Ip(au).

Theorem 1.1. sing supp A C S, or, equivalently, A € C®(R,;).

Proof. The assertion of the theorem is equivalent to the existence of
A (x) e C*(Ry) such that if ue Cg’(Ry) then

Ip(au) = [ A(x) u(x)dx, (1.20)
Put
A(x) = [ =9 a(x,0)db. (1.21)

The last integral is itself an oscillatory integral for x € Ry, depending on the
parameter x. Differentiating w. r.t this parameter we obtain integrals of the same
kind. Essentially here we speak about differentiating w.r.t the parameter of a
convergent integral obtained from (1.21) by the above transformation.
Therefore 4 (x) e C*(R,) and (1.20) is straightforward. [

Theorem 1.2. IfaeS] ;(X xIR") and a = 0 in a conical neighbourhood of Cq,
then Ae C*(X).

Proof. Similar to the proof of Theorem 1.1, in that, since &; (x, 6) + 0 on the
support of a(x, ), it amounts to a study of the oscillatory integral (1.21). [J
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Definition 1.4. The phase function ¢ (x,0) is called non-degenerate if the

. ) 0d . .

differentials d (@ ,j=1, ..., N are all linearly independent on C, or,
J

equivalently rank || @4, @, || = N (in detail,

I IR A
00,06, 00,00y 00,0x,  6,0x,

[ Poo Pocll = [l oo ).
3o G ey ’o

0400, 80,00y 0y0x, 00y0x,

Proposition 1.1. If @ is a non-degenerate phase function, then Cg is an
n-dimensional submanifold in X x (R™\ 0).

Proof. A trivial consequence of the implicit function theorem. O

The following theorem makes theorem 1.2 more precise in the case of a
non-degenerate phase function.

Theorem 1.3. Let ® be non-degenerate and let a€ST (X xIRY) with the
condition:

“either 9 > d and ¢ + 6 =1 or ¢ > 6 and ® is linear in 6 (1.22).

Then

1) if a has a zero on Cg of infinite order then A(x)e C*(X);

2) ifa=00nCgy,wecanfindbeSy ;@ (X xIRY) such that I (au) = I, (bu) for
arbitrary ue C§ (X).

Remark. Thelatter statement shows, thatifa| ., =0, then the distribution 4
may also be defined by substituting b (x, §) for a(x, 0) and keeping the phase
function. The function b (x, §) has a lower degree of growth in 8, meaning higher
regularity 4 (x).

To prove theorem 1.3 we need a series of lemmas. The first of these concerns
the change of variables in functions of the class S ;. First of all note, that it
makes sense to say that a(x, §) € S’ ;(U), where U is an arbitrary region in R"
xIR¥ which is conic with respect to 6. Indeed, we will write that
a(x,0)eSy;(U), if for any compact set K< (R"x S¥ ") nU (S¥ ' is the unit
sphere in IR") and for arbitrary multi-indices «, 8 there is a constant C, 5 x> 0
such that (1.10) is satisfied for (x,0/|0|) € K and |6| = 1. Now assume, that we
are given a diffeomorphism from a conical region V C IR™ x IR onto the
conical region UcR"x RY, commuting with the natural action of the
multiplicative group IR, of positive numbers, i.e. the diffeomorphism maps a
point (y,n) eV to a point (x(y,n), 8(y,n)) €U, where x(y,7n) and 0(y,n) are
positively homogeneous in # of degree 0 and 1 respectively. Change the variables
in a(x,0):

b(y,n) = a(x(y,n),0(y,m). (1.23)
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Lemma 1.2. Let a(x,¢) €Sy ;(U) and assume that one of the following three
assumptions hold:
a) g+06=1;
b) ¢ + 6 = 1 and x = x(y) does not depend on n;
¢) x=x(y), ¢=¢m).
Then b(y,n) €Sy (V).

Proof. Differentiating b (y, ), we obtain from (1.23)

% v iy, 1.24

611, ; 6m ; ® 6n (1.24)
0x,

= b‘” + b 1.25

R oL (12

0 0 06;
where b9 = % (x(»,1), (7, 1), byy = 22 (x(y,m), 8(y,m)). The functions 52,
00, 0x, on

1
Ox, 00, 0x; .. .
—, —L and —— are positively homogeneous in # of degrees 0, —1, 1 and 0
on By, T gy, T POSTVEY ROMOS 1o

respectively. They belong therefore to the classes S, S™!, S* and S° respectively
(in V). Estimating the derivatives of a, we easily obtain for |n|=1

b n
—| < Cellnl™~e+In|m*°7h), <y, ~>GK
lam x(In Inl ) il
0

m— m 7’[
éCK(Inl q+1+|’,’| +6)a <y’ |r’_|>EKa

r

‘@

where K is some compact setin V. If m+6 —1<m— g,i.e. ¢+ 6 =1, then

ob 0
from (1.24) we obtain the estimate %l S2C (™ If x = x(y) then 6—:"
1 1

= 0 and we obtain this estimate from (1.24) without assuming ¢ + 6 £ 1.
Similarly, if m — ¢ + 1 < m + §,1.e. ¢ + 6 = 1, it follows from (1.25) that
ob

<2C (my™*°, and the same estimate is obtained without the extra

assumption ¢ + 0 = 1 if 0 = 0 (n).

The necessary estimates of the form (1.10) are thus verified when |« + | < 1
for an arbitrary function a(x, 8) € S7';(U) in all the three cases a), b), c). Now,
inductively, assume that the estimates hold for |o¢+ f| <k and arbitrary
a8y s(U). In particular, we then obtain that for the derivatives of order <k of
b and b;, the estimates of the classes S™~¢(V) and S™*° (V) respectively hold.
But thcn we obtain from (1.24), (1.25) by analogous reasoning, that these
estimates hold for derivatives of order <(k+1) and for arbitrary
aeSy;U). U
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Lemma 1.3 (variant of the Hadamard lemma). Let the functions ®,(x,0), ...
@, (x, 0) belong to C*(U), with U a conic region in R" x (R¥\0), and assume that
they are positively homogeneous in 0 of degree 0; d®,, ..., db, being linearly
independent at points of the set

C={(x,0)eU, &;(x,0)=0,j=1, ..., k}.

Let aeS; ;(U), al.=0and ¢ + 6 = 1. Then there is a representation
k
a= Z ad;, (1.26)

where a;(x,0) €Sy ;°(U),j =1, ..., k. If the function a(x,0) here has a zero of
infinite order on C, then all the functions a;(x,0),j =1, ..., k, also have a zero of
infinite order on C.

Proof. Note, that (1.26) is a linear equation in the functions ;. It is therefore
enough to be able to find the functions a; locally (for (x, 6/|61) close to (x,,
00/16,1), (x4, 6,) being a fixed point in U). A global solution could then be glued
together in U using a partition of the unity in U consisting of functions
homogeneous of degree zero supported in conical regions in which the required
functions a; have already been constructed.

Thuslet (x,, 0,) € U.If (x4, 0,) ¢ C, there exists a j, such that @; (x,, 0,) + 0.
For (x,0/]6]) close to (x4, 8,/|0,|) we can put a;, = a/®;, and a; = 0 for j + j, . It
remains to verify the existence of a;locally for (x, 6/|61) close to (x,,0,/|0, () € C.

By the implicit function theorem @, ..., @, can be supplemented by functions
b, ..., D(I=N+n—1), homogeneous of degree zero, to form a local
coordinate system @,, ..., &, on the manifold {(x,6): |#|=1} in a

neighbourhood of (x,,0,/|60,1). Therefore, the transformation
(x,0) > (D, (x,0), ..., D(x,0),]0]) e R' xR,

is a diffeomorphism of a conical neighbourhood of the ray (x,, t6,) onto the
conical set BxIR, , B a ball in IR', and the image of C has the form {(®, |6]):
¢, =...=@,=0}. Let us now consider the symbol

a(®,10)) = a(x(2,101), 0(2,101)),

obtained from a (x, #) under this diffeomorphism. It follows from lemma 1.2 that
a(o,100)eS; ;(BxIR,). But then, by the Newton-Leibnitz formula

k 1
d((p’lel): Z (pj jd(j)(t(pla ceey t¢k’ (pk+1’ sy (Dl’ Iel)dt’
j=1 0

where 4 = m®(BxIR,). It remains to carry out the inverse

a
—€eS
0o, ¢
substitution.
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Proof of Theorem 1.3. Assume that ¢ + 6 = 1. Then, if a|C¢=0, by

. 0P .
lemma 1.3 with ¢; = —, we may represent a(x, 6) in the form

60]-’
N
Z al 60 a; eS"‘*"(U) (1.27)
0P .0 . .
However, taking into account that (ﬁ e =—j 30 e'®, we obtain, on inte-
grating by parts, that i

Iy (au) = i I, (l 9a, )

da; .
But (3—0’ €Sy ;27 ¢(U), demonstrating the second statement of the theorem. From

this prjoof it is obvious, that if a(x, #) had a zero of infinite order in C, then
b(x,0) could also be chosen to possess this property. So in proving the first
statement we can assume a (x, 0) €S, ¥ (X x R"), M aslarge as desired. But then
the integral (1.21) converges absolutely and uniformly in x as do the integrals
obtained from it by differentiation of degree </(M), where /(M) — + o0 as

M — + 0, and hence the smoothness of 4 (x) follows. [J

Exercise 1.10. Prove theorem 1.3 when the second of the assumptions (1.22)
is fulfilled (@ (x, 0) linear in 0).

Hint. 1t amounts to applying of part ¢) of Lemma 1.2.

§2. Fourier Integral Operators (Preliminaries)

2.1 Definition of the Fourier integral operator and its kernel. Let X, Y be
open sets in IR"x and IR"r. Consider the expression

Au(x) = [e'®=>D a(x, y,0) u(y) dydf, @.1)

where u(y) e CE(Y), xe X, ®(x,y,0) is a phase function on X x ¥ xIR" and
a(x,y,0)eS™(Xx Y xR") with ¢>0and § <1.
Under these conditions the integral

CAu,vy = [[[ 22D a(x,p,0) u(y) v(x) dxdydd, veCP(X), (2.2)
is defined and is an ordinary oscillatory integral. It is easily verified, that for

fixed u the expression (2.2) viewed as a functional of v, defines a distribution
Au € &'(X). Therefore a linear operator
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4: CP(Y) > ' (X), 2.3)

is defined. We will formally write it as the integral (2.1)

Definition 2.1. An operator A4 of the form (2.1) is called a Fourier integral
operator (abbreviated FIO) with phase function ¢ (x, y, 0).

Definition 2.2. The distribution K, e 2'(X x Y) defined by the oscillatory
integral

Kgowy = [[[e®*"D a(x,p,0) w(x, y)dxdydd, we(XxY), (2.4)

is called the kernel of A.

Proposition 2.1. a) K,e C*(Rg,) where Rp={(x,y): ®4(x,»,0) %0,
6 e R¥\ 0}
b) If a(x, y,0) = 0 in a conical neighbourhood of the set

C(D = {(X, ya 0) (pé(xa .V’ 9) = 0} ’
then K,e C*(Xx Y).
Proof. This follows immediately from Theorems 1.1 and 1.2. O

In view of the obvious formula
<Ausv> =<KA5 u(y)v(x)), MGCSO(Y), UGC&O(X), (25)

the kernel K, is the usual kernel of 4 in the sense of L. Schwartz.

Exercise 2.1. Verify that the kernel K, is uniquely defined by the map (2.3)
given by A and, conversely, uniquely determines this map.

Remark. One can easily construct two different pairs consisting of a phase
function and a function a(x, y, 8), both pairs giving rise to the same operator
(2.3). Furthermore, as a rule, a(x, y, 6) is not uniquely defined by 4, even with
the same phase function &.

2.2 Operator phase functions.

Definition 2.3. A phase function @ (x,y,0) is called an operator phase
Sunction, if the following two conditions are fulfilled;

D, 4(x,,0) 0 for 6%0, xeX, yeY (2.6)
D, 5(x,»,0)+0 for 0 +0 xeX, yeY 2.7

The role of these two conditions is brought out by the following two
propositions.
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Proposition 2.2. Under condition (2.6) the operator (2.1) continuously maps
Cy(Y) into C*(X).

Proof. The integral (2.1) is already defined as an oscillatory integral,
depending on the parameter x. Its x- derivatives are of the same form. [J

In what follows, £’ (Y) denotes the dual to C*(Y) (and is the set of compactly
supported distributions in Y).

Proposition 2.3. Under condition (2.7) the map (2.3) defined via (2.1) extends
by continuity to a continuous map:

4: &(Y) - 9'(X). (2.8)

Here the continuity is understood in the sense of the weak topologies on
&' (Y) and &'(X). Recall that the weak topology on the space E’, consist-
ing of the linear functionals on E, is defined by the family of semi-norms
p.(f) = I{f, )|, where f € E'and ¢ is any fixed element of E.

Proof. The transposed operator
‘Av(y) = ([ a(x,y,0) v(x)dxdb (2.9
defines, by proposition 2.2, a map
'A: CP(X) - C*(Y).

Thus, defining 4 by
(Au,v) = u,"Av)

with ue &'(Y), ve CL(X) we are done. [J

Exercise 2.2. Verify that the operator 4, defined in this way, is indeed an
extension by continuity of the map (2.3).

So an FIO A with operator phase function ¢ maps C{°(Y) into C*(X) and
é'(Y) into 2'(X). We now study the change in the singular support under the
action of 4.

Let us settle a notation. If X and Y are two sets, S a subset of X x Yand Ka
subset of Y, then S K is the subset of X consisting of the points x € X, for which
there exists a y € K with (x, y) €S.

Theorem 2.1. The following inclusion holds:
sing supp Au < Sg° sing supp u (2.10)

where Sg = (X x Y)\ Ry, consists of those pairs (x,y) for which there exists a
6 e RN\ 0 with ®;(x, y,0) = 0.
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Proof. Splitting u € &"(Y) into a sum of a function in C§°(Y) and a dis-
tribution with the support in a neighbourhood of singsuppu we see that it
suffices to demonstrate that sing supp (Au) C Se o supp u.

Let K = suppu and K’ an arbitrary compact set in X not intersecting Sp0 K
and so that K’ X K C R,. Since R, is open, there are open neighbourhoods £2
and £2' of the compact sets K and K’ respectively such that 2’ x 2 C R,. So
it suffices to verify that Au € C*(£2’). But this is evident, since K,(x, y) €
C*®(Rs) and in particular, K,4(x,y) € C®(£2' x 2). O

Exercise 2.3. Verify the statement used above that if K, € C®°(Q' x Q) then
A maps &'(Q) into C*(Q").

2.3 Example 1: The Cauchy problem for the wave equation. Consider the
Cauchy problem

0%
s2=4f (2.11)

flico=0 flig=u() 212)

where xeR", f=f(¢,x), 4 is the Laplacian in x and — to begin with —
u(x)e Cy (R"). We solve (2.11)—(2.12) with the help of the Fourier trans-
formation in x, putting

F@&)=[e ™ f(t,y)dy.

In this way, we have

a’-f_ 5
PR G (X9 (2.13)
flico=0,  J'lzo=1(®) (2.14)

where (&) is the Fourier transform of u(x).
From (2.13) and (2.14) we easily obtain that

sint|&|

&1

f@. &) =u)
Therefore by the Fourier inversion formula
f@.x) = [f % E| " sine|§lu(y)dyds
= [ €55 Qilg]) (@ — e (y)dyds.

We would like to split the last integral into two parts separating the exponents
¢"¥ and e~**¢!. However this would lead to a singularity at £ = 0. To avoid
this singularity, let us again use a cut-off function x = x(§) € C°(IR"), such
that x (¢) = 1 near 0 and split the integral into three parts:

f@, x)= fit,x)— f-@t,x) +r(, x)
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fi(t, x) = [feleEE1(1 _ 5 (£))2iE])dyd,
fo(t,x) = [[elevEml _ y(£)Qilg) " dydE,
r(t, x) = [[“ 7 x €)|g] sint|€|dydE.

It is clear e.g. that f. = Au where A is a FIO with the phase function
D@, x,y,6) = (x—y) &+t

This is an operator phase function. Since P, = x —y +t&/|§|, we have

Co ={(t,x,y,8) 1y —x =t&/|E]},
S ={(t,x,y): |x —y? =12}

The second term f_(¢, x) can be similarly presented as f- = Au, where A is
a FIO with the phase function

D(t,x,y,6) = (x—y)-&—tlE]

It has the same set S5 = S,.

For the third term we clearly have r = Ru where R has a C® Schwartz
kernel Kr(t, x, y). In fact, it is easy to see that any such operator R can be
also presented as a FIO in the form (2.1) with an arbitrary choice of the phase
function and with an amplitude a € ™. (See also Exercise 2.4 below.)

So we see that each of the terms f.(z, x), 7(t, x) can be presented as a
result of the application of a FIO to the initial condition u. In particular, by
Proposition 2.3 we can define f (¢, x) for any u € €'(IR"). By Theorem 2.1 the
singularities of f (¢, x) belong to

{(t, x) : Ju € singsuppu, |x — y|* =12}

This is the classical statement that singularities propagate with the speed of
light (which is equal to 1 in this case). In particular, the singularities of the
fundamental solution (the case u(y) = §(y)) belong to the light cone |x|*> =
12,

Note also that if we fix the time fo, then @, (x,y,§) = P (t, x, y, &) re-
mains an operator phase function. Therefore the mapping of u into f(ty, -) is
a FI10.

2.4 Example 2: Linear differential operators. Let

A=Y a,(x)D", (2.16)

lajsm

0
where a, (x) e C*(X), X an open set in R" and D =i"! ox’

Using the Fourier transformation, we may write

D*u(x) = [[ &% Su(y)dyde,
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hence
Au(x) = ([ 5g (x,&) u(y)dy de, (2.17)
where g ,(x,&) = Y a,(x) & is called the symbol of the operator A. Since
la| S m

0 4(x,8) eS™(X xIR"), we see from (2.17) that 4 is an FIO with phase function
P (x,y,8)=(x—-y)¢.

2.5 Example 3: Pseudodifferential operators

Definition 2.4. Let ny = ny = N = n and X = Y. Then an FIO with the
phase function @ (x, y, §) = (x — y) - £ is called a pseudodifferential operator
(brleﬂy ¥DO). The class of DO, defined by a(x, y, &) € Sos(X x X xIR")
is denoted by L7 (X) or simply by L7,. We also put L" instead of LY, and
write L™ = yia "

As demonstrated in the previous example, any linear partial differential op-
erator is a ¥DO.

We now display the properties of WDO, which follow from the already
shown properties of FIO.

Proposition 2.4. Let A be a ¥DO given by the formula
Au(x) = [’ %a(x, y, ) u(y)dyd¢ (2.18)
Let K, be the kernel of A and A the diagonal in X x X.

Then a) K,e C*((XxX)\4));
b) A defines continuous linear maps

A: CEX)— C*(X) (2.19)
A EX)-2'(X) (2.20)

and
sing supp Au  sing supp u 2.21)

for ue &' (X) (this property is called pseudolocality of A);

c) if the function a(x,y,{) €Sy (X x X x IR") vanishes for x=y and é < g
then we can write A in the form (2.18) with b(x,y,&)eSr;@ (X x X xR")
instead of a(x, y, ).

d) if a(x,y,&) has a zero of infinite order at x =y, then K, € C*(X x X) and
the operator A transforms &' (X) into C*(X).

Proof. Left to the reader as an exercise. [

Exercise 2.4. Let K(x, y) € C®(X x X) and A4 be an operator from C§* (X) to
C>(X) with kernel K (x, y). Prove that A is a DO and that in the represen-
tation (2.18) we can take a(x, y, &) € S7°(X x X x IR").

Hint. If y (&) e CP (R"), x (&) 2 0 and [ (&) d¢ =1 we can take
a(x,y,8)=e "“TEK(x, ) 1(8).
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Note that linear differential operators enjoy the locality property:
supp (Au) c suppu, ueCg(X) (2.22)

The following exercise shows that in general this is not the case for ¥DO.

Exercise 2.5. Show that an operator whose kernel K(x, y) e C*(X x X) is
not identically zero does not obey (2.22)

Problem 2.1. Given a linear continuous operator

A: C2(X) > C&(X)

satisfying (2.22), then for any subdomain X' < X, whose closure is compact in X,
we get a linear differential operator by restricting 4 to C3° (X”).

Hint. Verify that for any fixed x, € X the linear functional given by (4 ¢) (x,)
for ¢ € C$(X), is supported at x, and thus can be written as

(A@) (o) = Y a, (x0) (D*9) (xo) -

Derive from the continuity of A4 the local finiteness of this sum and the
smoothness (in x,) of the coefficients a, (x,).

§3. The Algebra of Pseudodifferential Operators
and Their Symbols

3.1 Properly supported pseudodifferential operators. Let A be a ¥DO with
kernel K , and let supp K, denote the support of K, (the smallest closed subset
Z C X x X such that K|(xxxnz = 0. Consider the canonical projections
Iy, IT, : supp K4 — X, obtained by restricting the corresponding projections
of the direct product X x X. Recall that a continuous map f : M — N
between topological spaces M, N is called proper if for any compact K C N
the inverse image f~!(K) is a compact in M.

Definition 3.1. A WDO A is called properly supported if both projections
ITy, IT, . supp K, — X are proper maps.

Example. Linear differential operators (cf. item 2.4) are properly supported
YDO (in this case supp K, = 4, the diagonal in X x X).

Proposition 3.1. Let A be a properly supported ¥YDO. Then A defines a
map

A: CP(X) - CP(X) 3.1

which extends to continuous maps

A: EX) > &X) (3.2)
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A: C*°X)->C*X) (3.3)
A1 27X)> 2'(X) (34
Proof. For u(y)e Cg?(X), we have the inclusion

supp (Au) = (supp K,) o (supp u) (3.5)

Indeed, if veCP(X) is such that suppvn(supp K,)o (suppu) =0, then
supp K, nsupp [u(») v(x)] =0 and therefore {Au,v)=0 by (2.5). Further-
more, from the obvious formula

(supp K,,) o (supp u) = I1, (supp K,NIT; ' (supp u)) (3.6)

it follows that the right hand side of (3.5) is compact, so that Au e C$°(X), which
establishes (3.1). The continuity is easily verified.

Since the kernel K., of the transposed operator ' A is obtained from K, by
permuting x and y (more precisely: (K4, w(x, y)) = (K4, w(y, x))): then'A
also defines a continuous map

‘A: CP(X) - CP(X),

which yields (3.4) by duality. Finally, as is easily verified, formula (3.5) also
applies for u € & (X) which gives (3.2). Since this can also be said of ‘4, by duality
we obtain (3.3). U

Exercise 3.1. Let X, be a sequence of open subsets of X such that
1) XjcX,c...cX,c...,
2) Ux,=Xx

3) the closure X, of X, in X is compact in X.

Let y,(x)e CP(X) and x,(x)=1 for xeX,. Finally let 4 be a properly
supported ¥DO in X. Show that if ue 2'(X), then for arbitrary m one can
find N = N (m) such that the distribution [4 (x,u)]|,_does not depend on n for
n = N. In this way, we can define Aue 2'(X) by the formula

Au = lim 4 (x,u) (3.7)

n- o

Show that this definition coincides with the one given above in proving
Proposition 3.1.

Exercise 3.2. Show that all the three definitions of a properly supported
YDO given above, coincide on C®(X):

a) by duality from the map'4: §'(X) - &' (X);

b) as a restriction to C*(X) of the map 4: 2'(X) —» 2'(X), constructed by
duality from the map‘4: CQ(X) —» C&(X),

¢) by formula (3.7).
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Exercise 3.3. Verify that the operator 4 is properly supported if and only
if '4 is.

The importance of properly supported ¥DO lies in the fact that they form
an algebra where multiplication is the ordinary multiplication (composition)
of operators. This statement will be proved below, but presently it is clear from
Proposition 3.1, that the composition 4 0A; of two properly supported ¥DO is
defined as a linear continuous operator on the spaces C¢° (X), &' (X), C*(X) or
2'(X).

Note that it is not immediately clear that (2.18) which determines 4 via
a(x, y, &) applies for ue 2’'(X) (or even for ue C*(X)). This is not surprising,
since the function a (x, y, £) is not uniquely defined by the operator 4. However,
utilizing this arbitrariness, we can make a better choice of a(x, y, £).

Definition 3.2. We say that a function a(x, y, &) is properly supported if both
the projections

HI’HZ: Suppx,ya(xayaé)_*X

are proper maps (by supp, , a(x, y, £) we denote the closure of the projection of
supp a(x, y, &) in X x X).
In this case the corresponding ¥DO A is obviously properly supported.

Proposition 3.2. If A € L} ;(X) is properly supported, then A can be put in the
form (2.18) with a(x, y, &) € Syt 5(X x X x R") being properly supported.

Proof. Let x(x,y)eC®(XxX), x(x,y)=1 in a neighborhood of supp K,
and let both projections IT,, IT,: supp y — X be proper (verify that such a
function exists!). Then, substituting in (2.18) x (x, y) a(x, y, &) for a(x, y, &), the
kernel K, and hence the operator are unchanged while x(x,y) a(x,y,{) is
properly supported. [

Note thatif a (x, y, &) is properly supported then (2.18), viewed as an iterated
integral, is defined for u e C® (X).

Proposition 3.3. Any ¥YDO A can be written in the form A = Ao + A
where Ay is a properly supported ¥YDO and A, has kernel K,, € C*(X x X).

Proof. Given 4 in the form (2.18) with function a (x, y, £), we obtain 4, and
A by substituting ao (x, ,£) = x(x,») a(x, y,¢) and a, (x,y, &) = (1 —x(x, )
a(x,y, &) respectively instead of a(x,y,&) where x(x,y) equals 1 in a
neighborhood of the diagonal 4 = X x X and is such that both projections I1,,
I1,: supp x — X are proper. [

Proposition 3.4. Let A be a ¥DO. Then A is properly supported if and only
if the following two conditions are fulfilled

a) for any compact set K< X we can find a compact set K, < X such that
supp u < K implies supp (Au) = Ki;

b) the same condition with ‘A instead of A.
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Proof. The necessity of a) and b) is clear from (3.5). So we are left with
proving the sufficiency. For instance let us verify that the projection II,:
supp K, — X is a proper map. Let K be an arbitrary compact set in X. Find a
compact set K, as in a) and verify that I1;'(K)nsuppK,c K, xK. If
(x0, yo) € (X\K1) x K and if a smooth function w(x, y) = u(y)v(x) is sup-
ported in a neighbourhood of this point, then by a) (K4, w) = 0. By linearity
and continuity this then also holds for an arbitrary function w € C°(X x X),

supported in a neighbourhood of (xg, yo) from which the desired inclusion
follows. O

3.2 The symbol of a properly supported pseudodifferential operator. We
would like to define the symbol of an arbitrary properly supported ¥DO A by
analogy with example 2 of §2.

Let us point out that in this example the following holds

0,4, 8) =e_ (x) deg(x), (3.8)

where e, (x) = ™%, and that the right hand side of this expression also makes
sense for a properly supported ¥DO.

Definition 3.3. Let A be a properly supported ¥DO. Its symbol (or complete
symbol) is the function o4 (x, §) on X x IR", defined by (3.8).

Since e;(x) is an infinitely differentiable function of ¢ with values in C* (X))
and 4 is a continuous linear operator on C*(X), it is clear that ¢ ,(x, &) is also an
infinitely differentiable function of ¢ taking values in C*(X), therefore
6,(x,5)eC°(XxIR").

Writing u (x) € C5°(X) as the inverse Fourier transform

u(x) = fe(x) () d¢
where the integral converges in the topology of C®(X), we see that

Au(x) = [e™ fo,(x, &) #()d¢ (3.9
or
Au(x) = [ 4 g (x, &) u(y) dy de (3.10)

(where the integral is viewed as an iterated one), which coincides with the
corresponding formulas for differential operators.

As is demonstrated by the formulas (3.8) and (3.9), the symbol o ,(x, )
defines 4 and is also defined by 4.

Below it will be shown that if 4 €L} ;(X) and é < g, then we will have
04(x,&) €Sy 5(X x IR") implying that (3.10) can also be viewed as an oscillatory
integral ((3.9) is absolutely convergent).

Remark. If A is an arbitrary ¥DO on X, then its symbol is frequently
defined as the symbol oy, (x, &) of a properly supported ¥DO A, on X such
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that A-Ael™. In this case the symbol is not uniquely defined although,
as will be seen later, any two such symbols differ by a function r (x, £) € S™.

3.3 Asymptotic expansions in S;’ ;

Definition 3.4. Let a;(x,0)eSys(XxRY), j=1, 2, ..., m—>—00 as
j— + o0, and let a(x,0) e C* (X x RY). We will write

o

a(x,0) ~ Z a;(x,0),

j=1
if for any integer r = 2 we have

r—1

a(x,0) = Y a;(x,0)eSgX xRY), (3.11)

ji=1

where 771, = max m;.
jzr

From this it follows, in particular, that a € S/ (X x R").

Proposition 3.5. For a given sequence a;€Sg;(X % RY), j=1,2, ..., with
m;— — 00 as j— + o, we can always find a function a(x,6) such that
a~y a.
j=1

a0
If, furthermore, another function a’ has the same property a'~ Y a;, then
a—a' eS™ (X xR"). =

ji=1
Proof. The second assertion is obvious so let us prove the first one. We can
assume that m, > m, > my > ... . In fact, if this is not the case, we can always
achieve this situation by a simple rearrangement and gathering the terms

of the same order. Let X = () X, where X; are open subsets of X and such
Jj=1

that K; = X;cc X (i.e. K; is compact in X). Let ¢ () & C*(R") and

{0 for |6]S1)2
"’(9)_{1 for [6]21.

Put
a(x,0) = i (p(?) a;(x,0), (3.12)

where ; approaches + oo so quickly as j— + o0 that

it o (7)o

for xeK,and |a|+ |B| + ! < j. Let us show that this is always possible.

< 2—j<9>mr.—e)dl+5lﬂl (3.13)
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o)

where C, does not depend on ¢, that is for ¢ (6/7) and ¢ 2 1 we have uniform in ¢
estimates of class S ;. In fact

First observe that

<O, iz, (3.14)

59(0/0) = (G50) 0/ - 71" and  [6] =1 =2]0]

for 6 e supp 03¢ (0/1), from which we obtain (3.14).
Further from (3.14) follows that

10502 [@ (6/1) a;(x, 0)] | < C;<OH™~eI+eIAl,
if xeK,, t>1and |a|+ |f]|+ /<. Let us observe now that
(@)™l +OIBl < g (gym,-~elal 5161
for (§)™-+~™i = 1/¢. Thus, by the choice of ¢; we can achieve (3.13) which implies

the convergence of (3.12), together with all its derivatives, uniformly on any
compact K c X, and for arbitrary fixed «, § and / we obtain

27Oy el xeK, fal+ B+ IS

azaﬁ[ S 00/t ax, 0)]

j=r+1

Thus, a — ) a;€ S7(X x RY) and since a, € ST (X x R"), we obtain from this
i=1

r—1
thata — ) a;eSr;(X xIRY), as required. [
i=1

oo

The following proposition facilitates the verification of a ~ ). a;.
j=1
Proposition 3.6. Let a;€Sg;(X % RY), m;— —o0 as j—+oo and let
ae C*(XxIRY) so that for each compact K = X and arbitrary multi-indices o, B
there exist constants p = u (o, B, K) and C = C(a, B, K) with

18208 a(x,0)| < C(O>, xeK. (3.15)

Furthermore assume that for any compact K< X, there exist numbers
w=mwK), I=1, 2, ..., and constants C;= C\(K), such that p,— — 0 as
[— + o0 and the following estimate holds

a(x,@)—lilaj(xﬁ) < C(Om, xeK. (3.16)

ji=1
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Thena ~ ), a;.

j=1

The point of this proposition is that instead of (3.11) one has to verify the
remainder estimates only for the functions themselves (and not for all the
derivatives) provided the fairly weak estimates (3.15) are guaranteed.

The proof is based on the following well-known lemma.

Lemma 3.1. Let afunction f(t) have continuous derivatives f'(t) and f" (t) for
te[—1,1]. Put A;= sup |fUV(1)],j=0,2. Then

-151s5t

|f/(0)|* < 44,4(4o+4,). (3.17)
Proof. By the intermediate value theorem we have
1) = f )] £ 4,11].

Therefore [f'()| 2 1/2|f'(0)] for A,|t|=1/2|f'(0)], [t|=1. Denoting

. {Ile(q)l } we have | f/(1)| = 1/2|f'(0)| for t€[—4, 4]. We have
2

24,2 1/(&) /(- )1 2 24 L0,

and consequently,

A 24,
TR (O =24 max{v,(o)l, 1}.

This implies that either | f'(0)| £ 1}4(0)' or | f'(0)| £ 24,, i.e. either | f'(0)|?
<4A4,A4,0r|f'(0)|> < 443 and thus 3.17). O

Lemma 3.2. Let K, and K, be two compact sets inIR? so that K, < Int K, (the
set of interior points in K,). Then there exists a constant C > 0, such that for any
smooth function f on a neighborhood of K, , the following estimate holds

<Sup Y 1D f(x) l)

xeK, |a|=1
= Csup | f(x)] (SHII: [f(¥)| + sup ’ IZ_ZZ ID“f(X)I)- (3.18)

Proof. Immediate from Lemma 3.1. [
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Proof of Proposition 3.6. Letb ~ Y a;(such a function exists by Proposition
j=1
3.5). Putting d(x,0) = a(x,0) — b(x,0), we have for every compact set K< X
the estimate

10208 d(x,0)| < C(O>, xekK, (3.19)
where C and yx depend on «, §, K, and additionally

ld(x,0)| < C, 0>, xeKk, (3.20)

where C, = C,(K).
Set dy(x, &) = d(x,0+¢). Then

agag dﬂ('xa é) |.§=O = agajﬂt d(xa 6) )

and applying Lemma 3.2 with K, = Kx 0, K, = Kx {|¢| <1}, where K is a
compact set in X such that Int K > K, we obtain from (3.20)

(Sup > Iaéaﬁd(x,9)|>§C<9>_’(<9>"+<9>")~

xeK fo|+|BS1

Here r can be choosen arbitrarily, 4 depends on «, B8, K and C depends on
a, B, K and also on r. Thus it follows that for x € K and |a| + [B] < 1
the function 879°d(x, 8) — 0 faster than any power of (#) as |§| — +o00. By
induction we obtain the same for arbitrary «, 8 which givesd € S™®(X x IR")
asrequired. O

3.4 An expression for the symbol of a properly supported ¥DO in terms of
a(x,y,&). In this and the following subsections we assume that é < g.

Theorem 3.1. Let A be a properly supported WDO given by (2.18), and
0 ,(x, &) its symbol. Then

1
9, (%, §)~Za—!52D§‘a(x,y,€)|y=x, (3.21)

where the asymptotic sum runs over all multi-indices o.

Remark. Obviously d3D3a(x,y,&)|,-,eSr;@ 21 and the asymptotic
sum (3.21) is therefore meaningful.

Proof of Theorem 3.1. Observing that by Proposition 3.2 we can assume that
a(x, y, &) is properly supported, then (3.8), defining the symbol ¢, (x, £), can be
rewritten in the form

0,(x,8) = [[a(x,y,0) e 002 8dyqq, (3.22)
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Here the integral is regarded as an iterated one and the integral makes sense since
for each fixed x, the y-integration is over a compact set. In this way, if Kis a
compact set in X, the oscillatory integral given by (3.22) depends on a parameter
x e K. Making the change of variables z=y — x, n=0—¢ to simplify the
exponent we obtain

0,68 =[[a(x,x+2z,¢+n) e 1dzdy. (3.23)

Expanding a(x, x + z, £ +1) in  near # =0, using the Taylor formula, we
have:

a(,x+z,E+m =Y Balgx+z,)nal+ry(x,x+2¢En), (3.24)

la|SN~1
where

N a 1
ry(x,x+z,¢&n) = Z a”'l j(l—t)N_laga(x,x+z,é+tt1)dt. (3.25)
Yo

la|=N

Now observe that
ffosa(x,x+z,&)nre = "dzdn = 0D a(x,x+2,8)|,-0 (3.26)

by Fourier inversion formula, this gives the finite terms in formula (3.21).
We would now like to use Proposition 3.6. Let us first get a rough estimate
for g ,(x, &) of the type (3.15). For this we rewrite (3.23) by integrating by parts

o, (6, &) = [fe Dy a(x, x+z,E+n)  (ny~Vdzdy, (3.27)

where v is even and non-negative.

Taking into account the inequality <{&+#n) < 2<{&) - {(n), we obtain
from (3.27) that 33080, (x,&)| S CKEP*® [<nyP~ =9V dy, where p = max
(m—ogla]l+6]B],0), xeK and v is sufficiently large. This gives the desired
estimates for the derivatives of g, (x, &) of the type (3.15). It remains to estimate
the remainder term.

Inserting in (3.23) the expression ry (formula (3.25)) for a (x, x + z, £ +n) and
interchanging the orders of integration over ¢ and over z, 1, we see that it is
necessary to have a uniform in ¢ € (0, 1] and x € K estimate of the integral

R, (x,&)=([e " "n*0ta(x,x+z E+tn)dzdn,
where |o| = N. Integrating by parts, we obtain
R, (x,&)=[[e 0D a(x,x+z,E+ ) dzdy. (3.28)
Let us decompose the integral in (3.28) into two parts:

R,,=R,,+R;,, (3.29)
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where in R, , the integration is over the set {(z,#): |n| < |£]/2} and in R, it is
over the complement to this set. Note that if |n| < |£|/2 then [E|/2 = |E+ 1]
<3|¢| and moreover in R, , the volume of the domain of integration for 7
doesn’t exceed C|&|", hence

| Ry (x,&)| < C(EHmmlem N, (3.30)

where C doesn’t depend on ¢ and .
Let us next estimate R, ,. Integrating by parts and using the formula

DYy eTE =T,

where v is an even and non-negative number, we see that R, , can be written as a
finite sum of terms of the form

Rop (x,&)= [ e "y 0¢D: P a(x,x+z ¢+ tn)dzdn, (3.31)
Inl> €112

where |B| <v. For |n|2|£|/2 the expression 0:D;**a(x,x+z,E+1n) is
estimated in absolute value by C{n)>™ @~ 9¥*% for m — (9 — ) N+ év = 0 and
by C for m —(¢—0) N+ év <0 (in both cases C is independent of £, n and ¢).
Taking into account the factor () ~* we obtain from (3.31) that for sufficiently
large v

|Ra,ﬂ.l('x7 é)l é C j <n>l’"‘(1“§)vd’7’

Inl>1€1/2

where p = max {m—(¢—9)N,0}. If p — (1—-0)v+n+1<0, it follows that
|Ra,g,;(X, é)l é C<é>pv(1*&)v+n+l "'<'1>—n*1 dr’ § C<€>p—(lf¢5)v+n+l’ (332)

where C doesn’t depend on x, ¢ and ¢ (for xe K, te(0,1]). Selecting a large
enough v we can make the exponent in (3.32) p — (1—9)v + n + 1 negative and
as large as we like in absolute value.

Taking (3.29) and (3.30) into account, we obtain for R, , the estimate

|R, (X, Q)| = CEHMN xeK, 1e(0,1],

which ensures the applicability of Proposition 3.6 and so finishes the proof. [

Remark. The method of proof of Theorem 3.1 is very typical for the theory
of ¥DO and the corresponding arguments are to be found in all versions of
this theory independently of the mode of presentation. We therefore strongly
urge the reader to carefully study the proof of this key theorem.
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3.5 The symbol of the transposed operator and the dual symbol. The
transposed operator ‘4 is defined by

{Au,v) = {u,'Av) (3.33)
for any u, ve C{° (X), where
Cuyvy = fu(x)v(x)dx.

Therefore, if 4 € L] ;(X) is given by (2.18), where a(x, y,{) € S ;(X xR"),
the transpose ‘A is given by

‘Av(y) = ([ ¢ a(x, p,8) v(x)dxde,
which with the change of variable n = — ¢ gives
Av(y) = [[e'V 7 % a(x,y, —n) v(x)dxdy. (3.34)

It is therefore obvious that ‘4 € L7 ;(X).

Theorem 3.2. Let A be a properly supported WDO with symbol o ,(x, &)
and o, (x, &) the symbol of ' A, then

a4(x,8) ~ 3, 0 D% 0, (x, = &)fa!. (3.35)
Proof. Note that ‘4 is also properly supported (cf. Exercise 3.3). Also,

instead of a (x, y,&) in the formula (2.18), giving the action of 4, we can
substitute g , (x, &) (cf. (3.10)). Then (3.34) can be written

Av(x) = [[e'* %0, (y, =) v(y)dyd¢ (3.36)

This is the standard form for a WDO (cf. (2.18)) where the role of a(x, y, £) is
played by g ,(y, —&). It remains only to apply Theorem 3.1. [

Exercise 3.4. Let A be a properly supported ¥DO with symbol o,(x, &)
and let A* be the “adjoint” operator, defined by

(Au,v) = (u, A*v), u, ve C (X)

where (u,v) = f u(x)tT(f) dx. Prove that A* is a properly supported ¥DO
whose symbol satisfies

040 (x,8) ~ ¥ 02 D% 0 ,(x, &) o! (3.37)

where the bar denotes the complex conjugation.
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We now introduce the dual symbol by setting
G,(x,8) =04(x,—¢) (3.38)

Taking into account that ‘(4) = 4, we obtain from (3.36) that 4 can be
expressed via the dual symbol 6 ,(x, £) in the form

Au(x) = [[e' 786 (y, &) u(y)dyde
or

(A () = [e™ 4 5,(», O u(y)dy (3.39)

Theorem 3.3. The dual symbol 6 ,(x, &) is connected with the symbol ¢ ,(x, £)
via the asymptotic formula

G4(x,8) ~ 2 (=8 Dio,(x, O)a! (3.40)

Proof. Obvious from (3.38) and (3.35). [J

3.6 The composition formula

Theorem 3.4. Let A and B be two properly supported ¥DO in a domain
X < R"and let their symbols be o ((x, &) and a5 (x, &) respectively. The composition
C = B A is then a properly supported¥YDO, whose symbol satisfies the relation

054 (x,8) ~ Y, 0% 05(x,8) D30, (x, ol (3.41)

Proof. Using formula (3.39) for 4 and applying formula (3.9) to B, we
obtain

Cu(x) = [[e'*" Cay(x,8) 6,(», ) u(y)dyde.

It follows that if A4 € L7:5(X) and B € L72(X) then Ce L7i5 ™ (X). Analogously
we obtain ‘C =4 -'BeLm#m™(X). The fact that the ¥DO C is properly
supported now follows from Proposition 3.4 and it remains to compute o, (x, &)
using Theorems 3.1 and 3.3.

We have
GBA(xa é) ~ z agD;[GB(Xa é) &A (y’ é)]/a' lyzx

a

=3, 0%loa(x, &) D26, (x,)]/a! (3.42)

~ Z;} 0 log(x, &) (09" DI, (x, D)/l B!
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Next we state two well-known algebraic lemmas.

Lemma 3.3 (Leibniz’ rule). Let f(x) and g(x) be two smooth functions in an
open set X = IR" and o a multi-index. Then

*(f)gx)= % X [0" /()] [0°g (x)]. (3.43)

y+é=a y!é!

Lemma 3.4 (Newtons binomial formula). Let x, y €eIR" and o a multi-index,
then

(x+yf= Y x'yP. (3.44)

y+é=a ylé!
Exercise 3.5. Prove Lemmas 3.3 and 3.4.

Hint. (3.44) can be shown by induction or by using the Taylor formula for
polynomials. (3.43) is obtained from (3.44) by noting that

0" [f(x) g()] = {(@:+ 0, [/ (x) gW]} -

Conclusion of the proof of Theorem 3.4. Rewrite (3.42) using Lemma 3.3.

0aa(x,8) ~ Y [0%ap(x, &) [(—0p)° (9:D5 0, (x, O))/y! B! S!
a,pB,y,0
y+oé=a

= ) (=D [0}o,s(x,&)] [087°DET "0, (x, O))/B!y! 0! (3.45)
By, 6

=¥ xpr+
=2 Z( ) W) [0ko5(x, OV [0F D} 7, (x, O))f7!.

Y x pt+é=x
We then obtain from (3.44) with x = —y =¢, where e=(1,1,...,1) and

with o = x;

N %! (=¥
Ohg =(e—e) =ﬁ+;=x me"(“(?)"":x!ﬁ;:x Biol

here (510,4 is the Kronecker symbol, equal to 1 for x = 0 and 0 for | x| > 0. Because
of this relation, in (3.45) there only remain terms with » =0, which proves
(3.41). O

Corollary 3.1. Let A € Ly5(X), B € L3(X), 0 £ 68 < p £ 1, and

assume that B is properly supported. Then the operators AB and B A viewed
as operators from C§*(X) to C*(X) belong to L7 (X).

0.4

Proof. Decompose A into sumA4 = 4, + R, where A4, is properly supported
and R has a kernel R(x, y) € C*(X x X). It is easily verified that the operators
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BR and RBhave smooth kernels equal to B, R(x, y) and ‘B, R(x, y) respectively,
where B, operates on x keeping y fixed and analogously for ‘B, . The assertion of
the corollary now follows from Theorem 3.4. [

3.7 Classical symbols and pseudodifferential operators. It is sometimes
convenient to consider narrower classes of WDO. Here we describe one of this
classes, closed under the majority of the necessary conditions.

Definition 3.5. By a classical symbol we mean a function a(x,0)eC*
(X x IR") such that for some complex m these is an asymptotic expansion

a(5,0) ~ Y v (0) an_;(x.6).
=0

J

where y € C*(IRY), y (6) = 0 for |0| < 1/2, y (6) = 1 for |§| 2 1, and a,,_;(x, 0)
is positive homogeneous of degree m—jin 6, i.e. a,,_ ;(x,10) = t™ Ja,, _;(x, 6) for
all £ > 0 and (x, 0) € X x (R¥\ 0). Denote the class of all symbols fulfilling these
requirements by CS™(X x R"). Furthermore, denote by CL™(X) the class of
¥DO which can be written in the form (2.18) with a(x, y, ) € CS"(X x X x
IR"). These operators will be called classical YDO.

If a,(x, 0) is positive homogeneous of degree k in 0, then 3537 a,(x, 6) is
positive homogeneous of degree k£ — |a| in 6. Therefore it is clear that
CS™(X x R") < SRem(X x RY).

Proposition 3.7.

a) If Ae CL"(X) and is properly supported, then o ,(x,&) e CS™(X x R").

b) If Ae CL™(X) and Be CL™(X) and both are properly supported then
BAeCL™ ™ (X).

c) If Ae CL"(X), then 'A e CL"(X) and A* e CL"(X).

Proof. Follows immediately from Theorems 3.1-3.4. [J

Thus the class of all classical DO is closed under composition, taking the
adjoint, and the transpose. In what follows we will show that it is also closed
under changing variables, taking the parametrixes (cf. §5) and complex powers
of an elliptic operator.

3.8 Exercises and problems

Exercise 3.6. Show the following generalization of Leibniz’s rule (3.43): if
p(x,&)= ) a,(x)&, and p(x,D) is the corresponding differential operator,
then laj<m

p(x,D) (f(x) g(x)) =} [P®(x,D) f(x)] [D*g(x)}/at!, (3.46)

a

where p®(x, &) = 03 p (x,&).
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Exercise 3.7. Derive theorem 3.4 for differential operators from the result of
Exercise 3.6.

Exercise 3.8. Let x,, x,, ..., x; be n-vectors and « an n-dimensional multi-
index. Prove that

ol
i+ X+ +x)r= Y ' - X (3.47)
a4t ta=a (Xl P (Xk.
Deduce from this that for any smooth functions fi, ..., f;

!
LG . SDI= Y e @) (X)L (0% (X)) (3.48)
.. tay=a 0!1 “ee. O!k.

Exercise 3.9. Given a function a(x, {) e Sy ;(X xR"), X an open set in R",
show that there exists a properly supported ¥DO A in X, such that a

—04 € §7°(X x IRY).

Hint. Consider the operator given by (2.18) with a(x, y, &) = y(x, y) a(x, &),
where y (x, y) is the same as in the proof of Proposition 3.3.

Exercise 3.10. Derive from Exercises 2.4 and 3.9 that the operation of
taking the symbol defines (for é < g) an isomorphism

Ly 5(X)/L™2(X) ~ S 5(X xRM)/S™* (X xR").
Problem 3.1. Consider the following operator in IR"
Au(x) = [['* ¢ a(x, &) u(y)dydE, (3.49)
where a (x, &) satisfies
10305a(x, )| < Gy el ol (3.50)

Assume that ¢ >0 and § < 1. Attach a meaning to the integral (3.49) in the
following two situations; a) u (x) e S(IR"); b) u(x) e C;°(IR") i.e. |0%u(x)| = C,
for an arbitrary multi-index . Show that 4 defines a continuous transformation
of the spaces S(IR") and C;° (IR") into themselves. Show that the symbol a (x, £) is
uniquely defined by the action of 4 on S(IR") or C;° (R").

Problem 3.2. Show that the operators of the form described in Problem 3.1
form an algebra with involution and obtain an asymptotic formula for the sym-
bols of the composition of two operators, of the transpose and of the adjoint
operator.

Problem 3.3. Let K(x,z) e C* (X x (IR"\ 0)) be positive homogeneous in z of
degree —n and let

[ K(x,2)dS,=0 (3.51)

[z]=1
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(integral over the sphere |z| =1). Show that for u € C{(X), the following limit
exists
Au(x)=1lim | K(x,x—y)u(y)dy, (3.52)

£20 |y yize

defining a ¥DO A € CL%(X).
The operator 4, defined by (3.52) (under condition (3.51)), is called a singular
integral operator. We see that such operators are just special cases of ¥DO.
Remark. The solution of Problem 3.2 can be found in one of the works of
Kumano-go [1]-[3], and the solution of Problem 3.3 can be extracted from the
book of Mihlin [1]. The solutions of these problems are rather laborious but very
useful for understanding ¥DO theory.

§4. Change of Variables and Pseudodifferential Operators on
Manifolds

4.1 The action of change of variables on a ¥DO. Given a diffeomorphism
»: X— X, from one open set X = IR" onto another open set X; < IR", the induced
transformation x*: C*® (X,) —» C*(X), taking a function u to the function u o x,
is an isomorphism and transforms C{ (X;) into C¢°(X). Let 4 be a YDOon X
and define 4,: C{(X;)— C*(X,) with the help of the commutative diagram

Ce(X) —"— C=(X)
C5 (Xy) == C (X))

If ;= %", then
Au=[A@ox)]o x,. (4.1)

Let A be given by (2.18), then

Ayu(x) = [[ei®=-0¢a(x,(x), y,&) u(x(y)) dyd
and, setting y = %, (z), we obtain
Aju(x) = [fen@=xo ¢ a(x (x), #,(2), §) |detx; (2)|u(z)dzde, (4.2)

where x| is the Jacobi matrix of the transformations x;. It follows from this
that A; is a FIO with phase function @ (x, y, &) = (x1(x) — »;(y)) - 6. We
will show, that for 1 — ¢ £ § < g the operator A; is a ¥DO. This fact can be
obviously derived from the following more general theorem.
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Theorem 4.1. Let @ be a phase function in X x X xIR", such that

1) @(x,y,0) is linear in 0,

2) Pg(x,y,0)=0<=x=1y.

Let A be a FIO with phase function ®(x,y,0) and a(x,y,0) € S:5
(X x X xIR") (cf. formula (2.1)), where

1—-9=<d<op 4.3)
Then A, € L}, 5(X).

For the proof we need

Lemma 4.1. Let the phase function @ satisfy conditions 1) and 2) of theo-
rem 4.1. Then there exists a neighbourhood $2 of the diagonal A C X x X and
a C®-map ¥ : 2 — GL(n, R) (non-degenerate matrix-function ¥ (x, y)),
such that

Py, y(x,»))=(x=-y)¢ (x,y) €2, 4.4)

where

dety (x,x) - detPy(x,,0)|,-.=1. (4.5)
Proof. We have

P(x,y,0)= Z": D;(x,)0;, (4.6)

where ®;(x,x) =0 and if &;(x,y) =0,j=1, 2, ..., n, then x=y. Further
L 09; L 0P;
L= —10.,... L0, &y, ..., D, ).
‘px,() <j;1 axl Jjo 3 jz:l ax" 1 )

Note that differentiation of the relation & (x, x,6) = 0 with respect to x
shows that @[, = —®;|._,. Now, by definition of the phase function
@, , %0 for 640, so in order that @4(x,x,6) =0, it is necessary that
@ (x,x,0) + 0, i.e. for arbitrary 6 + 0 there exists k, 1 < k < n, such that

0, %0.

J
x=y

0P;(x,y)
det <—6xk >

By the Hadamard Lemma we have

"<D
P

It follows that

£0. 4.7)

x=y

Pi(x,y) = Z Dy (x, ) (5= yi)



§4. Change of Variables and Pseudodifferential Operators on Manifolds 33

for close x and y, &;; € C*(£2'), £2' some neighbourhood of the diagonal in
X x X and

_ a(p} (xs J’)

D,(x,x) = i 4.8)

x=y

Denoting by @ (x, y) the matrix (@,;(x, Y)i j=1> We see from (4.7) and (4.8)
that there exists a neighbourhood Q of the diagonal in X' x X such that
det @ (x, y) + 0 for (x, y) e Q. Put
v,y =0y " (4.9)
Since

¢(X’y76) = Z ¢kj(x’y) 0j(xk——yk) = (x_y) ’ ((D(x,y)@),

k=1

and putting @ (x, y) 6 = &, we clearly obtain (4.4). The formula (4.5) follows
from (4.8) and (4.9). [

Proof. of Theorem 4.1. In view of Proposition 2.1 and Exercise 2.4 we may
assume that A is given by (2.1), where a(x, y,0) = 0 for (x, y) ¢ Q' with Q' any
neighbourhood of the diagonal. Making the change of variables 6 = y (x, y) £ in
the integral (2.1), we obtain

Aju(x) = [fe'* Ca(x, y, ¥ (x,») &) |dety (x,p) | u(y)dydé.  (4.10)

It remains only to remark that for a, (x, y, &) = a(x, y, ¥ (x, y) &) condition (4.3)
guarantees that a, (x, y, &) € S;'; (X x X xIR"), in view of Lemma 1.2. [J

4.2 Formulae for transformations of symbols

Theorem 4.2. Given a diffeomorphism w: X— X, and a properly supported
¥DO A € L7, (X) with1 — o <6 < g, let A be determined by (4.1). Then

1 , -
GA,(y7’7)|y=k(x)~Z d_' o.f‘a)(x,t% (x)r’) ' Dze‘KX(Z).n|z=x’ (411)
where 6 (x, &) = 030 ,(x, &) and »}(z) is given by

%, (2) =x(2) — n(x) — ®'(x) (z—x). (4.12)

Proof. Note first of all that the function »(z) has a zero of second order for
z=x. Therefore, denoting

P, (x,n) = D7 e | (4.13)

zZ=X"
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we have that @, (x, n) is a polynomial in n of degree no higher than a|/2. Taking
Lemma 1.2 into consideration, we see that

o (x,'%' (x)n) DZeix@n| _ eSmye Dl (X x R".
But from the condition 1 — ¢ £ § < g it follows that ¢ > 1/2, so the asymptotic
sum (4.11) is well defined.

To prove formula (4.11), we utilize formula (4.2) with a(x, y,0) = g ,(x, 6).
Using the transformation described in the proof of Theorem 4.1, we get

Ayu(x) = [felc=nng,(x,(x), ¥ (x,)n) D(x,y) u(y) dydn,  (4.14)
where D (x, y) = |det x; (x)| |dety (x, y)|. By Theorem 3.1, we have

0,4,06,m) ~ . 03D [0, (1 (x), w (x, ) ) D (x, p)l/a! |- . (4.15)

From the terms with multi-index o, we obtain (before substituting x=y) a
sum of terms of the form

c(x, ) n'a ) ey (x), w (x, y)n), (4.16)

where c (x, y) depends only on the diffeomorphism (but not on 4). For the multi-
indices y and B in (4.16) we have the estimates

Bl = 2], (4.17)

[yl + la| = |B]. (4.18)

Here, (4.17) is obvious and (4.18) follows from the fact that applying D, to

expressions of the type (4.16) does not change | 8| — |y| and J, increases || — | 7|

by 1.
From (4.17) and (4.18) we have

I IBl—lal = |Bl—1BI/2=|BI/2. (4.19)
Note now, that applying (4.5) to @ (x, y,8) = (%,(x) — %, (»)) - 6 gives y (x, x)

= ("%;(x)) " '. Also, rearranging in (4.15) the terms of the form (4.16), collecting
together all the terms with the same f§, we obtain

0,4,06,m) ~ 0P (3, (x), (%1 ()" ) Py(x, m)/B!, (4.20)
B

where W;(x, n) is a polynomial in # of degree no higher than |f]/2 (with C*(X))-
coefficients) and independent of 4. Here ¥, = 1.
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Replacing x by x(x) in (4.20) we easily obtain the equivalent formula

JA,(%(x)’ ?]) ~ Z af{”(x, t%,(x) 7]) (pﬂ (x’ ’7)/5' s (421)
B

where @, (x, ) is a polynomial in 5 of degree no higher than |8|/2 (with C*(X)-
coefficients) independent of 4 and where @, = 1. It remains to show that these
polynomials are given by (4.13).

We will compute the polynomials @;(x,#) with the help of differential
operators. For the differential operator 4 we have

JA,(.ya 7]) |y:x(x) = e*ly'n Aleiy"’ |y=x(x)

=e Mg (z,D,) P M| __ (4.22)
(here g ,(z, D,) denotes the operator A, acting on the variable z). We write now
x(2) = #(x) + ®'(x) (2= X) + % (2),
from which
#(@) =% n+z HX)n+x(2) n—x "®(x)n.
Putting this into formula (4.22), we obtain
T4, (MM |ymi = €70 {a,(z,D,) [e= ¥ mers@ ]} | _ . (4.23)

Now use the Leibniz rule (3.46) (Exercise 3.6) to differentiate the product of two
exponents in (4.23). We then obtain clearly

0 (M =T L o (x5 () Desi (4.24)
(we have used here yet another obvious formula for differentiating a linear
exponent: a,(z,D,)e” = e %q,(z,¢)).
Formula (4.24) signifies the validity for differential operators of (4.13) for
the polynomials @,(x,#n) in (4.21). But in view of the universality of the
polynomials @_(x, n), then (4.13) is valid also in the general case.

Examples. ®,=1, &;=0 for |B|=1, &4(x,n)=DE: (ix(x) - n) for || =2.
Corollary 4.1.
04,31 — a4 (x1 (y), (xy (¥) ') €875 2@ VDX, xRY). (4.25)

This statement shows, that modulo symbols of lower order, the symbols of all
operators obtained from A by a change of variables form a well-defined function
on the cotangent bundle T*X.
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Corollary 4.2. If Ae CL"(X), then A, € CL™(X,).
Proof. Obvious from formula (4.11). [

4.3 Pseudodifferential operators on a manifold. Let M be a smooth »-
dimensional manifold (of class C*). We will denote by C*(M) and C{ (M) the
space of all smooth complex-valued functions on M and the subspace of all
functions with compact support respectively. Assume that we are given a linear
operator

A: C2(M)— C=(M).

If X is some chart in M (not necessarily connected) and x: X — X, its
diffeomorphism onto an open set X; < IR", then let 4, be defined by the diagram

Ce(X) —245 C(X)

Ce (X)) —2 C=(Xy)

(note, in the upper row is the operator ryo Ao iy, where i, is the natural
embedding iy: CQ(X)-> C(M) and ry is the natural restriction ry:
C*(M)— C®(X); for brevity we denote this operator by the same letter 4 as the
original operator).

Definition 4.1. An operator 4: C{(M)—>C*®(M) is called a pseudo-
differential operator on M if for any chart diffeomorphism »: X — X, the
operator A; defined above is a ¥DO on X;.

Theorem 4.1 shows that the ¥DO on anopenset X C IR"for1—p < § < g
are YDO on the manifold X.

Furthermore, from Lemma 1.2, we see that the class of symbols S’ ;(T*M),
as well as the class of operators L}, ;(M), are well-defined for 1 — ¢ < 6 < ¢, and
Lemma 4.1 shows that the principal symbol is well-defined as an element of the
quotient space Sy ;(T*M)/Sy 5 2@~ V2 (T*M).

Also, in view of Theorem 4.2 the class of classical DO CL"(M) is well-
defined on M. If 4 € CL"(M), then the principal symbol of 4 can be considered
as a homogenous function ¢, (x, £) on T*M with degree of homogeneity equal
to m, since two functions a, (x, £) and a, (x, £), positively homogeneous in ¢ for
€] =1 of degree m, which define the same equivalence class in S™(X x IR")
modulo S™ ! (X x IR"), must coincide for |£| > 1.

In conclusion note, that it is essential to allow the use of non-connected
charts in definition 4.1, since otherwise we would have to consider the reflection
f(x) > f(—x) in C*(IR\{0}) as a pseudo-differential operator.
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Exercise4.1. Show that a ¥DO 4 on a manifold M can be extended by
continuity to a mapping

A & M)> 2'(M)

where &' (M) and 2' (M) denote the spaces dual to the spaces of smooth sections
and smooth sections with compact support respectively of the line bundle of
densities | A"(T*M)|. (This bundle can be defined for instance, by choosing a
covering of M by charts, regarding the bundle as trivial on each chart and setting
the transition functions equal to the absolute values of the Jacobians of the
coordinate transformations. The sections of the density bundle can be integrated
on the manifold, which cannot be said of exterior n-forms, where one needs an
orientation, i.e. essentially an isomorphism between A"(T*M) and | A"(T*M)|.
If we fixed a smooth positive density on M, then this gives us an isomorphism of
the bundle |A"(T*M)| and M xR}, which allows us to consider functions as
densities and therefore to view the elements in &' (M) and 2'(M) as functionals
on functions.)

The inclusion C* (M) @’'(M), inducing the inclusion C{® (M)~ &' (M),
is defined in a natural way by the formula

{u, @) = ju CQ, (4.26)

M

where ue C°(M) and ¢ is a smooth density with compact support (so that u - ¢
is also a smooth density with compact support). Verify the property of
pseudolocality for the operator A.

Exercise 4.2. Let E and F be smooth vector bundles on the manifold M; let
n: T*M — M be the natural projection; n*E and n* F the induced vector bundles
over T*M. Define a YDO A : C(M, E) — C*(M, F) (Ci°(M, E) the
space of smooth compactly supported sections of E and C*(M, F) that of
the smooth sections of F) and show that its principal symbol is a well-defined
element in the space

S™s(Hom (n*E, n*F))/Sm; 2@~ 1) (Hom (n*E, n*F)).

Problem 4.1. Let A4 be a differential operator of order m on a manifold M
(an operator A: CP(M)—Cg(M), such that any operator A;:
Ce (X)) — C§ (X)), as defined before, is a differential operator of order m). Give
an invariant definition of the principal symbol a,,(x, £) as a function on T*M
which is a homogeneous polynomial of order m in £ (i.e. along the fibres).

Hint. Use the formula

an(x, @)= lim A ™e-i A(eiw), @eC®(M). (4.27)

A=+ 00
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Problem 4.2. Compute the principal symbol of the (de Rham) exterior
differentiation operator:

d: AP (M) — AP (M),
where A*(M) denotes the space of smooth exterior k-forms on M (k=0,
1, ..., n).

Problem 4.3. Prove that the one-dimensional singular integral operator on
a smooth closed curve I' C €

Au()=a@® u(®) +lim | %Qu(r)dr, t,terl,

e20 jroqize

fora(t) € C°(I"), K(t, ) € CP(I' x I), is a classical ¥DO and belongs to
the class CLO(I").

§5. Hypoellipticity and Ellipticity

5.1 Definition of hypoelliptic symbols, operators and examples

Definition 5.1. A function ¢ (x, &) e C*(X xIR"), where X is an open set in
IR", is called a hypoelliptic symbol if the following conditions are fulfilled:

a) there exist real numbers m, and m, such that for an arbitrary compact set
K c X one can find positive constants R, C, and C, such that

CilEIm = lo(x, O] = GIE™,  [EI2 R, xeK; .1

b) there exist numbers ¢ and d, with 0 < § < ¢ <1, and for each compact set
K X a constant R such that for any multi-indices o and f

103050 (x, O] 071 (x, )| S Cyp gl WL g2 R, xeK, (52

with some constant C, 5 .

Denote by HS}""(X x R") the class of symbols satisfying (5.1) and (5.2) for
fixed m, m,, ¢ and 5. Sometimes we will denote this space simply by
HS,;™, if the domain X is obvious (or irrelevant). From (5.1) and (5.2) it
obviously follows that

HS™ M (X xR" < ST, (X X IRY).

We will denote by HL;;*(X), X open, the class of properly supported
¥DO A for which o4(x, §) € HS;; (X x R").
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Definition 5.2. A WDO A is called hypoelliptic if there exists a prop-
erly supported ¥DO A; € HL!(X) such that A = A; + R;, where

X
Ry € L™°(X),i.e. Ry isan operatgr with infinitely differentiable kernel.

Note, for any representation of the hypoelliptic operator 4 in the form
A= A, + R,,where 4, isa properly supported ¥DOand R, is an operator with
smooth kernel, it is true that 4, e HL7 ;(X).

Example 5.1. Let A be a differential operator, i.e. 4 = ) a,(X)D? with
a, € C*(X). Denote by a,,(x, &) the principal symbol lafm

an(x,8)= 3, a,(x)&. (5.3)

la| =m
Definition 5.3. A differential operator 4 is called elliptic, if
a,(x,&) 0 for (x,&)eXx(R"\0). (5.4

Proposition 5.1. The following conditions are equivalent for a differential
operator A:

a) A is elliptic;

b) Ae HLT§(X).

Proof. The implication b) =a) is obvious. To show the converse impli-
cation, we introduce the complete symbol of the operator A

a(x,§)= 3} a,(x)¢ (5.5)

] gm

and notice that, if a) is fulfilled, then
a(x,$)
ap(x,¢)

where the functions b_;(x, {) € C* (X x (IR"\ 0)) are homogeneous in £ of degree
—j. From this (5.1) follows with m = m, and (5.2) is obtained similarly. []

=14+b_,(5,8)+...+b_,(x,0),

Examples of elliptic operators:

2 2
the Laplace operator 4 = 6—2 +...4 6—2 in R
0x7 0x;
. 0 0 0.,
the Cauchy-Riemann operator — = -—+i-—— inIR*
0z 0Ox, 0x,
Example 5.2. The heat operator
0 A= o d? 0*
ot ot ox? T ox?

is hypoelliptic in IR"*?, although it is not elliptic.
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Exercise 5.1. Verify the hypoellipticity of the heat operator and find the
corresponding m, m,, @, 9.

Example 5.3. Let A be a classical WDOwith principal symbol a,, (x, £). Then
the following definition makes sense.

Definition 5.3'. An operator 4 € CL"(X) is called elliptic, if its principal
symbol a,, (x, £) satisfies condition (5.4).

As in the proof of Proposition 5.1 it is easy to verify that if A € CL™(X)
is properly supported then its ellipticity is equivalent to the inclusion A €
H L’l"(;" (X). Generally, A € CL™(X) is elliptic if and only if A = A; + R
where A; € HLT7(X)and R € L™>(X).

Examples 5.1 and 5.3 motivate the following

Definition 5.3". An operator A € L7;(X) is called elliptic if A = A; + R
where A; € HL;;"(X)and R € L~ °°(X)

Proposition 5.1'. For a properly supported A € L7 (X) to be elliptic it is
necessary and sufficient that the condition a) in Deﬁmtzon 5.1 is satisfied for
its symbol with mg = m. Generally A € L7 (X) is elliptic if and only if
A = A + R where A, is properly supported and the condition a) in Definition
5.1 is satisfied for the symbol of A\ with my = m. In this case this is true for
any presentation A = A1 + R as above.

Proof. The proof is left to the reader as an excercise. [

5.2 Basic properties of hypoelliptic symbols. First of all, say that
o (x,&) €Sy s for large ¢, if for any compact set K < X there isan R= R(K), such
that o (x, &) is defined for x € K, |¢| = R(K) and for these (x, £) all the necessary
estimates of type (1.10) are fulfilled. If, in addition, the estimates (5.1) and
(5.2) are fulfilled, we say that o (x, &) € HS,; " for large §.

Note that if g (x, £) belongs to S}’ 5 or HS,";" for large ¢ then, multiplying
by a smooth cut-off function y (x, &), equal to 1 “for large & (e.g. for xe K,
|&] = R(K) + 2 for any compact set K) and equal to 0 in a neighbourhood of
the set where the symbol ¢ is not defined (e.g. for xe K, [¢| £ R(K)+ 1), we
obtain a symbol o1 (x, §) € S7;(X x R") or HS;;" (X x IR") respectively,
which coincides with o (x, £) “for large £

Lemma 5.1. If o (x,&) e HS]" for large &, then ™' (x,&) e HS, 3o ™™ for
large &. Furthermore, for arbitrary multi-indices o, § we have for large &, that

030%a (x,8)/o (x,£) €S, g1 +21F]

Proof. Lety = (x,¢)and 'y, 0 be 2n-dimensional multi-indices. By induction
in |6 | one verifies that
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aa[mo(y)]:g > o) ) o

c
a(y) K=0 8,+... +8,=5 bt g(y) =1 oY)

Obviously, setting y = (f, o) we obtain from the definitions all the necessary
estimates for the proof of the lemma. [J

Lemma 5.2. If 0'e HS] ;™ and 6" € HS'y"s then 6’0 ¢" € HSy 3 ™" mo+mi.

Proof. Direct from the Leibniz rule. [

Lemma 5.3. If o(x,&)eHSy " and r(x,&)eSgs, where my <my, then
o+ reHS; .

Proof. Writting ¢ + r = (1 + r/o) and using Lemmas5.1 and 5.2, we see
that it suffices to consider the case ¢ = 1 and my= m = 0, i.e. m; < 0. But then
the assertion of the lemma is trivial. [

Lemma 5.4. Let o (x,&) e HSy" for large & and let o,(y,n) = o (x()),
E(y, 1)), where the map (y,n) — (x(¥),&(x,n)) is a C* map from X, x
(IR" \ 0) into X x (R" \ 0) and where £(y, n) is positive homogeneous of
degree 1 in n. Assume that 1 —g £ 8 < 0. Thenai(y, n) € HS;;™ for large n.

Proof. Completely analogous to the proof of Lemma 1.2 and is left to the
reader. [

5.3 Basic properties of hypoelliptic operators

Proposition 5.2. If A'eHL7r(X) and A"eHLyy(X), then
A'o A" e HLy $m" mot mi(X).

Proof. By theorem 3.4

0%a, Dio
G 4(%,8) ~ 0,(x,8) 0,(x, ) [1 + Y = ——]
ozt G4 Oy

and from Lemmas 5.1 and 5.3, we see that the series in square brackets is an
asymptotic sum which (in the sense of Proposition 3.4) belongs to HSYP. It
remains to use Lemma 5.2. [

Proposition 5.3. If A € HL; 5°(X), then both'A and A* belong to HLY 5'°(X).
Proof. Similar to the proof of the preceeding proposition. []

Proposition 5.4. If A € HLy 7o(X) and R € Ly 5(X) with my < mq, where R is
properly supported, then A+ Re HL} Fo(X).

Proof. The statement follows immediately from Lemma 5.3. [J

Proposition 5.5. If 1 — ¢ £ 0 < g, then HL} §*(X) is invariant with respect to
changes of variables i.e. if we are given a diffeomorphism x:X— X, and an
operator A is defined as in §4 (formula (4.1)), then Ay € HL™™ (X,).
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Proof. By Lemma 5.4
0,060 (), (1 (1)~ '1) € HS (X))

(here %, = x~"). But then, by Theorem 4.2 and Lemma 5. 1, it is obvious that

00, (1) =0,0,(3), (%1 ()" 'm) A +r(p,m)),

where r(y,n) €S, ;@ "/? for large n. The assertion of the proposition now
follows from Lemmas 5.2 and 5.3. [J

m,mq

Proposition 5.5 allows us to define the class HL;°(M) of hypo-elliptic
¥DO to an arbitrary manifold M provided 1 — ¢ £ § < o.

5.4 The parametrix and the rough regularity theorem

Theorem S.1. Let Ae HLY 5°(M), with either 1 —g9<d<gord<gandMa
domain in R". Then there exists an operator Be HL, 3> ~™(M), such that

BA=I+R,, AB=1I+R,, (5.7)

where Rie L™ *(M), j=1, 2, and I is the identity operator. If, furthermore, B'is
another WYDO for which either B'A=I+R; or AB' =1+ R, (where
Rj e L™*(M)), then B'— Be L™ *(M).

Corollary 5.1. If A is a hypoelliptic ¥YDO on M (not necessarily properly
supported), then there exists a properly supported ¥DO B, such that (5.7)
holds.

Proof of Theorem 5.1. Firstlet M be a domain X in IR" and o4 the symbol of
A. Consider a function by (x,¢)eHS, o "™(X xIR") such that by(x,{)
=0, (x,&) for large & Next choose a properly supported operator
Bye HL, 3> ~™(X) such that 6, — by, €S~ (X xR"). Let us verify that

ByA=1+R,, (.8

with Rye L, ¢ 2 (X).
In fact, by Theorem 3.4 we have for large ¢

1 0to;' Dio,

a! ot o,

1
opa(, ) ~1+ ¥ a—'agoglp;aFH >

lel 21 fefz 1

and it remains to use Lemma 5.1. Now let C, be a properly supported ¥DO
such that

Co~ ,§0(—1)1R{), (5.9)

i.e.
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o, ~ . (—1Y og. (5.9)
j=0

From (5.9) we clearly have
Co(I+Ry) —IeL™ ™,
so that putting B, = C, B,, we have
B, A=1+R, (5.10)

where R, € L™ *(X). From the construction it is clear that B, € HL, 5> ~™(X).
Further, we can similarly construct an operator B, € HL, 5> ~™(X), such that

AB,=1+ R, (5.11)

where R, e L™ *(X).

Let us now verify, that if B; and B, are two arbitrary ¥DO, for which (5.10)
and (5.11) hold, then By — B, € L~*(X). This will then also demonstrate
the existence of the required B (for which we may take either of the operators B,
and B,) and its uniqueness (modulo L™ ® (X)). Note, that B, and B, can be taken
to be properly supported. Multiplying (5.10) on the right by B, and using (5.11),
we obtain B, — B, = R, B, — B, R, and it only remians to note that B, R, and
R, B, both belong to L™ °(X).

Now let M = () X7 be an arbitrary manifold with a covering by charts X.

Y
Then, (by the results just shown) there is a properly supported operator B” in X?,
such that

B'-A=I+R], A B'=I+Rj,

where R} and R} are operators with smooth kernels.

Now let ¢;, j = 1,2, ..., be a partition of unity subordinate to the covering
of M by the X7. This means that the following conditions are fulfilled:

1) p; € CF(M), ¢; = 0, supp ¢; C X" for some y = y(j);

2) for any x € M, there exists a neighbourhood %, of x in M, such that
%¢, intersects only a finite number of sets supp ¢;;

3)2%‘ = L.

(See e.g. Theorem 6.20 in Rudin [1].) Now let us construct functions y; €
C§° (M) such that they still satisfy the conditions 1) and 2) above (with the
same ¥ (j)) and in addition ¥; = 1 in a neighbourhood of supp ¢;.
Denote by @; and ¥; the multiplication operators by ¢; and ¥, respectively.
We set then
B = Z @,-By(j)ll/j,

J
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where necessary operations of restriction and extension by zero are under-
stood. We claim that then B satisfies all the required conditions.

Clearly B is properly supported. Note also that on the intersection X* N X?’
the operators BY and B”' differ by an operator with a smooth kernel, so modulo
operators from L~* they may be given by the same symbol. This allows us to
calculate the compositions BA and AB modulo L~ using the composition
formula (3.41). For example, the symbol of BA will locally have the form

1
opa(x, §) ~ Z E;@(X)(a;’%(x, £)) D (0a(x, §)¥;(x)).

je

If we apply a derivative in x to ¥, then the resulting term will vanish because
@, D¢Y¥; = 0 for any a # 0. Therefore we conclude that

1
Tpalx, §) ~ (Z d>,~(x>wj<x)) (Z — @5 (x, (D (@4, s>) ~1,
: !

o

which is equivalent to the first relation in (5.7). The proof of the second rela-
tion is not different. 0O

Remark. The formula for the parametrix B above can be simplified if we
add small neighbourhoods of supp ¢; to the set of all X”. In this case we can

simply write Z
B=) o,B"Y,
14

where @, satisfy the same properties as ¢; above and it is understood that some
of the functions ¢, can be identically 0.

If M is a closed manifold then we can also assume the covering {X"} to be
finite, so the formula for B will be a finite sum.

Definition 5.4. An operator B satisfying the condition (5.7) is called a
parametrix of the operator A.

Corollary 5.2. Any elliptic operator AeLj ;(M) has a parametrix
BeHL,y "™(M).

Theorem 5.2. If A is a hypoelliptic¥DO, then
sing supp Au = sing supp u, ueé’'(M). (5.12)

In other words, if Q is an open submanifold of M, then Au|,e C*(Q) if and only if
ulq,eC*(Q).

If A is a properly supported hypoelliptic WDO, then (5.12) is true for an
arbitrary distribution ue 2'(M).
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Proof. 1t obviously suffices to prove the first part of the theorem. For this,
the inclusion sing supp Au < sing supp u follows from the pseudolocality of 4 (cf.
Proposition 2.4) and it only remains to show the inclusion

sing supp u < sing supp Au (5.13)

Let B be a properly supported parametrix of A. Then, from the formula
u = B(Au) — R,u and the pseudolocality of B, it follows that

sing supp u c sing supp (4u) using supp R, u,

and since R,ue C* (M), we have that sing supp R,u =@ proving (5.13). [J

Theorem 5.2 is a rough regularity theorem for solutions of hypoelliptic
equations of the form Au = f. More precise theorems will be proved after we
have introduced exact regularity classes of functions, i.e. the scale of Sobolev
spaces.

5.5 A parametrix for classical elliptic pseudo-differential operators. In this
case a parametrix can be constructed in a much more explicit way.

Let A be a classical ¥'DO in an open set X C IR", whose symbol for large &
admits the asymptotic expansion

a(x, &) ~ i ap-(x,8), (5.14)

where a,,_;(x, §) € C*(X x (IR"\0)), a,.; is positive homogeneous of degree
m — j in & and also satisfies the ellipticity condition (5.4).

Let B be a parametrix of A. We will show that B is a classical ¥DO, whose
symbol b(x, &) for large & admits an asymptotic expansion

b )~ Y b (.0, (5.15)
i=o

where b_,,_;(x,{) e C*(X x (IR"\0)) and b
of degree —m—j in &.

The composition formula shows that the symbol & (x, &) must satisfy the
condition

(x, &) is positive homogeneous

-m—j

Y 3*a(x, &) Dib(x, Ofal ~ 1,
or ’

Y 0%ay  (x,&) Dib_,_i(x,E)fal ~ 1. (5.16)

a, k, j
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Clearly, regrouping the terms in (5.16) by their homogeneity degree we
make (5.16) into just an equality of the corresponding homogeneous compo-
nents, i.e.

Y 03an (6 E) Db, (x,Oal =688, p=0,1,..., (517

k+j+lal=p

or, more explicitly
a, b_,=1, (5179
A b_pj+ Y (0%an-) D2b_, P!=0, j=1,2,... (517"

k+1+|al=j
I<j

Clearly, from (5.17) the functions b_,_;(x, &), positive homogeneous of de-
grees —m — j (j = 0, 1, ...), are uniquely defined. If we now define b(x, &)
by (5.15) and find a properly supported ¥DO B such that o (x, §) —b(x, £) €
S~*(X x IR"), then this operator B is a parametrix of A.

Formula (5.17) defines a parametrix of A4 also in the case when A is a matrix
PDO: in this case a_,_;(x, &) are square matrix functions and the ellipticity
condition takes the form

deta, (x,&) £ 0, (x,&) e (X x (R™0) (5.18)

Problem 5.1. Show that the terms b_,,_;(x, &) (j> 0) in the parametrix of
the classical elliptic operator 4 in the scalar case can be expressed via a,,_, (x, £)
by

2j+1
bop (0= 3 (%8 (@n(x )7 (3.19)
1=2
where ¢/(x,¢) is a function positive homogenous of degree m(I—1) —j
in ¢, polynomial in the functions a,,, a,,_,, ..., a,_; and their derivatives of
order <j.

The analogous formula in the matrix case is of the form

2j+1 1
bowj(x,)=a,'(x8 Y []lai(x8)a,"(x¢)]. (5:20)
1=2 k=1

§6. Theorems on Boundedness and Compactness of
Pseudodifferential Operators

6.1 Formulation of the basic boundedness theorem. Let A be a ¥DO in IR".
Consider 4 as a map

A: CE(R") - C=(R".
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Let K, be the kernel of 4 in the sense of L. Schwartz. If supp K, is compact in
R"xIR", then A defines a map

A: CL(R" - Cge(R"Y).
Is it possible to extend the operator 4 to a continuous linear operator
A: L*(R") - L*(R")?
Clearly, this is so if and only if the following estimate holds
lAull £ Cllull, ueCq(R"), (6.1)

where C > 0 does not depend on u and || - || denotes the norm in L*(IR")

Theorem 6.1. Let A € LO,(R"), 0 £ 8 < ¢ £ 1, and let supp K4 be
compact in R" x IR". Then (6.1) holds and A can be extended to a linear
continuous operator on L*(IR").

6.2 Auxiliary results and proof of Theorem 6.1. In the sequel we will use the
notation
lim |a(x,&)| =lim sup|a(x,¢)].

|- 00 t—o0 |¢|21
xek xek

Theorem 6.2. Let A be a properly supported ¥DO in LL’. s(X), with 0 <
8 < 0 < 1 and X an open set in IR". Suppose there exists a constant M such

that _
lim |o,(x,&)| <M (6.2)
[€]—o0
xek

for any compact set K C X. Then there exists a properly supported integral
operator R with hermitean kernel R € C*(X x X), such that

(Au, Au) £ M*(u,u) + (Ru,u), ueCg(X). (6.3)

If, in addition, supp K , is compact in X x X, then supp R is also compact in X x X.

Proof that Theorem 6.2 = Theorem 6.1. It suffices to show the boundedness
in L*(IR") of an operator R with smooth compactly supported kernel. This,
however is well known (one can show for instance that | R||?> < [ |Kg(x, y)|?
dxdy, where || R|| is the operator norm of R in L?(IR") and K(x, y) is the
kernel of the operator R). O

To prove Theorem 6.2 it suffices, in view of the relation (Au, Au) =
(A*Au, u), to construct a properly supported operator B € Lgy 5 such that

A*4 + B*B— M*=R 6.4)



48 Chapter 1. Foundations of ¥DO Theory

where R has a smooth kernel (in which case R is properly supported since the
left hand side of (6.4) is a properly supported operator). Rewriting (6.4) in the
form B*B = M? — A*A + R, we note that the symbol of M2 — 4*4 is equal to
M? — |0 ,(x,£)|* modulo symbols of class S, $¢~?(X), from which we infer

lim Re [0y 4uq(x, E)] >0 (6.5)
[§]— o0
xek

for an arbitrary compact set K = X. Therefore we derive Theorem 6.2 from the
following proposition.

Proposition 6.1. Let Ce L) ;(X) and be properly supported, 0 <6 <=1
and let C* = C and assume

lim Reoq(x,&) >0 (6.6)
([ Rade
xeK

for arbitrary compact sets K< X. Then there exists a properly supported operator
B e LS,J(X) such that R = B*B — C has a C* kernel.

Lemma 6.1. Let a(x,{)eS) ;(XxIR") and let a(x,&), for arbitrary
(x, &) e X xR", take values in a compact set K = C. Let a complex-valued function
f(2) be defined on a neighbourhood of K and be infinitely differentiable as
a function of two real variables Re z and Im z. Then

fla(x,£) € Sy, (X x R") 6.7)
Proof. Denote u = Rez and v = Im z. Then we evidently have

(@M= X Crgrr ..o, @82) (@(3)

P
i+t
to+.. fo,=y

x 05 (Rea) ... d%(Rea) 0o (Ima) ... d(Ima),  (6.8)

from which (6.7) follows, since [(0%,2f) (a(W)| < C,,. O

Proof of Proposition 6.1. 1t follows from Lemma 6.1 that ]/Reac(x, '3
belongs to SJ ; for large &. Therefore there exists a properly supported ¥DO
B,y e L) 5(X), such that if by (x, ) is its symbol then

[bo(x,&)1* — Reoc(x,8) €S, 3.
From this it follows that
C — B¢B, eL;‘g“”(X). (6.9)

The operator B, serves as the ‘‘zero order approximation” to B. We will seek a
first order approximation in the form B, + B,, where B, e L, ¢~V (X).
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We have
C— (B¥+BY) (By+B,)=(C—B}B,) — (BB, +B¥B,) — B¥B,. (6.10)

The point is to reduce the order of the operator on the left-hand side, taking B;
to be properly supported with symbol b (x, &), such that for large &

2by(x,8) by (x,8) = Oc_p35,(%:€), (6.11)

which is obviously possible, since by Lemma 6.1 by ' (x, &) € S ; for large . It
follows from (6.10) and (6.11), that

C — (Bo+ B))* (By+B)) e L, 3@ 9(X). (6.12)

Arguing by induction, we may in exactly the same way construct properly
supported YDO B; € L,3“”(X), j =0,1,2, ..., such that

0.6
C— (Bo+ ... +B)* (Bo+ ... +B)eL;le™d(X). (6.13)

Now let b; (x, ¢) be the symbol of B;. It only remains to construct a properly
supported operator B, such that

5450 ~ ¥ (3.0,

It follows easily from (6.13), that this operator will be the one we are looking for.
Thus Proposition 6.1 is proved and together with it Theorems 6.1 and 6.2. [J

6.3 The compactness theorem. We will derive the compactness theorem
from the following much more general statement.

Theorem 6.3. Let A€ Lgy s(R"),0=< 8 < 9 =1, let the kernel K , have compact
support in R" xIR" and let the symbol o ,(x, &) satisfy

lim |o,(x,&)| <M. (6.14)

1§]—> 0

Then there exists an operator A, such that A — A, € L” *(IR"), the kernel K, has
compact support and

4 ull = Milull, ueCg@R"). (6.15)

Proof. Let y € C5°(IR") be such that y(x) 20, [x(x)dx=1,0=< 7(¢) £ 1.
Such a function can be found. Indeed, to begin with let the function y, (x) be such
that y,(x) € CF (IR"), x0(x) = 0 and Ilo (x)dx = 1. Then obviously | 3, (&) £ 1.
Put now y (x) = [x0(x+») x0(») dy. In view of the fact that § (£) = |7, (¢)|* the
function y (x) fulfills all the requirements.
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Now put y,(x) = ¢ "y (x/¢e) and define the operator 4, by
Au= Au— A(x,*u), (6.16)
where (x, * u) (x), the convolution of y, and u, is defined by
(e*w) () =[x (x—y) u(y)dy = fu(x—y) x.(y)dy.
Now, in view of Theorem 6.2
I Aull> < M? lu—x,*ull® + (R(u—x, *u), u— g, *u), (6.17)

where R is an operator with kernel R(x, y) e C£(R" x R").
Note that the Fourier transform of u — y, * uis (1 — 3 (¢€)) # (¢) and from the
condition 0 £ ¥ £ 1, it follows that

= xe % ull < flull. (6.18)

Further, denote by R, the operator which maps u into R (u — y, * u), then its
kernel is given by the formula

R.(x,5) = R(x,y) — [R(x,2) e‘“x(?)dz,

or
R, (x,5) = R(x,y) = [R(x, y+ez) x(2) dz,

from which it is obvious, that supp R,(x, y) lies in some fixed compact set K
(independent of ¢ for 0 < ¢ <1) and, in addition,

sup |R,(x,y)| >0 fore—0.
Xy

It follows that || R, || = 0 for ¢ = 0. We now obtain from (6.17) and (6.18) that
Il Aull> < M2 |lull® + | Rull llul. (6.19)

From the conditions of the theorem it is evident that we may replace M by
M —$, where J is sufficiently small. But then it follows from (6.19), that for
sufficiently small ¢ > 0

lAull> < M2 ||ull®.
Put 4, =A,. Since the symbol of the convolution operator with y, is

1(€&)eS ™ *(R"xIR"), it is evident that 4 — 4, e L~ °(IR™. It is also easily
verified, that the kernel K, of 4, has compact support. [



§6. Theorems on Boundedness and Compactness of Pseudodifferential Operators 51

Theorem 6.4. Let AcL) ;(R"), 0<6 <=1, let the kernel K, have
compact support and

sup |o,(x,&)| >0 as [{|>+ . (6.20)

Then A extends to a compact operator in L*(IR").

Proof. By Theorem 6.3 there exists a decomposition 4 =4, + R, for
arbitrary ¢ > 0, where || 4, || < ¢ and R, has a smooth compactly supported kernel
(and is thus compact). Therefore lim ||4 — R,|| =0 and the compactness of 4
follows. [ &0

Corollary 6.1. Let AeL} ;(R"),0=0< =1, m<0 and K, have compact
support. Then A extends to a compact operator on L*(IR").

6.4 The case of operators on a manifold. Consider first the case of a closed
manifold M (a compact manifold without boundary). Using a partition of unity
on M, it is easy to introduce a measure, having a smooth positive density with
respect to the Lebesgue measure in any local coordinates. If du is any such
measure, the Hilbert space L* (M, dy) is defined. Note, that the elements and the
topology in L?(M,du) do not depend on the choice of du. It is therefore
meaningful to talk about the space L? (M) as a topological vector space in which
the topology can be defined using some non-uniquely defined Hilbert scalar
product. Theorems 6.1 and 6.4 obviously imply

Theorem 6.5. Let M be a closed manifold, A€ L] ;(M),1—9=<6 <. Then
1) operator A extends to a linear continuous operator

A: (M) - X(M);

2) if the principal symbol ¢ ,(x,£)eSg ;(T*M)[S, ;¢ (T*M) satisfies
condition (6.20) (it is the same for all representatives of an equivalence class in
S0 5(T*M)[S, 32" (T*M)), then the operator so obtained is a compact
operator L*(M) — [*(M).

Corollary 6.2. If AeL} ;(M),1—9=6<¢and m<0, then A extends to a
compact operator

A: X(M) > [2(M).

We now formulate a version of the boundedness theorem, adequate for non-
compact M. For this we introduce the spaces L}, (M) and L2, (M).

Let f be a complex-valued function on M, defined everywhere except,
perhaps on a set of measure 0.

In the sequel, we consider functions f; and f, as equivalent if they coincide

outside some set of measure 0. Indeed, the elements of the spaces LZ,,,(M) and
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L3 (M) are not functions but equivalence classes, although we will write
fe L} (M) for a function f, by abuse of language.

We will write that f e L3,.(M) if for an arbitrary diffeomorphism »: X — X, of
an open set X = IR"into an open set X; = M and an arbitrary open subset X, = X,
such that X, is compact in X, we have [x* (f| ) x€ L*(X,, dx), where dx is the
Lebesgue measure on X, induced by the Lebesgue measure on IR". The topology

of L.(M) is given by a family of seminorms

”f“x X, = (I [>* (flx,)] |XDHL‘(XD,dx)-

If M has a countable basis, then 12 (M) is a Fréchet space (a complete
metrizable and locally convex space or, what is the same thing, a complete
countably normed space).

Further, we will denote by L%, (M) the linear subset of L}, (M), consisting
of those elements f€ L} (M) for which supp f is compact in M. Given x: X — X,

and X, X as described above, define the inclusion
i, x,: L (Xy,dx)—> L%, (M),

mapping a function f° e L2(X,,, dx) into the function f(y) on M, equal to f(x) at
the point x%(x) of M and to 0 at y e M\ x(X,). The topology of L2, (M) is
defined as the inductive topology, i.e. the strongest locally convex topology for
which all the inclusions i, , are continuous. From this it follows that the linear
operator A: Lﬁomp (M) - E, E any locally convex space, is continuous if and only
if all the compositions 4 i, , are continuous. This circumstance being taken
into account, we clearly get the following

Theorem 6.6. If A€ Lg, s(M), where1 — 9 £ 6 < g, then A extends to a linear
continuous operator

A: I?

‘comp

(M) - L2 (M).

loc

Exercise 6.1. Prove thatif Ae L] ;(M),1— 9= < g, and if 4 is properly
supported, then it extends to a linear continuous operator
A: L2 (M)— L% _ (M)

comp comp

and also to a linear continuous operator

A L2 (M) > I2 (M),

loc

§7. The Sobolev Spaces

7.1 Definition of the Sobolev spaces

Lemma 7.1. Let M be an arbitrary manifold. Then for any real s there
exists on M a properly supported, classical elliptic ¥DO A, of order s with
positive principal symbol (for & # 0).
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Proof. To begin with let M = X, a domain in R". Then we may take as A, an
arbitrary properly supported ¥DO A, e CL*(X) with principal symbol | |*. Next

let M be arbitrary and let there be given a covering of M by charts M = { ) X7.

We will denote by %7 any coordinate diffeomorphism x»”: X7 — X7, wherevX s
an open set in IR". We construct on X” operators A}, having the required
properties and transport these to X} by the standard procedure (cf. §4) using the
diffeomorphisms x?, producing a properly supported,classical ¥DO A} ; on X7}
with positive principal symbol. The operator A, on M can be glued together from
the operators A? ; by the process used to construct B from B in the proof of
theorem 5.1. [J

Definition 7.1. We write ueH (M), if ue?' (M) and Aue L} (M).
Further set Hg,,,(M) = Hi. (M) N &' (M). (Concerning 2'(M) and &' (M), see
Exercise 4.1.) If M is a closed manifold, we denote H}\, (M) = H,p, (M) simply
by H*(M).

If K is a compact in M, we denote by H*(K) the set of all u € Hg’omp(M )
for which suppu C K.

There is a well-defined topology in the spaces Hy, (M), H,,,(M) and
H*(K), but for the time being only the set of elements in these spaces 1s es-

sential to us.
Below we will show that these spaces do not depend on the choice of the

operator A;.

7.2 The action of ¥DO on Sobolev spaces. The precise regularity theorem.

Theorem 7.1. If A€ L} ;(M),1—0=<0<g,o0rd<gand M= X, an open set
in R", then A defines a map Hi,mp(M) — Hiye ™ (M). If A, in addition, is properly
supported, then A defines maps

A: Hipp (M) = Higp (M),
A: Hi (M) > Hi.™(M).

Proof. Without loss of generality, we may assume that the operator A_isa
parametrix of A for arbitrary s€lR, i.e.

Ao A, =1+R,, (7.1)

where R, is a properly supported operator with smooth kernel and therefore
transforming &' (M) into Cg°(M) and 2'(M) into C*(M).

If ueHs,,,(M), then, setting A,u = u,, we will obtain from (7.1), that
u=A_uy+ v, where uy € L2, (M), ve Cy(M). Therefore

Ay pgAu=A;_,A(A_ug+v) = A, AA_uy + A°Av,
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and in view of the fact that A, _,, AA_ € L} ;(M), we obtain from Theorem 6.6,
that A,_,AA_uy€ Ly (M), A, Ave C*(M), from which A,_, Aue L}, (M),

i.e. Aue Hi_™(M). Thereby we have proved the first assertion of Theorem 7.1.

The remaining ones follow from this one or are shown similarly. []

We are now in a position to give a definition of Sobolev spaces, not
depending on the choice of A,. It clearly suffices to define Hj, (M).

Definition 7.1’. We will write u e Hi (M), if ue 2'(M) and Aue L2 (M) for
any properly supported 4 € L] ((M).

The equivalence of Definitions 7.1 and 7.1’ follows in an obvious manner
from Theorem 7.1.

Theorem 7.2. Let Ac HLy 5°(M), where 1 — g <6 <g,0rd <gand M = X,
an open set in R". Then, if ue 2'(M) and Au € Hy, (M) we have ue Hy; ™ (M).

Proof. Let B be a parametrix for 4, BeHL,%> ™(M). Then, by
Theorem 7.1 we have BAue Hy:™(M). But BAu = u + v, where ve C®(M) so
+
Hi™(M). U

Corollary 7.1. a) If A iselliptic of order m,uc &' (M) and Au € H}, (M), then
ueHypm(M).

b) If A is properly supported (in particular if A is a differential operator) and
elliptic of order m, ue 9'(M) and Au e Hy, (M), then ue Hy:™(M).

7.3 Localization. Theorem 7.1 clearly implies that if weHS (M) and
a(x)e C*(M), then aue H;, (M).

If, in particular, a(x) e C5°(M), then aueHg,,,(M). The following is a
precise version of the converse.

Proposition 7.1. Let the distribution ue 9'(M) be such that for any point
Xo€M one can find a function ¢, €Cy (M), such that ¢, (x,) 0 and
@, 4 € Hiomp(M). Then u € Hiyo(M).

Proof. We may select from the functions ¢, a system of functions {¢,}, such
that some neighbourhoods of supp ¢, form a locally finite covering of M and for
any point x, €M one can find y such that ¢, (x,) # 0. Put now

@y P

v, = .
T Yle,l?
Y

Then obviously y, has the same properties as ¢, and, in addition, y, 2 0 and
Y. w,=1. We now have
Y

Au = ZAS(%“) € Li(M),

because, by the fact that A is properly supported, the sum Z Ag(w,u) is locally
finite. [
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Corollary 7.2. Let M = | ) X, be an open covering of M, ue 9'(M). Then the
Y
condition u € Hi. (M) is equivalent 1o u|y € Hy,(X,) for any y.

Proposition 7.1 shows that it is essentially sufficient to study H*(K) for K
compact in IR".

7.4 The space H'(IR").

Definition 7.2. Let selR, ueS'(IR"). We will write ueH*(R"), if
i(¢) e LE (R") and

lull? = f1a(8)1?<E* d& < + oo (7.2)

(this also serves as a definition of the norm | - ||,).

Exercise. Show the completeness of H*(IR") (with the norm || - ||,).
The following Hilbert scalar product can be introduced in H*(IR")

(u,0), = [4 (&) 5(5) (&H**de, (7.3)

and the map (D)*, mapping u € S'(IR") into F~'(£)*@(¢) (F is the Fourier
transformation), provides an isometric isomorphism

(D)*: H*(R") > [*(R"). (7.4)
Lemma 7.2. Let K be compact in R". Then
H(K)= &' (K)n H*(IR") (7.9)

&' (K) denotes the set of all ue & (IR"), such that supp u = K).

Proof. 1. Since (D)*eL} ,(IR") and is elliptic, then by Corollary7.1
it is clear that ue & (K) and <(D)*uel?(IR") implies ueH*(K), i.e.
&' (K) n H*(R™) < H*(K).

2. Now let u e H*(K). We must verify that (D)*u € L*(IR") if it is known that
{DY*u e L} (IR"). Indeed, a stronger result is valid: if ¢ (x) e C(IR"), ¢ = 1ina
neighbourhood of K, then (1 —¢) (D>*ueS(IR"). Let us prove this.

Let y e CY(R") be such that ¢ =1 in a neighbourhood of suppy (in
particular (1— @)y =0) and moreover y =1 in a neighbourhood of K.
Then yu=u and (1 —@){D)'u = (1—@){D>*ywu. Let us study the operator
(1—-@){D)*y. Clearly its kernel K(x,y) belongs to C*(IR"xIR"). It suffices
to verify that K(x,y) eS(IR"xRR"). But K(x,y) is given by an oscillatory
integral:

K(x,y)= [ (1—p(x) &y () dE,
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which can be rewritten as
K(x,p)= [ ¢ x—y|7N (1-0(x) y(») (=4 &) dE,

since |x — y| Z ¢ > 0 for x esupp (1 — ¢), y esuppy. For 2N > s + n we obtain a
convergent integral, which can be estimated by C(1+|x|+|y|)"2*. The
derivatives of the kernel K(x, y) are estimated in a similar way. [

Noting that H*(K) is a closed subspace of H*(IR"), we see that the scalar
product (u, v), induces a Hilbert space structure on H*(K).

Lemma 7.3. Let K be a compact set in R" such that K< Int K. Then for
ue H(K), there exists a sequence u,e CF(R", suppu,cK, such that
[lu,— ull;—0 for n— + co.

Proof. Let ¢ (x)eCy(R"), j(p(x) dx =1 and ¢,(x) = ¢ "¢ (x/e). We put

U (x) = (@ *u) (x) =u(y), ¢.(x—y), &>0.

It is clear that u,(x) e CF(IR") so let us prove that lim |ju,— u|,= 0. Since
-0+

0. (&) = ¢ (e&) and ¢ (0) =1, the question reduces to establishing the relation
ELiTO flo(ed) — 112 1a()|* <&*d¢ =0,
which is evident from the dominated convergence theorem. [J

7.5 Topology in the Sobolev spaces on a manifold. Let M = | ) X7 bealocally

7
finite covering of a manifold M by relatively compact coordinate neighbour-
hoods X7, »” : X¥ — X] the coordinate diffeomorphisms (X" an open set in
IR") and ¢ a partition of unity on M subordinate to {X{}. Let K be a compact

set in M. Introduce a scalar product in H*(K), setting

(,0);= Y ((")* (@"u), (*)*(90)),, 4, vEH (K). (7.6)

Proposition 7.2. The scalar product (7.6) induces a Hilbert space structure on
H:(K).

Proof. Clearly we only need to verify the completeness of H*(K) in the

norm || - ||, defined by the scalar product (7.6). Let the sequence {u,}n—12 ..
of elements in H*(K) be a Cauchy sequence with respect to | - ||,. Then
(x")*¢" U — v{ € H" (3] (supp ¢")) (7.7

in the H*(R") norm (here x»}=(x?)""). We may take v?= (x})*v], thus
v} = (»")*v”. Then v” € H* (supp ¢”) and we put u = Y v’ (which is obviously a
Y
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finite sum). It is clear that u € H'(K) since v € H*(K). It remains to prove

that lim |lu,, — u]}, = 0. This means in view of (7.6), that
lim [|(x")*¢" (U —w)ll, =0

for any y. But it is evident from (7.7) that it suffices to verify v* = ¢"u, which
is clear since u,, — u in &’'(M), hence ¢’ u,, - ¢'u in Z'(M), and (7.7)
implies ¢’u, — v’ in &'(M) (convergence in &/'(M) in the weak sense).

O

We now want to prove that the topology, induced on H*(K) by the norm
Il Il ,is independent of the choice of arbitrary elements in (7.6) (the covering, the
partition of unity and the coordinate diffeomorphisms). For this it is
appropriate to give another definition of this topology.
Let A, be asin Lemma 7.1 so that A _ is a parametrix for A, (relation (7.1) is
satisfied). Then we have
u=A_Au— Ru. (7.8)
Let p > s be a positive integer and Q,, . .., Qy differential operators, generating

the left C*(M)-module of all differential operators of order not greater than p
on M. We then set

(u, v); = (Au, Av) + i (QuRu, Qi R,0), (7.9)
k=1

where u, v e HS(K), (-, ) the scalar product in L2, (M) induced by any smooth
positive density on M. From (u, u), = 0 it follows that A, u = 0 and R,u = 0 and
then, in view of (7.8), we have u = 0. Therefore the scalar product (7.9) is

well defined and we will denote the corresponding Hilbert norm by || - ||/.

Proposition 7.2°. The scalar product (7.9) induces a Hilbert space structure on
H*(K).

Proof- Once again, we need only verify the completeness. For the begin-
ning note, that from the convergence of a sequence u,, € H*(K) with respect
to the norm || - ||, the weak convergence in &'(M) follows. If a sequence
un € H'(K) is a Cauchy sequence with respect to || - ||, then this means, that
the following limits exist in the L2(K)-topology (K some compact set in M)

lim Au, =v, lim QRu, = wy, (7.10)
where Q is any differential operator of order £ p. In particular A,u,, and
R,u,, converge in the topology of LIZOC(M ), so that weak convergence of u,, in
(M) results from (7.8). Denoting the limit of u,, (in the weak topology of
&' (M)) by u, we obviously have
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u=A_—w, (7.11)

-Ss

where wy = lim R,u,,. If as Q in (7.10) we take an elliptic operator of order

p, we have
Qw, = hm ORu, = wy € LIOC(M),

from which w; € H]OC(M) therefore w; € Hj (M), but then w; € loc(K)
for some compact set K since the operators A, and R, are properly supported.
Therefore u € H*(K).

It remains to verify that
lim |lu, —ull, = 0.
We have

Up — U = Up — A—A'U +w = A—-.\'A.\'um - R.\'um - A—-.\*U + w;
= A—X(A.\'um - U) - (Rsum - w1)7

hence

N
lum — ull; S 1AA_ (Asun, — V)| + Z QxR A (Asu — V)l

N
+ 1A (Rt — w) || + Z | QxR (Ryum —w)ll - (7.12)

k=1

(here the norm || - || is induced by the same scalar product (-, -) as in formula
(7.9)).

The convergence to 0 of the first, second and last terms in (7.12) follows
from the boundedness of the operators AA_,, QR A_; and QR as opera-
tors from L?(K) into L2(K ), and in the case of the third term from the fol-
lowing argument. Take an elliptic differential operator Q of order p and its
properly supported parametrix Q;. Then

A.\'(R.\'um — w]) = A.\'Ql Q(R.\'um - w]) + AsR(RA'um - UJ1),
where Re L™ ®. The desired result now follows from the fact that A,Q, is a
properly supported PDO of order s — p <0 continuously mapping L?(K) into
L*(K). O

There also exists a third way to introduce a topology on H*(K), via the
seminorms

lull o=l Aulgll, Ae€Lio(M). (7.13)

Proposition 7.3. The three topologies introduced on H*(K) above (i.e. via
- llss 1|+ )ls and the seminorms (7.13)) coincide.
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Proof. The equivalence of the topologies determined by the norms |||, and
|- |l is clear from the closed graph theorem. The topology given by the
seminorms (7.13) is obviously stronger than the one given by the norm || - |[;,
since the latter can be estimated by a sum of N + 1 semi norms of the type (7.13),
where the corresponding operator 4 is equal to A and Q, R;. To verify the
equivalence of the two topologies, it therefore sufficies to establish that if
A€l o(M) and K, K are compact in M, then the following estimate holds

[Aulell < Cllulls, ueH(K). (7.14)
Now, writing « in the form (7.8) we obtain
Au=(AA_)Au— ARu,
and, since AA_,eLf (M), AR;eL™*(M), (7.14) follows from Theorem

6.6. U

Corollary 7.3. The topology defined in H*(K) by the norms || - || and || - ||,
does not depend on arbitrary elements entering the definition of these norms.

Proposition 7.4. Let K be a compact set in M, such that K = Int K. Then if
ueH*(K), there is a sequence ¢,€ C§ (K), such that ¢,—u as n—+ oo in the
topology of H*(K).

Proof. Follows from Lemma 7.3 taking into account the definition of the
norm |- |l;. U

Proposition 7.5. Let K be a compact set in M and let A€ L7 ;(M), where
either 1 —9 <8< or d<gand M = X an open set in R". Then, provided A is
properly supported, it defines a linear continuous operator

A: H¥(K)—- H*™(K),
where K is a compact set in M depending on K. Without assuming that A is properly
supported, the same holds for the operator A, ¢ € Cy*(M).

Proof. It is most convenient to use the norm | - ||;. Then, to verify the
continuity of 4 acting from H*(K) into H*~™(K), we have to estimate || A,_, Au||
and ||QR,_,,Au| by C||A,u| and C||Q'Ryu| (here Q and Q' are differential
operators). But from (7.8) we have

Au= (AA_,) (A;u) — ARu,
from which
As—mAu = (ASYmAAAs) (Asu) - (As-—mARs)u’

QRs—mAu = QRs-mA—sAsu - QRs~mRsu’

and the required estimate follows from Theorems 6.1 and 6.6, if we take into
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consideration that A,_,AA_eL) ;(M) and that the operators A, , AR;,
OR,_,A_,and QR,_, belongto L™*(M). O

We now introduce topologies in Hj, (M) and Hg,p,,(M).

The topology of H;,.(M) is defined as the weakest locally convex topo-
logy making all the mappings M,: Hj,(M)— H*(supp¢), ¢ € Cy (M) and
M u = @u, continuous. In other words, this topology is given by the system
of seminorms

Nulls,o = llouls;, @eCe(M). (7.15)

The topology on H,,.(M) is defined as the strongest locally convex
topology, making all the embeddings iy : H*(K) — Hym,(M) continuous. The
most important characteristic of this topology (called the inductive topology) is
that a linear map f: H;,,,(M) — Eto any locally convex space E is continuous if
and only if all the compositions f o i,: H°(K)— E are continuous.

These definitions and Proposition 7.5 imply the following

Theorem 7.3. Let A €Ly (M) witheither1 —g<d<goré<gand M =X,
an open set in R". Then A is a linear continuous operator for any s€IR

A: Hepnp(M) - Hip. ™ (M) .
If A is properly supported it extends to linear continuous operators
A: Heyy(M) = Hignp (M)

and
A: Hiy (M) > Hic™(M).

7.6 Embedding theorems. First, note the completely trivial (and already
used) fact, that for s > s’, we have the embeddings

H'(K)cH*(K), Hiy(M)c Hi (M),
Hiomp(M) € Hegp(M)

which are continuous. Less trivial is the following

Theorem 7.4. Let s>s' and K a compact set in M. Then the embedding
operator

iS': H(K)— H*(K)

is a compact operator.

Proof. By the equality (7.8), we obtain
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As’u = (AS’A—S) (Asu) - (As'Rs) u
= (A A_) (Au) = (A A_,) (A Ru) + (A R) (Ryu).

Since Ay A_,e L7 (M) (hence from Corollary 6.1 for any compact set K,
one can find a compact set K,, such that A A _; is a compact operator from
I2(K,) to L*(K,)) it is clear that if u runs through a bounded set in H*(K) (and,
consequently A,u and R,u run through a bounded set in L?(K,)) then A, u runs
through a precompact set in L2(K;). Similarly one shows that in this case
QO R, u runs through a precompact set in L2(K) for any differential operator
Q. But this, in view of the equality (7.8) and the definition of the norm, implies
the compactness of the corresponding set in H* (K3), hence in H ¥ (K), since,
actually, it belongs to H* (K) and the topology in H*'(K) is induced by the
one in H* (K,) provided K C K,. O

A generalization of Theorem 7.4 is

Theorem 7.5. Let A€L} ;(M), A properly supported, either 1 — g <0 <g
ord < gand M = X, anopen set inIR". Let the numbers s, s' € IR be such that s' < s
— m. Let K be a compact set in M and K a compact set in M (depending on K) such
that A& (K) < &' (K). Then the operator

A: HY(K)— H*(K)
is compact.

Proof. Theorem 7.5 is a consequence of Proposition 7.5 and Theorem 7.4, since
the operator A: H*(K) — H* (K) can be viewed as a composition

HY(K) —— H*"™(K) —— H*(K). O]
A l;—m
Denote by C?(M) the space of functions on M having continuous derivatives

of order <p in any local coordinates. The topology in C?(M) is defined by the
seminorms

lull 4, x = sup [Au(x)], (7.16)

xek

where A is any differential operator of order <p. We denote by C§(K) the
subspace of the functions v € C? (M) with supp u = K. Itis clear that the topology
of CP(M) induces a topology on Cg(K), which can be given by a Banach norm.

Theorem 7.6. If s > n/2 + p, then Hj,(M)< CP’(M) is a continuous em-
bedding. If K is a compact set in M, then the embedding H*(K) < C§(K) is a
compact operator under the same assumption s > n/2 + p.

Proof. Since differential operators of order p are continuous maps
H*(K)—> H*"?(K), it is obvious that it suffices to consider the case p=0.
Further, it suffices to verify that for s > n/2, we have a continuous embedding
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H*(K) < C3(K), since the compactness of this embedding is obtained by writing
it as a composition

H¥(K) « H*"%(K) = C3(K)

(e > 0 such that s — ¢ > n/2) and using Theorem 7.4. Finally, it is clear that it
suffices to consider the case of K lying inside a chart, i.e. the question reduces to
the case M =1R"

Thus, let K be a compact set in IR" and s > n/2. It follows from Lemma 7.3,
that it suffices to prove the estimate

sup [u(x)| = Cllull;, ueCg (K), (7.17)

xeR"

where C does not depend on u. We will prove this estimate with C even inde-
pendent of K. We have

lu(x)| = | fe™ Ca@)de| < [la()dE = [1a() <& <>~ d¢
< [Jl1a@)1P<ey*ac] 2 [[<&~*de) 2 = Cllull,,

where C = ([{(&) 72 d¢)'? < + 0, as required. [J
Corollary 74. (H (M) = C*(M).

This corollary is obvious. Let us also note the dual fact: { ] H*(K) = &'(K)

for any compact set K = M. This fact follows from the well-known statement of
distribution theory, that if u € & (K), then u can be written as u = ), Q;v;,

P 1<jEN
where v; € L*(K), K is compact and Q; are differential operators. If m is the
greatest order of the Q;, then ue H™ "(K).

7.7. Duality. Let there be given a smooth positive density du on M. This
defines a bilinear form

Cuy vy = [u(x) v(x) du(x), (7.18)

for instance, if ue C{ (M) and ve C*(M).
Theorem 7.7. The bilinear form (7.18) extends for any s€R to a pairing
(separately continuous bilinear mapping)

Homp(M) X Hioo (M) » € (7.19)

which we will denote as before by < -, - >. The spaces H;,,, and H;, are dual to each
other with respect to this pairing, i.e. any continuous linear functional 1(u) on
H;,.(M) can be written in the form {u,v) for some veH,’(M), and any
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continuous linear functional 1(v) on H (M) can be written as {u,v), where
u € H,mp(M). If the manifold M is closed, then the transformation which attaches
to any ve H (M) the linear functional I,(u) = {u,v) is an invertible linear
continuous operator from H *(M) into (H*(M))* (where the latter space is
endowed with the natural Banach space topology).

Proof. 1. First let us verify that the form (7.18) extends to the pairing (7.19).
Note that the operator A,, appearing in the definition of the Sobolev space
can be chosen symmetric with respect to the given density, i.e. such that
{Agu, vy = {u, A,v) for arbitrary u, ve Cg°(M). Indeed, we may replace A, by
1/2(A,+'A,), without changing the principal symbol. Further, we may suppose
that A, = I and A _; is a parametrix of A; (this can be achieved, if initially we
construct all the A,, s = 0, as symmetric operators, and then consider their
parametrices A’ and take for A_, the symmetrization of A’ :

A =1/2(A-+'4").

From the definition of the topology on Hy,,,(M) it follows, that it suffices to
extend (7.18) to a pairing

HK) x HoS(M) > € (7.20)

where K is any compact set in M. Clearly this is possible for s = 0. For s + 0, we
take u e C(K), ve C*(M) and write u in the form (7.8). Then

{u, vy = {A_Au— Ru,v) = {Au, A_,v) —{Ru,v), (7.21)

from which the extendability of -, -> to the pairing (7.20) follows since A, and
A_ are continuous linear mappings

A HY(K)— LK), A Hl(M)— L (M).

2. Now let /() be a linear continuous functional on H,;’(M). We will show
that it can be written in the form /(v) = (u, v), with u e Hj,,,,(M). First of all,
since C*(M) < H,5(M) is a continuous embedding, the restriction of /(v) to
C* (M) can be written in the form {u, v), u € & (K) for some compact K in M.
The distribution u is thereby uniquely defined and it only remains to verify that
ue H¥(K), i.e. Aue*(K).

But

(Agu, vy = Cu, A0y = [(A,),

and therefore the desired statement can be derived from the fact that A, is a
continuous mapping LZ.(M)— H,,S(M) and also from the Riesz theorem,
which guarantees the assertion for s =0.
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Similarly one shows the representability of the functional /(-) on Hg,,,(M)
in the form /(u) = {u, v), where v e H,5(M).

3. Now let M be a closed manifold and let us verify that the map v — /(")
={-,v) is a topological isomorphism between H *(M) and (H*(M))*.
Obviously this is true for s =0 by the Riesz theorem. Consider the case of an
arbitrary se€IR. Since the bijectivity of the mapv — /,() has already been

established in 2., it suffices to verify its continuity. But this follows at once from
(7.21). O

7.8 Exercises and problems
Exercise 7.1. Verify that é (x) e HS(IR") for s < —n/2.

Exercise 7.2. Show that the embedding operator H*(R") = H* (IR") is not
compact for any s, s'(s>s’).

Exercise 7.3. Let " = IR*/2nZ" be the n-dimensional torus (Z" is the
lattice of points with integer coordinates in IR*). If f € C*(T") (= C5° (")),
then f decomposes into a Fourier series

f(x)= 3 fiet =, (7.22)

keZ"

where f; are the Fourier coefficients, given by the formula
fi=Qm)™" | f(x) e ™ *dx. (7.23)
e

The same formula also applies to fe 2'(T") (= &'(T™)), if as the integral in
(7.23) we take the value of the functional f at the function e ~** ' * (in this case the
series (7.22) converges in the weak topology of 2'(T")).

Show that if fe 2'(T"), then the condition fe H*(T") is equivalent to

Y APA+IKPE < + o0, (7.24)

keZ"

where the left-hand side of (7.24) defines the square of a norm in H*(T"),
equivalent to any of the previous norms.

Exercise 7.4. Show that if A4 satisfies the conditions of Theorem 6.4, then A4:
H*(K) - H*(K) is a compact operator for any selR.

Exercise 7.5. Show that the spaces H*(IR") and H ~*(IR") are dual to each
other with respect to the bilinear form < f,g> = [f(x) g (x) dx.

Problem 7.1. Verify that if N is a submanifold of M of codimension d, then
the restriction map f — f/|y (defined a priori for fe C®(M)) extends for s > d/2
to a linear continuous map
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Hio(M) — Hioe 2 (N) .

Problem 7.2. Show that the map defined in Problem 7.1 is surjective.

§8. The Fredholm Property, Index and Spectrum

8.1 The basic properties of Fredholm operators

Definition 8.1. Let £, and E, be Banach spaces and 4: E; — E, a linear
continuous operator. It is said to be Fredholm if dim Ker 4 < + oo and dim
Coker A < + oo (recall that Ker4 = {xeE,: Ax=0}, Coker4 = E,/Im 4,
where Im A = AE, and the quotient space is meant in the algebraic sense, i.e.
regardless of a topology). The index of a Fredholm operator is the number

index A = dim Ker 4 — dim Coker 4. 8.1

We will denote by & (E,, E,) the set of all linear continuous operators A:
E,— E, and the set of all Fredholm operators 4 € & (E,, E,) will be denoted by
Fred (E,, E,).

Lemma 8.1. Let Ae ¥ (E,,E,)andlet dim Coker 4 < + 0. ThenIm A isa
closed subspace in E, .

Proof. Clearly, Ker A4 is a closed subspace of E,; and therefore the quotient
space E,/Ker 4 has a natural Banach space structure. The operator 4 induces a
continuous map 4,: E;/Ker4 — E, with Im 4, =Im 4 and Ker 4, = 0. Now
let C denote any finite-dimensional subspace of E, for which E,=ImA® C
(direct sum in the algebraic sense). Define the operator

A: E,/Ker A® C— E, (8.2)

mapping a pair {x,c} into 4,x+ ceE,. Obviously 4 is bijective and
continuous, if the space on the left hand side is considered as a Banach direct sum
(e.g. with the norm ||{x cti= x|+ llcll, where llellis defined by any norm on
C). By the Banach inverse operator theorem, Aisa topological isomorphism
1mply1ng that Im A is closed in E; since A~ l(Im A) = E|/Ker A®@O0is closed
mE; /KerAd C. O

Corollary 8.1. Ifdim Coker 4 < + o0 and L, is a closed subspace in E; such
that E, = L, ® Ker 4, then A defines a topological isomorphism A: L; —Im A.

Note that in the case 4 e Fred (E,, E,) there always exists a subspace L, of
this type, since by the Hahn-Banach theorem, we may extend the identity map
Ker A — Ker 4 to a continuous linear operator P;: E; — Ker 4 and then put L,
= Ker P, .
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Corollary 8.2. If A€ % (E,, E,) and dim Coker 4 < + 0, then dim Coker 4
= dim Ker A*, where A* is the adjoint operator A*: E¥ — E¥.

Proof. 1t is known (and trivial) that

Ker 4* = {fe E5: (f,Im A) =0} .

From the closedness of Im 4 and the Hahn-Banach theorem it follows that
ImA = {xeE,:(Ker 4* x) =0},
implying the desired formula. [

Lemma 8.2. Let E be a Banach space andlet T € ¥ (E, E) be of finite rank, i.e.
dim Im T < + 0o0. Then the operator I + T is Fredholm and index (I+T) = 0.

Proof. 1t is easily seen that there exists a decomposition E= L,® L,,
where L, is a closed subspace, LycKerT, L, oIm 7T, dimL, < + co. Then
I+1D)|,=1l,,I+T)L,cL,, because TL,cImT < L,. Therefore L, and
L, are invariant subspaces for (/4 7T) with Im(/4+T)>L,, Ker(I+T) <= L,.
Therefore I+ T'is Fredholm and index (/4 T') equals the index of (I+ T'), viewed
asan operator from L, into L, , which means that the whole matter reduces to a
trivial statement from linear algebra. [J

Lemma 8.3. If A € Fred(E|, E;), then there exists an operator B €
Fred (E,, Ey) such that

BA=I-P, AB=I-P, (8.3)

where P, is a projection onto Ker A and (I— P,) a projection onto Im A (so that
P, and P, are of finite rank).

Proof. Let L, be a closed complement to Ker4 in E; and L, any
complement to Im 4. Define the operator B such that

BA|L,=I|L,’ B|,=0.
From Corollary 8.1 it is clear that Be ¥ (E,,E,)and KerB=L,,ImB=L,,

from which the Fredholm property of B follows. The relation (8.3) is
immediately verified. [J

Lemma 84. Let Ac ¥ (E,,E,) and let B,, B, e ¥ (E,, E,) be such that
BA=I+T,, AB,=I+T,, (8.4)

where T,, T, have finite rank. Then A is Fredholm.
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Proof. The statement follows from the obvious inclusions
Ker 4 = Ker(B, 4) = Ker(I+ 1)),
ImA >Im(4B,) =Im(I+T5)

and from Lemma 8.2. [

Lemma 8.5. Let A eFred (E,,E,), BeFred(E,, E;). Then BA e Fred (E,, E;)
and

index BA = index A + index B (8.5)

Proof. We show first of all, that there exist closed subspaces L,cE;,
Jj=1, 2, 3, such that Kerd|, =0, AL, =L,, KerB|L,=0, BL, = L;,
where codim L; < + 0, j=1, 2, 3. (The codimension of a subspace L of E is
codim L=dim(E/L). Here, in particular we have codim L;= dim(E;/L;),
j=1, 2, 3.) Indeed, if L] is a closed complement of Ker 4 in E;, L} a closed
complement of Ker B in E,, we may put

L,=LynImd, L, =(4],)""(L,), Ly=BL,.

Let us now note the following fact: Let L, L, be closed subspaces in E;, E,
respectlvely, AeFred(E,,E,), Ker4|, =0and AL, = L,. Then, denoting by
A: E,/L,— E,/L, the ‘map induced by A, we have AeFred (E,/L,, E,/L,)
and index A4 = index A. Therefore, using the above constructed subspaces
L;c E; reduces the proof of (8.5) to the case dim E; < + 0, j=1, 2, 3, which
is evident, since if AeZ(E,,E,) and dimE;< +oo, j=1, 2, then
index4 = dimE, — dimE,. [

Proposition 8.1. Fred (E,, E,) is an open subset of & (E,, E,) (in the uniform
operator topology, i.e. the topology defined by the operator norm) and the function

index: Fred(E,,E,)—>Z

is continuous (i.e. constant on each connected component of Fred (E,, E,)). In
particular, if A, is a continuous (in the norm) operator-valued function, of t € [0,1],
with values in Fred (E,, E,) then index A, = index 4, .

Proof. Let Ae€Fred(E,,E,). We have to prove the existence of ¢>0
such that if De¥# (E,,E,) and ||D| <¢ then A+ DeFred(E,,E,) and
index (4 + D) = index 4.

Let Be Z (E,, E,) be an operator such that

BA=I1+T,, AB=I+T, (8.6)

with T}, T, of finite rank (which is always possible by Lemma 8.3). We will verify
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that one may take ¢ = || B||~!. Indeed, let || D|| < &. We have B(4+D) =1+ BD
+ T{ and if we put B, = (I+ BD) ™' B, then B,(4+D) = I+ T, where T, is of
finite rank. Note that index B = index B, . Analogously, there is an operator B,
such that (4+ D) B, = I+ T,, with T, of finite rank. By Lemma 8.4, the operator
A + D is Fredholm and by Lemmas 8.5 and 8.2 we have

index (4+D) = —index B, = —index B = index 4. [

In what follows we will denote by C(E,, E,) the set of all compact linear
operators from E; into E,.

Lemma 8.6. Let E be a Banach space and let ReC(E,E). Then
I+ ReFred(E, E) and index (I+ R) = 0.

Proof. Since I|y.. 4 gy = — Rlxery+ 5> the unit ball in Ker (/+ R) is compact
and therefore dimKer(/+R)< +o0. Further, since R* is also
compact, dim Ker (/+ R)* < + oo and to show the Fredholm property of (I+ R)
it only remains to verify the closedness of Im(/+ R) (since then dim Coker
(I+R) = dimKer (I+ R)*).

Letx,eE,n=1,2,...,and y,= (I+ R)x,— y asn— + co. We need to verify
the existence of an x € E, such that (I+ R)x = y. Let L be any closed subspace
complementary to Ker (I+ R) in E. Adding to x,, vectors from Ker (/+ R) (which
does not change y,), we may assume that x, € L for all n.

Let us show that the sequence x, is bounded. Indeed, if this is not
the case, taking a subsequence of {x,}, we may assume that ||x,||— + o0 as
n— +00. But then, putting x, = x,/||x,|l, ¥, = (I+R)x, we have y,—0 as
n— + 00, and since ||x;|| =1 we may assume that lim Rx, exists. But then

n-+co

also lim x, = —lim Rx, = x and clearly ||x||=1, xe L, (/4 R)x =0, contra-

n-+ oo

dicting the choice of L.
Thus the sequence {x,} is bounded and we may assume that lim Rx, exists

n-+ oo

and, consequently so does lim x,=y — lim Rx,. Denoting x = lim x,,

n-+ o n-+ o n-+ o
we clearly have (I+ R) x = y, proving the closedness of Im (/+ R), i.e. the Fred-
holm property of (I+ R). By Proposition 8.1, we have index (/+ tR) = const for
t€[0,1] implying index (/+ R) = Index/=0. U

Proposition 8.2. Let Ae ¥ (E,,E,) and let there exist B, and B, such that
B A=I1+R,, AB,=I1+R,, (8.7)

where Rje C(E;,E;), j=1,2. Then AeFred (E}, E,).

Proof. It immediately follows from Lemma 8.6 in a similar way to the proof
of Lemma 8.4, [

Proposition 8.3. Let AeFred(E,,E;,), ReC(E\,E;). Then A+ Re
Fred (E,, E,) and index (A+ R) = index 4.
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Proof. Obvious from Proposition 8.2 and Lemmas 8.5 and 8.6. U

8.2 The Fredholm property and the index of elliptic operators on a closed
manifold

Theorem 8.1. Let M be a closed manifold and Ae HLy ;' (M), 1 -9 <6 <.
For any seR construct the operator A;e £ (H*(M), H* ™™ (M)) the extension of
A by continuity.

Then,

a) A,eFred(H' (M), H*"™(M));

b) Ker A, C*(M), therefore Ker A, does not depend on s and will be denoted
simply by Ker 4;

¢) index A, does not depend on s (so we will denote it simply by index A4) and is
expressed by the formula

index 4 = dimKer 4 — dim Ker 4%, (8.8)

where A* is the formal adjoint ¥DO (cf. §3) in the sense of a scalar product
determined by any smooth density.

d) if De L™ (M), where m' < m, then index (4+ D) = index 4.

Proof. By Theorem 5.1 we may construct a parametrix Be HL, 5 ~™(M) of
the operator 4. In view of Theorem 7.5, the operators R;e L™ *(M) can be
extended to operators R; (e C(H*(M), H*(M)) for arbitrary selR. But now,
the Fredholm property for all the operators 4 follows from proposition 8.2.

Further, from Theorem 5.2 statement b) of the theorem follows and since
A* e HL}';", we also obtain c).

Finally, d) follows from Proposition 8.3 since if D €Ly s(M), m’ < m, then
DeC(H*(M), H*"™(M)) by Theorem7.5. [J

Remark 8.1. The assertion of this theorem is clearly true not only for scalar
operators, but also for operators acting on the sections of vector bundles.

Remark 8.2. For classical elliptic #DO, d) says that the index depends only
on the principal symbol. It is easy to deduce from Theorem 6.2 that the index
does not change with arbitrary continuous deformations of the principal symbol
within the class of homogenous elliptic symbols. This is important in the index
theory of elliptic operators.

8.3 The spectrum (basic facts). Let M be a closed manifold, 4 e HLy;" (M),
1—0<d<g, m>0. In the space L[*(M) consider the unbounded linear
operator defined by 4 by taking as domain the space H™(M). We will denote this
unbounded operator by Ay, or sometimes just by A if there can be no confu-
sion. So the domain of Ag is D,, = H"(M).

Proposition 8.4. The operator A, is closed, i.e. if foru,e H"(M),n=1,2,...,
the limits u= lim u, and f= lim Au, exist in L*(M) then ueH™(M)
and Au=f. "7° mete
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Proof. Since convergence in L*(M) implies convergence in 2'(M) and
since 4 is continuous in 2'(M) (in the sense of, e.g. the weak topology), we
obtain Au = f, and then ue H™(M) in view of Theorem 7.2. [J

From the fact that C* (M) is dense in H™ (M) (in the H™(M)-topology), we
have

Corollary 8.3. The operator A, is the closure (in L*(M)) of the operator
A | C*(M) *

Definition 8.2. The spectrum of A is the subset o (4) of the complex plane,
defined as follows: for Ae T, 140 (A) is equivalent to (A4, — AI) having a
bounded everywhere defined inverse (4, — AI) ! in I*(M).

Itis easy to verify that o (4) is a closed subset of C and that (4, — A1) 'isa
holomorphic operator-valued function of 4 on C\o(4) with values in
& (L*(M), L*(M)). The function R, = (4, — AI)~! is called the resolvent of A.

Proposition 8.5. Let a fixed positive smooth density du(x) be  fixed on M.
Then the conditions ). ¢ o (A) and Ker (A — AI) = Ker (A* — A1) = 0 are
equivalent.

Proof. The statement follows from Theorem 8.1, since (4 —Al) e HL} ;" (M)
because m>0. [

Theorem 8.2. (the inverse operator theorem) Let A€ HLy:;'(M), 1 -9 <6
<@, m>0 and let A, be constructed as before. Let also Aéo(A). Then
(Ag—AI)™' is an extension by continuity (from C®(M)) or restriction
(from 2'(M)) of an operator from HL,"s ~™(M) (we denote it by (A—AI)™").
In particular, (A, — A1)~ is compact in L2 (M).

Proof. Tt suffices to consider the case A=0. Let Be HL,s "™(M) be a
parametrix for 4. More precisely

AB=I-R (8.9)

where Ris an operator with smooth kernel R (x, y) (for simplicity we assume that
a smooth, positive density on M is fixed, so the kernel R(x, y) is an ordinary
function on M x M). It follows from (8.9) that

A '=B+ AR, (8.10)

and it remains to verify that 4~ R is an operator with smooth kernel. But by
Theorem 7.2, 4! maps H*(M) into H**™(M) for any s € R, and, moreover, is
continuous by the closed graph theorem. By the embedding Theorem 7.6, 4!
maps C*(M) into C*(M). But then 4~ 'R is given by the smooth kernel

R (x,y)=[A"'R(,»l(x). O
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Theorem 8.3. Let a fixed smooth positive density dju(x) on a closed man-
ifold M be fixed. Let A* = A € HLy;"(M), 1 — o9 £ 8 <o, m > 0. Then
Ag is a self-adjoint operator in L2(M) and there exists in this space a com-
plete orthonormal system {¢;}, j = 1,2, ... of eigenfunctions of Ao. Here
@; € C®(M), Ap; = A;¢; and the eigenvalues A are real, with |A;| — +o00
as j — +o0o. The spectrum o (A) coincides with the set of all eigenvalues.

Proof. Note first of all that ¢ (4) = IR in view of Proposition 8.5, since 4 is
symmetric on C* (M) and can thus have no non-real eigenvalues.

Next, we want to show that ¢ (4) & IR. Assuming ¢ (4) = R then we could
for any 4 eR find a function ¢, € C*(M), such that A, = A¢, and | ¢,|| =1.
But then (¢;,9,) =0 for A+ u by the symmetry of 4, contradicting the
separability of L2(M).

Now take ,€R\d(4). By Theorem8.2, R, =(4—4,I)"" is a compact
self-adjoint operator in L?*(M). By a known theorem from functional analysis
there is an orthonormal basis {¢;} i~ | of eigenfunctions, where the eigenvalues r;
tend to 0 as j— + co.

Now note that r; + 0 (since Ker (4 — 4,/) "' = 0). The condition R, ¢; = r;¢;
can therefore be rewritten in the form

(A—'AOI)(»D]’: "j‘l(Pj
or

Ap;=(ri '+ 1) o;. 8.11)

[tis obvious from (8.11) that ;€ C* (M) and the ¢, are eigenfunctions of 4 with
eigenvalues A; =r; ' 4+ 4,. It is also clear that |A;| > + o0 as j— + 0. The
remaining assertions of Theorem 8.3 are obvious. The fact that the spectrum
0 (A) coincides with the set of all eigenvalues {4;} follows from Proposition 8.5
and the self-adjointness from the representation A = R, U+ xol. O

The following theorem extends one of the statements of Theorem 8.3 to the
non-selfadjoint case.

Theorem 8.4. Let AeHL}'(M), 1 —9<6<¢o and m>0. Then for the
spectrum o (A), there are two posstbzlmes

a) o (A) = C (which, in particular, is the case if index 4 + 0);

b) o (A)is a discrete (maybe empty) subset of C (subset without limit points).

If b) holds and ), €6 (A) then there is a decomposition [*(M) = E, @ E],
such that the following conditions are satisfied:

1) E; « C*(M), dim E, <+ o0, and E, is an invariant subspace of A such
that there exists a positive integer N >0 with (A=A, DY E, = 0 (in other words,
the operator A |k, has only the eigenvalue A, and is equal to the direct sum of
Jordan cells of degree <N);

2) E; is a closed subspace of L*(M), invariant with respect to A, (i.e.
A, NE,) < E,) and if we denote by A;_the restriction A, | g, (understood as
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an unbounded operator in E, with domain D4, N E; ), then A, — Aol has a
bounded inverse (or, in other words, Ay ¢ o (Alg ).
0

Proof. 1. Let 6(A4) = €. Let us prove that ¢ (4) is a discrete subset in C.
There is a point 1€ €\ g (4) and we may, without loss of generality, assume
that 1, = 0, so that by Theorem 8.2 4, has a compact inverse 4, '. Then since
Ay— A= (I-245")A4, the inclusion A€o (A4) is equivalent to A+ 0 and
A7 'ea (A "). Discreteness of ¢ (4) follows from the fact that o (4, ') may have
only 0 as an accumulation point.

2. Leta(A4) # C, 1, €0(A). Once again, without loss of generality, we may
assume that A, = 0. Let Iy be a contour in the complex plane, encircling 0 and
not containing any other points of ¢ (4) (e. g. a circle, sufficiently small and with
centre at the origin). Consider the operator

1
Pp=— — . .
T I{Rldl (8.12)

Standard arguments (cf. Riesz, Sz.-Nagy [1], Chapter XI) show that P, is a
projection, of finite rank in view of the compactness of R,, commuting with
all the operators R, (and with A4, in the sense that Py 4, A,P,) and such that
if E, =P, (L*(M)), E, =(I—P,) (L*(M)), then conclusions 1) and 2) of
Theorem 8.4 hold.

We leave it as exercise for the reader to take care about the details. We note
only that the inclusion E,, C C®(M) follows from A{ E,, = 0 if we take into
account the ellipticity of A and utilize the regularity Theorem 5.2. O

8.4 Problems

Problem 8.1. Let E be a separable Hilbert space, n, (Fred (E, E)) the set of
connected components of Fred (E, E) provided with the semigroup structure
induced by the multiplication. Show that taking the index gives an isomorphism

index: n, (Fred (E,E)) ~ Z .

Hint. An operator A of index 0 can be written in the form A = Ay + T,
where Ay is invertible and T has finite rank. Show (by use of the polar decom-
position) the connectedness of the group of all invertible operators in E.

In all the following problems M is a closed manifold and 1 — ¢ < < g,
m>0.

Problem 8.2. Let A e HL}:;"(M). Prove that 4 is a Fredholm operator in
C*(M), i.e. that dimKer 4 < + 00, AC®(M) is closed in C*(M) and dim
Coker 4 < + 00, where Coker A= C*(M)/AC®(M). Show that AC®(M)
consists of all fe C*(M) for which (f, g) = 0 for any g e Ker A* (here (-, -)isa
scalar product determined by some smooth positive density and A* is the adjoint
¥DO with respect to this scalar product).
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Problem 8.3. Let A€ HLY (M) and m, > 0. Let there be given on M a
smooth positive density defining the scalar product (-, +) and the formal adjoint
¥DO A*. Assume A = A*. Let Ay be the closure of the operator A|ceo ).
Then Ay is self-adjoint in the Hilbert sense in the space L*(M).

Problem 8.4. Let A€ HLY *(M), let A* be the formal adjoint operator and
A, A% the closures of 4 | o« and A*| ¢« in L? (M) respectively. Show that 4,
and A¥ are adjoint to each other in the sense of the Hilbert space L?(M).

%*
Hint. Consider the matrix of YDO A = (?4 61 )

Problem 8.5. Find an example of an operator A€ HLT'§(M) for which
g(4)=C.

Problem 8.6. A sequence of Hilbert spaces E; and linear continuous
operators d;:

d q 4 dy. dy- 4
0 —E,—— FE —— ... 5 Ey | —— Ey,——>0

(8.13)
is called a complex if d;,,d;=0forall j=0,1, ..., N-2. Put

Z'=Kerd;, B'=Imd;_,, H'=2Z/|B’, j=0,1,...,N.

(if (8.13) is a complex, B’c Z’). The spaces H' are called the cohomology
of the complex (8.13). The complex is called Fredholm if dim H’ < oo for all
j=0,1,..., N.

a) show that if the complex (8.13) is Fredholm, then the B’ are closed
subspaces of Z’.

b) Let A;=06;d;+d;_,6;_,, where §;=d}. The operators 4; are called
the Laplacians of the complex (8.13) (or the Laplace-Hodge operators). Put
I'’=XKer 4;. Show that for the complex (8.13) to be Fredholm it is necessary
and sufficient that all 4; are Fredholm operators in E,j=0,1,2,..., N. In
this case

dim H' = dim I'/.
More precisely, '’ Z/ and the map I'’— H’ induced by the canonical

projection Z/— H/ is an isomorphism (in the case of a Fredholm complex).
¢) Put now

Y(E)= Y (1) dim b

=0

(the Euler characteristic of the Fredholm complex E). Prove that if N= 1, then
the Euler characteristic of the complex
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0> Ey—% > E, -0

is simply the index of d,.
Prove thatif dim E; < 400, j =1,2,..., N, then

X (E) = i(—l)fdimE,.

j=0

d) Show that y (E) does not change under a uniform deformation of all the

operators d; if under this deformation the sequence (8.13) remains a Fredholm
complex.

Problem 8.7. Let V;(j=0,1, ..., N) be vector bundles on a closed manifold
M and H*(M,V)) the Sobolev spaces of sections. Let d;: C*(M,V)) - C®
(M, V1) be class1ca1 ¥DO of the same order m. Let T (M ) be the cotangent
bundle over M without the zero section and mo: T (M ) — M the natural
projection. Assume that the operators

0 50 C=(M, Vo) > C(M,V;) = -+ == C2(M, Vy) = 0
(8.14)
form a complex. Let ad' §V,—>n§ V., be the principal symbols of the
operators d; (homogcnous functlons in ¢ of order m). The complex (8.14) is
called ellzptzc if the sequence of vector bundles

aq 04

ol
> Tk o, g% L e ok R
0 gV, > nd V) nEVy 0

is exact (i.e. an exact sequence of vector spaces at every point (x, £) € T (M)).
a) Show that ellipticity of the complex (8.14) is equivalent to ellipticity
of all the Laplacians A; = §;d; + d;_18;_1, where §; is the ¥DO adjoint to
d; with respect to some density on M and a Hermitean scalar product on the
vector bundles V.
b) Show that if (8.14) is an elliptic complex, then for any s € IR, the complex

0—= H'(M, Vo) 2 HS™(M, V) S e, gstNm(y, Vy) 2

is Fredholm and the dimension of its cohomology (and thus the Euler
characteristic) does not depend on s. The cohomology itself can be defined also
as the cohomology of the complex (8.14), i.e. putting

= Ker(d;| com, V,.))/dj—l(cw(M, Vi-1)-
Problem 8.8. Show that the de Rham complex on a real n-manifold M

0 — A%(M) 45 AV (M) = A2(M) - - s AN (M) — 0
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(A/(M) is the space of smooth exterior j-forms on M, dis the exterior differential)
and the Dolbeault complex on a complex manifold M, dimg M = n,

0 —> AP°(M) o A2 (M) - - T gPM(M) — 0

(AP 9(M) is the space of smooth forms of type (p, q) on M and 4 is the Cauchy-
Riemann-Dolbeault operator) are elliptic complexes.

Derive from this the finite-dimensionality of the de Rham and Dolbeault
cohomology in case of a closed M.



Chapter II
Complex Powers of Elliptic Operators

§9. Pseudodifferential Operators with Parameter. The Resolvent

9.1 Preliminaries. Let A be a subset of the complex plane (in the
applications this will, as a rule, be an angle with the vertex at the origin). In
spectral theory it is useful to consider operators depending on a parameter A € A
(an example of such an operator is the resolvent (4 —AI)"1).

To begin with, we introduce some symbol classes.

Let X be an open set in IR” and let a(x, 6, 4) be a function on X x RN x 4,
xeX,0eRN leA.

Definition 9.1. Let m, g, §, d be real numbers with 0£6<9<1,0<d<
+ 0o. The class S7' 5. ,(X x RY, A) consists of the functions a(x, 6, 4) such that
1) a(x,6,4,) e C*(X xIRY) for every fixed A, € A;

2) For arbitrary multi-indices « and B and for any compact set K C X
there exist constants C, 4 ¢ such that

10508a(x,0,4)| £ C, 5 x (141014 |4y elel=2181, 6.1

for xe K, 0 eIR¥, 1€ A. As usual we put
ST(XxRY, A) = () S™, ,(XxRY, A)

meR
(the right-hand side does not depend on g, 6 and d).
Ifa(x,y &, 1) € 8§75 ,(X x X x IR", A), we may construct a ¥DO A,,
depending on the parameter A € A:

(Au)(x) = [[e' ¢ a(x,y, ¢, 4) u(y) dyde, .2
for ue C§(X). In this case we will write
A e Ly 5 4(X, ).

Note that 4, e L™ (X, A) if and only if the operator 4, has a smooth kernel
K, (x, y) for any fixed A € 4 and there exist constants C"yx (K a compact set in X,

M.A. Shubin et al., Pseudodifferential Operators and Spectral Theory

© Springer-Verlag Berlin Heidelberg 2001
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o and f multi-indices and N a positive integer) such that the following estimate
holds

10305 K, (x, ») | < Clx(1+ 14D, x, yek. 9.3)

Many of the statements about DO without a parameter (cf. §§3—7) can
also be proved for the case with a parameter A. We indicate now some of these
statements, which are necessary in what follows.

First, note that the whole theory of asymptotic summation (Definition 3.4
and Propositions 3.5 and 3.6) carries over to symbols depending on a parameter.
The corresponding formulations are obtained by changing S7;(X xRY) to

ws.a(XxIRY, A) and the proofs are almost verbatim repetitions of the
arguments in 3.3 and are left for the reader as an exercise. We only state
that the role of (8> in these proofs (as in the following) is now played by
(1+101> + A9 172,

Further we will call an operator A, € L} 5. ,(X, A) properly supported if it is
uniformly properly supported in 4, i.e. there exists a closed set L = X x X, having
proper projections on each factor in X x X, such that supp K, c L for all A€ 4.

Note that any operator A€l ; ,(X,A) can be decomposed into a
sum A4 = A, + R,, where A, (depending on a parameter) is properly supported
in the sense described and R, € L, 3 ,(X, A). For properly supported ¥DO A,
depending on a parameter, the symbol o, (x,¢) = 0,(x,¢, 1) is defined and
a theorem of type 3.1 is valid. Naturally, we have to interpret formula (3.21)
taking the parameter into account, i.e.

1
O-A(xaés'l)_ Z a—'agl);a(x’yaé9'{)|y=xe

la]SN-1

eSr; 8 N (X xR 4).

In an analogous way Theorems 3.2-3.4 on the transpose and adjoint operators
and composition can be generalized.

Exercise 9.1. Prove all the statements in sec. 3 in the case of operators and
symbols depending on a parameter.

Further, repeating the arguments of §4, for 1 — ¢ < § < g, we may introduce
the classes L7 ;. ;(M, A) on a manifold M.

Let us now pass to considering hypoellipticity and ellipticity.

We introduce the class HS;"s"3 (X x IR", A) of symbols o (x, &, 1) (we will call
them hypoelliptic with parameter), belonging to Sy 5 , (X x IR", A) and satisfying
the estimates

CrUE1+121")™ < o (x, &, D] < Co(1E1+1A1M)™, 0.4

for x € K (K compact in X), |£|+|A| = R, C, > 0and R, C,, C, may depend on
K;
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0020 (x, &, D] 671 (x,&, D) < Cyp x(IE1H A 72V (9.5)

for xe K, ||+ |A| = R (here, as above, R may depend on K).

We will denote by HL}y; (X, A) the class of properly supported ¥DO
(depending on the parameter A € A), whose symbols belong to HS} ;"0 (X x
IR", A). We have an analogue of Theorem 5.1:

If AeHLY j'y(X, A), then there exists an operator B;e HL, 50 ™(X, A)
called the parametrix of the operator 4, such that

B,A,=I+R,, AB,=I+R; (9.6)

where R, R} € L=°(X, A). The same statement is also true when X is a
manifold.

Exercise 9.2. Prove this analogue of Theorem 5.1.

It is natural also to consider classical ¥DO depending on a parameter. In
this case A is assumed to be an angle with the vertex at 0. The corresponding
symbols a(x, £, ) admit asymptotic expansions (for [£| + |1|"/* > 1) of the
form

a(x,,)~ Y, a,_;(x,¢4), ©.7)
j=0
where a,,_;(x,¢,4) is positive homogeneous in (¢, 4'/) of degree m—j, i.e.
(16, 40) = " ia, (%, &, ) (9.8)

for >0, Ae A and 1?1 € A. Here m can be any complex number. This class of
symbols will be denoted by CSJ'(X xIR", A) and the corresponding class of
operators by CLZ (X, A). This class is stable under composition, taking the
transpose and taking the adjoint.

We will say that the operator 4, € CL} (X, A) is elliptic with parameter if it is
properly supported and

a,(x,&,A)+0 if xeX and |E[+|A["#0. 9.9

It clearly follows that A,eHLT'7 ,(X,A). There exists a parametrix
B,e CL;™(X, A) of a classical elliptic operator with parameter, which is also
an elliptic operator with parameter.

Example 9.1. Let A be a differential operator in X of degree m and I the unit
operator. Then 4 — Ale CL (X, €) and the principal symbol is given by the
formula

a, (x,&,A) =a,(x,&) — 4, (9.10)

where a,, (x, £) is the principal symbol of A. If A is a closed angle in the complex
plane with vertex at the origin such that a,,(x, ¢) for |£| = 1 does not take values
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in A, then the operator 4 — A/ is elliptic with parameter (and, in particular,
belongs to HL ", (X, A)).

sm

9.2 Norms of operators with parameter. In this subsection we will consider
operators with parameter of two kinds:

1) operators 4, in R", such that supp K, lies in a fixed compact set RcR?"
(where 0<6<9=1);

2) operators on a closed manifold M (here, as usual, we assume 1 — 9 < o
< 0).

In what follows we will write 4, € L7 5. ; (X, A) keeping in mind that X = IR"
or X = M and that 1) or 2) is fulfilled.

We denote by ||4|| ,—, the norm of 4 viewed as an operator from H*(IR")
into H*~'(IR") or from H*(M) into H*~!(M) (here / and s are real numbers). Our
aim is to study the dependence of || 4, ||, ,-, on A for large |A].

Theorem 9.1. Let A, e L7 ;. ,(X,A),l Z mands,leIR. Let one of the numbers
6, s, s—1 be equal to 0. Then

14lls,s-1 S Co (A+IAD™,if 120, 6.11)

[4all s S G (UH[A) 7™ i 1<0. (9.12)
Corollary 9.1. If A;e L7 5. ,(X, A), where m £ 0, then
4,0 < CA+]A1M)m, (9.13)
where || A, || denotes the operator norm of A; in L*(X).

We will need the following useful
Lemma 9.1 (Schur Lemma). If A is an operator with the Schwartz kernel

K 4 such that
sup [ |Ka(x,y)ldy <C and sup [ |Ka(x,y)ldx < C,

then
lA:L? - L?| <C.

(This lemma holds for integral operators in L? on any measure space, or for
integral operators L2(Y) — L2(X) for any measure spaces X, Y.)

Proof. By the Cauchy-Schwarz inequality we have

1Au()2 < (f 1K, Dllu()ldy)’
= ([ 1Ka(t, )IK ()12 () Idy)”
< [1Ka(x, »)Idy [ 1Ka(x, y)llu(y)|*dy
< C [|KaCx, »llu(y)|*dy.



§9. Operators with Parameters 81

Now integrating with respect to x and changing the order of integration we
obtain the desired norm estimate. [J

Proof of Theorem 9.1. 1. Note first of all that a partition of unity reduces
the case X = M to the case X = IR", which we will now study.

2. Consider first the case s=/=m=0. The statement of the theorem
reduces to the estimate

l4;ll = C, 9.14)

which is proved by repeating verbatim the argument in §6 (we recommend the
reader to work this through as an exercise). Note now that the estimate (9.14)
could be proved directly utilizing the results from §6 if the constants

Cop(A) = sup |820%a(x, &, )| (EyerI=21P] (9.15)
x, &

where bounded as |A|— + oo. This evidently follows from (9.1) for § = 0, but for
6 > 0 some of the constants C, ;(4) can grow as |A|— + co. Therefore, for > 0
it is indeed necessary to repeat the argument from §6.

3. Now consider in IR" the standard operator-valued function
?,()eLy . ,(R", €) with the symbol ¢,,(x,&, A) = (1+|&]*+ |A]**)™2. This
YDO with parameter will be useful to us, although it does not satisfy condi-
tion 1).

Let us estimate the norm of the operator @,,(4). The operator ¢,,(0) induces
an isometric isomorphism of H™(IR") onto L*(IR"). Therefore

DD, 5-1 = 195~ (0) D, (2) D (O]

But &,_,(0) ®,,(4) @_,(0) =,,(4) ¢_,(0) is simply the multiplication operator
by (1+]E|>+|A]2)™? (14 1£]?)~"2 of the Fourier transform #(¢) in L*(IR")
and therefore its norm is equal to

Wt (A) = sup (14[E12+[A129)™2 (14113712

{eR"
We obviously have

Y (A) £ Csup (1+]&]+ A1) A+1ED T,
(eR”

where C only depends on m and / (but not on A).
Now, from the easily verified relation

sup (1+x+0)"(1+x) ‘=

x20

A+om, if 120,
C, "', if 10 and =R,

(we assume m < [ everywhere) it follows that
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Wml(’l) § le(1+|/1|”d)ma lf I.Z_Oa
WMI(A) é le(1+|'1|1/d)m~ls lf 1§0a

i.e. for @, (4) one of the norm-estimates (9.11), (9.12) holds as asserted in the
theorem.

4. Consider now the general case 4, L7 ;. ,(IR", A). We obviously have

I 44lls, -1 = (| P (A) - (P (D) - A I, -
SN lls -1 12-m (D) 4l s (9.16)

and analogously

“A).”s,s—l = “(A}l(p—m(/l)) ¢m('{) "s,s—l
sS4 @D lls-15-1 1 PmD) Nl 5-1 - 9.17)

Using the already proven norm-estimate for ||®, (1), ,-, we see that in
order to complete the proof of the theorem when s = 0 or s — / = 0 it suffices to
verify that

1P-nDAN=C, 4 S (DISC. (9.18)

5. Let us define d~5_,,, (1) as an operator with the Schwartz kernel which is
obtained by multiplying the Schwartz kemel of ®_,, (1) by ¢(x — y), where
¢ € CP(R"Y), ¢ = 1 in a neighbourhood of 0 € IR". Then &_,(A) is a
uniformly properly supported ¥DO in LT, ,(IR", €). Let us write

&_,(A) =P_,(A)+ R_,(V) (9.19)

and investigate the remainder operator R_, (A) which has a Schwartz kernel
Kr_,, vanishing in a e-neighbourhood of the diagonal. In fact it is a convolu-
tion operator, so K_, depends on x — y and A only. It is easy to see from the
construction of R_,,(A) that Kz_, (x, y; A) = r_,(x — y, A) with

rom(@ ) = [ €71 = @)1+ £ + A2 dg,
IRH

where ¢ € C°(IR"), ¢ = 1 is a neighbourhood of 0.

Now it is easy to prove that r_,(-,A) € S(R") for every fixed A € C.
Moreover, all seminorms of r_,, (-, A) in S(IR") decay as |A| — oo faster than
any power of |A|. Indeed, we can apply the standard integration by parts to get

rom(@,A) = [ €127V (1 = 9(2)) [(= 4" (1 + €17 + [A2/) 2] gk,
Rn

hence
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Do, (z,\) = [ 2°DP [ 2|7 (1 — 9(2))]
[Rn

X [(=2)" (1 + |6 + A7) dg,

for an arbitrary integer N > 0 and any fixed multiindices «, . The integrand
can be estimated by

C(1+ [z)™2V (1 + [ED¥I(L + |E] + |a|V/4)=m=2V

with a constant C > 0. We can assume that m + 2N > 0 and use the obvious
estimate

(1 + 181+ YD ™2V < (14 [£)™2N (1 4 AV /2N
to arrive to the estimate
29D r_(z, )| < Copn (1 4 A4V,

which holds for sufficiently large N and implies the desired result.

6. Now we will sketch two possible proofs of estimates of type (9.18) for
R_,(M)A, and A, R_,,(A).

Let us recall that it is assumed that the Schwartz kernels of A; are supported
in a fixed (independent of 1) compact subset of IR" x IR".

(a) Note that the proof of the boundedness result (e.g. Proposition 7.5) im-
plies that

”A)\”A\',.\'—m < C(l + |)'|)Ma

where M = M(s, A) is independent of A. This is a rough estimate and it is
easy to obtain by following the steps of the proof of Proposition 7.5 and of the
necessary results from Sect. 6.

Now note that R_,, (1) is infinitely smoothing in the Sobolev scale H*(IR"),
and, more precisely,

IR-mMllss < Cyrn(L+1ADTY

for all s,t € IR and N > 0. This holds because the convolution operator
R_..(A) can be presented as the multiplication of the Fourier transform by a
function 7_,,(€, 1) = F,..r(z, A) which is in S(IR") with respect to § with
seminorms which decay as |A| — oo faster than any power of |A| due to the
estimates obtained in the first part of my comments to this question above.

Combining the two inequalities above we immediately obtain the desired
estimates of the type (9.18) for R_,,(A)A, and A, R_,,(A).

(b) Another way to establish these estimates is to study first the structure
of the operators R_,,(A)A, and A,R_, (1). It suffices to consider the operator
A, R_,,(A) and then use the relation
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(R-n(M A" = ATR_, (M)

to establish the same estimates for the operators of the type R_,,(1)A,.
Clearly A, R_, (1) can be written in the standard form (3.9) with the symbol
Oam(x, &) = 04, (x, E)r_, (&, 1), where the function 7 was defined above. Note
that o4, (x, £) has a compact support with respect to x, uniformly in &. Taking
into account the behavior of 7 we see that o, , (x, £) satisfies the estimates

|8g DL 0y (%, E)] < Copmmn(l +1ENT A+ MDY

for any M, N > 0 and any multiindices «, B. The Schwartz kernel of the
operator A, R_,, (1) has the form

KA('x7 )’) = f ei(X-}’)‘EUA(x’ S) d-s
R»

The estimates for o, immediately imply that
Ky (x, )] < CulL + b = 37",
and the required norm esfimates follow from the Schur lemma.
7.Now let § = 0. It is clear from (9.16) that we need to show that
[P-m (M) Axllys < C, (9.20)
where C does not depend on A (but may depend on s). Clearly
1P M) Asllss = 19,(O)(P_, (V) A) D, (0)]]. ®.:21)

Acting as in the part 5 of this proof, we may replace &®,(1) by a properly
supported ¥DO &, ()) (forany ¢ € IR) and instead of (9.20) prove the estimate

18, (0)P_, (M)A, P_,(0)]| < C. (9.22)
Denote the symbol of &_,,(A) A, by b(x, &, A). We claim that
b(x,€,1) € 825, (IR"; A)

in the sense of the uniform classes in IR" (see problems 3.1 and 3.2), and in
particular b(x, £, 1) € S)((IR*) uniformly in A, i.e.

sup [|9;87b(x, £, 1)|(§)*"] < +o0

x,EX

Using an appropriate composition formula (e.g. in the uniform classes dis-
cussed in Problems 3.1 and 3.2) we see that the same estimates hold for the
symbol a(x, &, 1) of the operator @,(0)D_,, (1) A, D_,(0).

Now applying the boundedness theorem (again extended to uniform opera-
tors in IR") we get the desired estimate (9.22) for the operator norm.

Another possible way of arguing (to avoid using uniform operators in IR*):
introduce appropriate cut-off functions to reduce everything to functions sup-
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ported in a fixed compact set, and then investigate remainders, using the Schur
Lemma. 0O

9.3 The inverse of operators with parameter. In this part we will consider
only operators on a closed manifold M.

Theorem 9.2. Let A, e HLT ["y(M, A). Then there exists R >0, such that for
|A| = R, the operator A, is invertible with

A7V eHL, 5y (M, Ap), (9.23)

where Ag=AN{A||A|Z R}. More precisely, if B, is a parametrix for the
operator with parameter A, i.e. condition (9.6) is fulfilled, then

A7 = BieL (M, Ay). (9.24)

Proof. Let B, be a parametrix for the operator 4,. Then it is obvious from
(9.6) that it suffices to prove that / + R, with R, € L™ ® (M, Ay) is invertible for
small 4 and

I+ R) ' —TeL (M, Ay). (9.25)
Note that for arbitrary N> 0 and s, te R

IRl < CVA+12D7Y. 9.26)
From this it follows, in particular, that there exists R > 0 such that || R, || < 3 for
|A| 2 R and hence (/ + R,) ™! exists for 4 € A, at least in the space L*(M). Now,
I+ R, is Fredholm in each of the spaces H*(M) (formally this is a consequence
of the ellipticity of / + R, and Theorem 8.1, although it is easy to obtain directly)
and has everywhere the same kernel and cokernel, so that the invertiblity of
I + R, for |[A| 2 R is guaranteed in each of the spaces H'(M).
To prove (9.25) it is convenient to use

(I+R) '—=I=—R,(I+R)"" 9.27)

and (9.26). Denoting the left hand side of (9.27) by Q, we see that estimates of the
form (9.26) hold for Q,.
The kernel Q,(x, y) of Q, can be expressed by the formula

Q:(x,»)=10:0( = 1), (9.28)

where 6 (z—y) is the d-function (in z) at a point y € M on which it depends as a
parameter. The operator @, in (9.28) acts on the variable z and the result is taken
at the point x. Note that if s < —n/2, then 6 (- — y) e H*(M). Further, § (- — »)is
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a differentiable function of y with values in H*~* (M) and is more generally a k
times differentiable function of y with values in H*~*(M). Therefore from (9.26)
it follows that estimates of the form (9.3) hold for the kernel @, (x, y), which also
demonstrates that Q, e L™ °(M, A,). The inclusions (9.23) and (9.24) then also
readily follow. [J

9.4 Theresolvent of an elliptic operator. Returning to example 9.1 in the case
of an operator on a manifold and applying the results obtained we get

Theorem 9.3. Let A be a differential operator on a closed manifold M with
principal symbol a,, (x, &) and A a closed angle in the complex plane C with vertex
0 € C. Let A be elliptic with parameter relative to A, i.e. for £ + 0, a,,(x, £) does not
take values in A. Then

a) there exists R >0 such that A — Al is invertible for A € Ay with
(A=AD"'eCL,™(M, Ay); (9.29)
b) the following norm estimate holds
[(A=AD" g5 S Cof|ATT", 0=ISm,  Aedg,  (9:30)

where s is any real number.

Proof. a) follows from Theorem 9.2 and b) from a) and Theorem 9.1. O
Corollary 9.2. Under the conditions of Theorem 9.3 we have
I(A=AD) " | S ClIAl, A€y, 9.31)

Corollary 9.3. Let A be an elliptic self-adjoint differential operator on a closed
manifold M with principal symbol a,,(x, £). Assume that a,,(x, &) > 0 for all (x, £),
E+0. Then A is semi-bounded from below, i.e. there is a constant C > 0 such that
Az —Clor

(Au,u) = — C(u,u), ueC>(M). (9.32)

‘We mention here another important fact, namely that under the condition of
ellipticity with parameter, the resolvent (4 — A7) ™! differs from the parametrix
only by an operator of L™ *(M, A). This is used in the theory of complex powers
along with the explicit construction of a parametrix as given in the elliptic theory
(cf. section 5.5).

Problem 9.1. Extend the theory of elliptic operators with parameter to the
case of matrix operators, i.e. to systems.
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Hint. The condition of ellipticity with parameter for a matrix function
a,(x, &), means that det (a,,(x,£) — 1) #+ 0 for £ +0 and 4 € 4 or, equivalently,
that the eigenvalues of a,, (x, &) do not belong to A for ¢ + 0.

Problem 9.2. Let A be an elliptic differential operator on a closed manifold
M, and suppose that for some angle A the operator 4 — A/ is elliptic with
parameter for A € A. Show that index 4 = 0.

§10. Definition and Basic Properties of the Complex Powers
of an Elliptic Operator

10.1 Definition of the holomorphic semigroup 4,. Let 4 be an elliptic
differential operator of order m on a closed n-dimensional manifold M and
a,,(x, &) the principal symbol of 4. Assume that a,, (x, £) does not take valuesin a
closed angle A of the complex plane € for & # 0 (here the vertex of A is assumed
to be at 0 € €). In other words, in the notation of §9, 4 — Ale CL (M, A) and
satisfies the condition of ellipticity with parameter.

It follows from Theorem 9.3 that the resolvent R, = (4 — A1) ™' is defined for
[A|Z R, AeA i.e. for AeA,;. Now, in view of Theorem 8.4, we see that the
spectrum o (4) of A is a discrete subset of €. Hence, in the angle there can be only
a finite number of points of o (4). We may therefore draw aray L, starting at 0
and running inside A such that g (4) N L, is either empty or consists of the point
0 only. In what follows, we assume for convenience firstly that0 ¢ o (4),i.e. 4~
exists as an operator (cf. §8), and secondly that L, = (— 00, 0]. Neither of these
assumptions is very essential; we may get rid of the first one by replacing A
with A + ¢ and the second by studying ¢ A instead of A.

So, finally, our assumptions are as follows:

1) a,(x,&) —A+0 for ¢+0 and Ae(—oo,0]; (10.1)
2) 6(A)N(—0,0]=0. (10.2)
It follows from conditions 1) and 2) that for some angle A of the form
{n —e<argd < m+ e}, with ¢ > 0, the following hold:

1Ya,(x,&) —A#0foré £0and A € A; (10.1)
2) a(A)nA=9. (10.2")
In what follows we shall assume that A has been chosen in this way.

Since 0 ¢ o (A), we see that 0 (A) does not intersect a disk |A| < 2¢ in the

complex A-plane. Now select in this plane a contour I'=T, of the form
I'=T,ul,ul;, where (Fig. 1)
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argA =Tt 1Al=p
0
argA=-Tt r
Fig. 1
A=rei* (+0>r>p) on [,
A=ge (n>p>—n) onl,,
A=re-it (9g<r<+ o) on [;.
Consider the integral
A, = — [1(A—AD)"'d), (10.3)
2n

where z € C, A* is defined as a holomorphic function of 4 for 1€ €\ (— 0, 0],
equal to e?"*for A > 0 (here it is assumed that In A e R for A > 0). In other words,
on I' we set

Q2= ezind — pzin|i|+izargd — M, |zeizarg/1, (104)

where —7 < arg A < n (arg A is described more precisely in the definition of the
contour I').

Note that in view- of the estimate (9.31) (Corollary 9.2) the integral (10.3)
converges in the operator norm on L? (M) for Re z < 0 and also 4, is a bounded
operator on L*(M). In the same vay, by Theorem 9.3, the integral (10.3)
converges in the operator norm on H*(M) for arbitrary se€IR and also, for
Rez <0, 4, maps H*(M) into H*(M) hence also maps C®(M) into C*(M) as
well as 2'(M) into 2'(M), since

C*M)=(\H*M) and 9'M)=|)HM).

Proposition 10.1. a) For Rez<0 and Rew <0 we have the semigroup
property
4,4

A, =4 (10.5)

b) If keZ and k > 0 then
A_ = (A"Hk (10.6)
c) For arbitrary seR, A, is a holomorphic operator-function of z (for

Rez < 0) with values in the algebra of bounded operators on the Hilbert space
H*(M).

Proof. a) Construct a contour I'’ (Fig.2) of the form I''=T] ul'; Ulj,
where
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Fig, 2

A=re=9 (+0>r>3p) on I'{
A=3ge® (n—e>@> —m+e) on I,
A=rei=rt9 (3 0<r< 4 o0) on ;.

Thenumber ¢ > 0 is chosen so that (10.1") and (10.2") are satisfied. The contour I

is contained “within” I'’, and in view of (9.31) and the condition on I'’ it is

obvious that the integral (10.3) does not change if we replace I' by I'".
Utilizing this fact, we obtain

A A, =~ ~1—2 [ §4=an~" (4—pD™" A*p”* duda
4n po

_ 1 AZ#W
4n? ;[ £ A—u

(A=AD)"" = (A—pl)™ '] duda

i , 1 AFp®
—_ Asz . -1 o . I—l__

5 rj (A~AD)"" i+ ”(A ul) A_ﬂd/ld,u
=Az+w+0:A

z+w:*

In this computation we have used the Cauchy formula and the so-called
Hilbert identity

(=AD" (A-pD ™t =

p— (4-AD""—(4—-uD™'], (10.7)

which is clear if we, for instance, multiply both sides by (4 — A1) (4—ul).

b) Note that if z=—1, —2, ..., then (rei")* = (re-'")* and the integrals
along the straight line parts of I' in (10.3) cancel. Therefore

b kg -t
Ay =5 )‘1,1 (A—AD)~1da,
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where I, = {|A| = g}, traversed clockwise. Now make a change of variables,
putting 4 = 1/u which gives

i
A_ —— k _ 1 -1,,-2
i r_\;# (A=p D'y ?dp,

where I'; = {|u| =1/p}, also traversed clockwise. Taking into account that (4
—u ' DT =pA" (uI- A1), we may now write

iA~!

A, =
k 2n

J U U= A7) = AT A = (AT,

I

since the entire spectrum of the bounded operator 4~ is situated inside the
contour I', and we may use the Cauchy formula.

c¢) Differentiating the integral (10.3) with respect to z we obtain the integral

2—% [A*(In2) (A—AI)"'dA, (10.8)

converging in operator norm (in H*(M)) uniformly for Rez< —e<0. We
conclude, that the operator function A4, is holomorphic in z and the derivative

d
d—A’ is equal to the integral (10.8). [
Z

10.2 Definition of the complex powers of an operator
Definition 10.1. Let z e € and k£ €Z be such thatRez < k. Put,on C*(M)or
2'(M)
A*=A*4,_,. (10.9)

We need to verify that this is well-defined and that is the content of the first
part of the following theorem.

Theorem 10.1. a) The operator A* as defined by (10.9) is independent of the
choice of integer k, provided Re z < k.

b) IfRez <0, then A*=A,.

c) The group property holds

A4 = 47, 7z, weC (10.10)

d) IfkeZ, then (10.9) with z = k gives the usual k-th power of the operator A
(in particular A°=1 A'= A and A~ is the inverse to A).
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e) For arbitrary keZ and s€R, the function A* is a holomorphic operator
Sfunction of z in the half-plane Re z < k with values in the Banach space ¥ (H*(M),
H*~™(M)) of bounded linear operators from H*(M) to H*"™(M).

Proof. a) LetzeC,k,leZ besuch thatRez < k,Re z < /. We need to verify
that

A4, = A'A,_, (10.11)

Assume that k> /and put k —/=p and z — k = w. Then (10.11) reduces to the
equality 4,,=A4774,,,, with p a positive integer and Re(w+p) <0. This
however, follows at once from Proposition 10.1 since 4™ = 4_ , by (10.6) and it
only remains to use the semi-group property (10.5).

b)-d) These properties follow in an obvious manner from a) and
Proposition 10.1.

e) This statement follows straightforwardly from a) and ¢) in Pro-
position 10.1, if we remember that A4*, for k an integer, maps H*(M)
continuously into H*~™*(M) (this follows from Theorem 7.3 (on boundedness)
and the fact that 47'e CL™™(M), as is clear from Theorem 8.2 (about the
inverse operator)). [

10.3 The self-adjoint case. Let a smooth positive density on M be given
defining a scalar product on L*(M) and A a self-adjoint elliptic differential
operator of order m on M. Then its principal symbol a,,(x, £) is real-valued.
In this case, conditions (10.1) and (10.2), which we assume to hold, mean that

a,(x,)>0, ¢=*0, (10.12)
A=d8I, 6>0, (10.13)

i.e. (Au,u) = 0 (u,u) for any ue C°(M). Let {¢;}:2, be a complete orthonor-
mal system of eigenfunctions for A with eigenvalues {4;};2,. Remember that
A;— + o0 as j— oo (cf. Theorem 8.3). It follows from (10.13) that 4,26 >0
forallj=1,2,....

Now, any distribution f'e 2'(M) may be represented as a Fourier series

f~ i fiei(x), xeM, (10.14)

where

fi=fe). (10.15)

Here, when fe L*(M) we of course have the usual scalar product in L*(M).
If, however fe 2'(M), then (f, ¢;) denotes (f, $;duy, where du is the fixed
density on M (recall that the distributions are linear continuous functionals on
the space of smooth densities). We now describe the properties of the Fourier
series of smooth functions and distributions.
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Proposition 10.2. For a series

i c;jp;(x) (10.16)

j=1
with complex coefficients c; the following properties are equivalent:
a) the series (10.16) converges in the C®(M)-topology;

b) the series (10.16) is the Fourier series of some function fe C*(M);
c) for any integer N

le; P AN < 400 (10.17)
j=1

J

Furthermore, conditions d), €) and f) are also equivalent:
d) the series (10.16) converges in the weak topology of 2'(M);

e) the series (10.16) is the Fourier series of some distribution fe 9'(M);
f) the exists an integer N (perhaps negative), such that (10.17) is fulfilled.

Proof. The basic idea of the proof is to use the relations

CoM)=HM), 2'M)=|H M),

and the fact that 4" is a topological isomorphism between the spaces H™ (M)
and L*(M). Now, L*(M) is easily characterized in terms of the coefficients of
Fourier series by the Parceval equality. Therefore the topology of C* (M) may
be determined via the seminorms || /|| .y where

W lEn= 2 1417227,
j=1

because A"f has the Fourier coefficients 1Y f;. From this the equivalence of
conditions a), b) and c) is obvious.

Let us verify the equivalence of d), e) and f). If d) is satisfied denote by f'the
sum of the series (10.16), so that fe 2'(M) and

0

(o) =2 ¢(0;,9)

j=1

forany ¢ € C*(M). In particular, taking ¢ = ¢; we obtain ¢; = f;i.e. precisely e).
Further, ife) is satisfied, i.e. ¢; = (f, ¢;), with fe 2’ (M), then selecting an integer
N such that A¥ fe L*(M) we also see that f) is satisfied. Finally, if /) is satisfied,
then the series (10.16) converges in the norm of H™ (M), thus giving d). O
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We now introduce a ““‘spectral” characterization of the complex powers of a
self-adjoint operator 4 in terms of the coefficients of the eigenfunction
expansion associated with the eigenfunctions ¢;.

Proposition 10.3. Let f€ 2'(M) and let f(x) = ) fi0;(x) be the Fourier
j=1

series expansion of f in the eigenfunctions of the operator A.
Then

Af = ; A2 f0,(%). (10.18)

In particular, ¢;(x) are the eigenfunctions of the operator A* with eigenvalues A’ .

Proof. The operator 4> maps C*® (M) continuously into itself. In view of
the easily verified relation (4°)* = 4> we see that 4* being the adjoint of 4*
continuously maps 2'(M) into 2'(M) provided 2'(M) is endowed with its
weak topology. Since the series on the right hand side of (10.18) converges
weakly in @' (M) by Proposition 10.2, in order to verify (10.18) in the general
case it suffices to do so for f= @;, Rez < 0. But, f= ¢; and Rez < 0 imply

; i io; ... . .
A 9= [F(4-AD) 1<de1=2% [22( =X dA =Ko,
r r

by the Cauchy formula. But this is exactly (10.18) for f = ¢;. O

Exercise 10.1. Let A satisfy (10.1) but instead of (10.2) require the weaker
condition

g(A)n(=0,0)=90,

so that Ker 4 may be a non-empty finite-dimensional subspace in C*(M).
Define A4, via the contour integral (10.3) and let E,, E; be the invariant
subspaces of the operator 4 introduced in Theorem 8.4.

a) Show that 4,E,=0 and E| is an invariant subspace of 4, for Rez < 0.

b) Show that for the operators 4, the semigroup property 4,4, =4,.,.,
Rez < 0, Rew < 0 holds, allowing 4* to be well-defined for all z by formula
(10.9), so that the group property (10.10) holds for the operators 4°.

¢) Verify that 47 for a sufficiently large positive integer z is the usual power
of A whereas

A°=1-P,
where P, is the projection onto the subspace E, parallel to E, and that,

analogously, 4 _, for a sufficiently large positive integer k is the inverse of the
operator A* on E; and equals 0 on E,.
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Problem 10.1. Let 4 be an elliptic differential operator with principal
symbol a,,(x, £) on a closed manifold M. Assume that Rea,, (x, &) < 0 for ¢ # 0.
Show that the Cauchy problem

Ou
5;=Au, 1>0;  ul,_o=0(x); (10.19)
has a unique solution in C®(M) and 2'(M).

Hint. The solution u(#, x) will necessarily be of the form

u=-ecl, (10.20)
where the operator e'* is determined via the contour integral

e =§’7{ [er(A—AD)"'da. (10.21)
r

Assuming that the spectrum ¢ (A) is situated in the half-plane Re 4 < 0 (which
can be achieved by changing 4 into A — CI or substituting ¥ = ve® in (10.19)), it
suffices to take I' =T, ul,, where I and I', are the following two rays:

/1=rei<;_e) (+00>r>0) on I,

A:rei(_%ﬂ) (0O<r<+4+ow) on I,.

The uniqueness of the generalized solution of the problem (10.19) is
demonstrated using the Holmgren principle (cf. e.g. Gel’fand I.M., Silov G.E.
[1], vol. 3).

§11. The Structure of the Complex Powers
of an Elliptic Operator

11.1 The symbol of the resolvent. Let 4 be an elliptic differential operator on
a closed manifold M. We shall next construct in local coordinates the symbol of a
special parametrix of the operator with parameter A — A/ (which we view here as
an operator in CL7 (M, A), A a closed angle in € with vertex at 0). We assume
that A satisfies the conditions for ellipticity with parameter relative to A, where
the angle A is as described in §10 (i.e. it satisfies (10.1") and (10.2"), and A
contains the semi-axis (— oo, 0]).

The parametrix will be constructed in a chart X< M and we will identify X
with an open set in IR” using a coordinate system on X. Let the operator 4 on X
be of the form
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A=Y a,(x)D". (11.1)
la)S m
Its total symbol
a(x,)= ) a,(x)¢& (11.2)
la) s m

may be decomposed into homogeneous components

a;(x,&) =3 a,(x)&, j=0,1,...,m. (11.3)

lal=j

The total symbol a (x, ¢, A) = a(x, &) — A of A — Al may be decomposed into
components homogeneous in (£, A'/™) given by the formulas

am(xa éal) = am(xa é)h/l’ (114)
aj(x, ¢, ) =a;(x,&), j=0,1,...,m—1. (11.5)

The condition of ellipticity with parameter means that
an(x,E,1)#0 for xeX, reA, [E[+|AY"+0 (11.6)
It is natural to look for the symbol of the parametrix of 4 — A/ in the form of
an asymptotic sum of functions homogeneous in (¢, A'™). Denote these
functions by 5° ,, _ i(x,&,4),j=0,1,2, ..., where the lower index indicates the

degree of homogeneity:

B (X, 18, 1"A) = 1T TIBY, (X, E,A), >0, [E]+|AMm£0. (11.7)

These functions are recursively defined by the relations

. a,(x, &4 b2, (x, &) =1, (11.8)
am(x’ éa i)bgm—j(xaéal)
+ Z agam'k(xaéa'{)Dzbgm—l(xaéa'l)/a! =0a (119)
k+l+|a|=j
1<j
j=1,2,...

(compare the construction of a parametrix for the classical elliptic PDO in §5,
formulas (5.17") and (5.17")).

To obtain a real parametrix from these functions b, _ i(x, &, A)itis first of all
necessary to eliminate their singularities for |¢|+ |A|}™= 0 by multiplication
with a cut-off function and, secondly, to glue together the various local
parametrices using a partition of unity (cf. §5).
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11.2 The Symbols of complex powers. We shall construct the homogeneous
components b % (x, £) of the symbol of A* using the homogeneous components
of the parametrix constructed earlier, in exactly the same way as the powers 4>
were constructed using the resolvent (4 — A7)~ !. Indeed, from the condition of
ellipticity with a parameter there follows the existence of ¢ = g (x, ¢) such that
a,(x,¢,4) # 0 for |A| <29, ¢+0and AeC. From (11.8) and (11.9) it is clear
thatb_,, _;(x, &, 4) is holomorphicin A in the disc || < 2 ¢. Forming the contour
I' asin §10, we may define the functions b%)°.(x, £) for Re z < 0 by the formulas

mz —j
b0 (x, &) = njizb‘lm_j(x,é,i)dl, j=0,1,2,..., (11.10)
r

where the branch A* is defined as in §10.
In particular, for j=0, we obtain by the Cauchy formula that

b0 (x, &) = —n [ 2%(a, (x, &)= A) "1 dA = % (x, &). 11.11)
r

Let us note that for a sufficiently small g the integral (11.10) is independent of the
choice of ¢ (in the disc |A] <2¢ there are no singularities of the functions
b_p_j(x,¢,4)). The function b%):%(x,¢&) is positively homogeneous in ¢ of
degree mz —j, i.e.

b(z) Oj(x 1E) = m=" Jb(z) Oj(x H, t>0, E%0. (11.12)

To prove this, it is necessary to perform a change of variables in the integral
(11.10) and use the homogeneity of b2, _,(x, &, A):

b0 (x, té)— — Hz O m—j(x, 28, 2)dA

—_ mNh ’tm - t"d
2n rj,(t Wb (x, 1" ) u

= (" ’ J/t bC (%, &, 1) du
=i L f/fb‘lm-j(x,é,ﬂ)dﬂ— IR0 (x, &) .
2n 5

Here I'* is the contour ™I (it has the same shape as I' but the radius of the
curved part is ¢t~ ™p instead of p).
Now it is necessary to extend the definition of b%7)-%(x, ¢) to all ze €. This is

done in the same way as the construction of 4” for z € C in §10. The following
analogue of Proposition 10.1 holds.

Proposition 11.1. a) For Rez<0 and Rew <0 we have the semigroup
property
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Y 0Ebr0(x, &) Dbyl (x, )l = b (%, 9),

el *pra=i (11.13)
j=0,1,2,...

b) Ifk€Z and k > 0, then the set b0 _(x,£),j=0,1,2, ..., is the set of
homogeneous components of the parametrix of A*.

c) For any multi-indices a, B the derivative 03 9% b7} 2, (x, &) is a holomorphic
function of z for Rez< 0 and £ # 0.

Proof. This is achieved by repeating on the symbol level the proof of
Proposition 10.1; recommended to the reader as a useful exercise. [

In what follows it is convenient to denote by a{* (x, &), k > 0 and integer, the
homogeneous components (of degree j) of the symbol a® (x, &) of the operator
A so that

(8= 3 aPxd).

If k is an integer and k <0, then by al¥(x, &) we denote the homogeneous
components of the symbol of the parametrix to the operator 4, or, what is the
same thing, the homogeneous components of the symbol of 4~ * They are
defined recursively by the relations

at(x, &) - af(x, &) =1, (11.14)
a("_’r’l(‘)( (X, é) ’ asr’lcl)c—j (x’ é) +
+ Y dSH (0 - Dia%_,(xOfal=0, j=12,... (1115

pratie|=j
q<j

Definition 11.1. Let ze € and k €Z be so chosen that Rez < k. Put

b (x, 6= ) _vaéafﬂ—p(% &) - DEbEC- (%, Ol
pratie=) Y (11.16)

Theorem 11.1. a) The function b%)°.(x, &) as defined via formula (11.16) is

independent of the choice of the inte;e;r ;c as long as Rez < k.

b) If Rez <0, then the functions b7} (x,&) obtained by formula (11.16)
coincide with the functions, denoted by the same symbol, obtained via the contour
integral (11.10).

c) The group property (11.13) holds for any z, we C.

d) If keZ, then b3 2 (x,&) = al_;(x, ).

e) For any multi-indices o, B, any x, £(E%0) and any j=0, 1, ...,
0308 b2 0, (x, &) is an entire function in z.

mz—j
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Proof. Statements a)-d) are proved in exactly the same way as the
corresponding statements in Theorem 10.1 (it is only necessary to pass from the
operator algebra to the symbol algebra consisting of formal series of
homogeneous functions and with multiplication given by the composition
formula for symbols). The proof of e) is obtained immediately by looking at the
formulae defining the functions 5% (x, £). O

11.3 Smoothed resolvent symbols. Let w (1) e C*(IR"), so that w (t) = 0 for
1<, w(t)=1fort=1. Put

0(¢, ) = w(IE1>+141*M) (11.17)

and let us define
b j(x, &) =04 0%, _;(x,&4). (11.18)
With the help of the function b_,,_;(x, £, ) we construct on the manifold M
a parametrix of the operator with parameter A — A/ in a way similar to the
second part of the proof of Theorem 5.1. Now let M = { ] X” be a finite covering

v
of M by charts, ¢” a subordinated partition of unity and the functions
y’ e C®(X?) be such that y? =1 in a neighbourhood of supp ¢’. Further let
@, ¥ be the multiplication operators by ¢” and y” and B” ,_;(4) a pseudo-
differential operator on X” with the symbol b7, _;(x,&,4) constructed by
formula (11.18) in the coordinate neighbourhood X*.

Now put
B_,_;(A)= Y @B, (AP’ (11.19)
and ’
N-1
By, (A)= > B_,_;(A). (11.20)
j=0
Proposition 11.2.
(A=AI)"'~ By, () eCL," "N (M, A). (11.21)

Proof. First we construct an exact parametrix B(4) of the operator 4 —41,
putting

B(A)~ Y B_,-;4). (11.22)
j=0
The precise meaning of this formula is: construct in each X” an asymptotic sum

b (x, &, 1) ~ i bY ,_i(x,&,4), (11.23)
j=0

then take the operator B”(4) in X? with the symbol 4" (x, £, 1) and finally put
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B(A\) =) &"B'Y, (11.24)

where @7, ¥ are as in formula (11.19). Then we obviously have

B(%) — By, (M) eCL," N (M, 7). (11.25)
But from Theorem 9.2 it follows that

(A—A"'— B(A)eL (M, A). (11.26)
Equating (11.25) and (11.26) we arrive at (11.21). [

11.4 Smoothed symbols of complex powers and the structure theorem. Let
w (1) be the same function on IR! as at the beginning of 11.3. Put

0() = w(lE]) (11.27)

by (%, &) = 0(&) bEr%(x,&). (11.28)

and define

The construction of 6&%(x, &) and 5% _.(x, ) can be carried out in any

coordinate neighbourhood X y (the correspon(liing functions will be denoted by
by %7 (x, &) and b%)?;(x, &) if we need to know exactly which coordinate
neighbourhood). Denoting by B(2)?; the operator in X” with symbol b%)7;(x, &),
we once again put

B,‘,fz’;j= Z dﬁVB,‘,fz"_’j‘I” (11.29)
Y
and
N-1
B =3 B ;. (11.30)
ji=0

For the statement of the basic structure theorem, we shall also need
the definition of holomorphic families of WDO, which constitute the set
0 (G, Ly ;(M)), where G is a domain in the complex plane C.

Definition 11.2. Let X be an open set in IR, G a domain in C,
a(x, &,2) e C*(X xR" x G) where a(x, £, z) is holomorphic in z. We shall write
a(x,¢,z)e0(G,S; ;(X)) if for any multi-indices «, f any k€Z, and any
compacts K, = X, K, = G there exists a constant C = C(a, 8, k, K, K,) such that

|0z080%a(x, &, 2)| £ CLEymelI+oirl, (11.31)
for(x,¢,z)e Ky xR"x K, . If A(z)isa¥DO in X, depending on the parameter z,

then we shall write that 4(z) e @ (G, L} ;(X)) if A(z) = 4,(z) + R(z), where
A,(2) is a properly supported ¥DO on X with symbol a(x,¢,2) €0 (G, Sy ;(X))
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and R(z) has kernel R(x, y,z) e C*(X x X x G), holomorphic in z. Finally, we
shall write that 4 (z) e 0 (G, L} ;(M)), if A (z) isa ¥DO on M, depending on the
parameter z € G such that for any coordinate neighbourhood X' = M and any
local coordinates »: X — X, , X, an open set in R", the family of operators 4*(z)
on X, induced by the operators 4 (z) on M via the diffeomorphism x is such that

A*(2)e0 (G, L] ;(X,)).

Repeating the arguments of §4 we see that to verify that
A(2)€0 (G, LY 5(M)) for 1 — ¢ < 6 < g it suffices to do so for a fixed coordinate
covering of M and fixed coordinate diffeomorphisms.

Also, repeating the argument in §3 and §5, we see that composition, taking
the adjoint and forming the parametrix of a hypoelliptic operator (we assume
that the condition for hypoellipticity is fulfilled uniformly in z) does not take us
outside the holomorphic families, specified in Definition 11.2.

We shall now formulate the basic structure theorem.

Theorem 11.2. For any zeC
A*e CL™ (M), (11.32)

moreover for any integer N=0 and te R
A*— B eORez<t, LN (M)). (11.33)

Proof. 1. First let us show that (11.32) follows from (11.33). For fixedze C
set

o0

B®~ Y B (11.34)

mz — j
j=0

(this formula can be decoded in the same way as (11.22)). Then it is obvious that
we may assume
BPeCL™(M). (11.35)
Now, fixingin (11.33) t e IR such that ¢ > Re zand then letting N tend to + oo, we
obtain
A*— BPe L ™ (M), (11.36)

from which (11.32) follows.
2. Let us prove (11.33). Set

RP = A" — BY),. (11.37)
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First of all note, that the group property of the complex powers 4° and its, for
the time being hypothetical, symbols 5> ° (Theorem 10.1 and 11.1) together

mz—j

with the fact that the composition of holomorphic families yields again a
holomorphic family allow us to reduce the proof to the case t =0 (N may be
arbitrary). In other words, it suffices to verify that

R €O Rez<0, L7 (M)). (11.38)

In order to make use of Proposition 11.2 it is convenient to consider for
Rez < 0 and together with the operator By), the operator

' plz i .
B = 5 | 4B (D di. (11.39)
r
It is easily verified that
‘B, — B €0 (Rez<0,L™*(M)). (11.40)

Indeed, we obviously have

N-1
‘B, = _ZO 'BE) ;. (11.41)
where
i
Br =5, { B_,_;(A)di, (11.42)

and this is why the symbol ‘6% _.(x, &) of the operator 'BY)_; is expressed in

mz—j

some local coordinate system by the formula

e (x,§)=§% [47b_ (%, &, A)dA. (11.43)

mz—j
r

From this it obviously follows that
b (6,8 = bur%(x, &) for [¢]>1 (11.44)

But then the same holds for the symbols %) _;(x, &) of the operators By:)_;, the
sum of which gives the operator B, (cf. the formulas (11.28)-(11.30)). Takmg
the obvious estimates for the derivatives with respect to z into account, (11.40) is
obtained at once.

Now, in view of (11.40), it is clear that it suffices to verify a member-
ship of the type (11.38) for 'R, = 47 — 'B{),. Denote by 'r(§) (x, £) the symbol
of ‘R, in some local coordinate system and by r,(x,¢,4) the symbol of
Rw(A) = (4—A1)"' = By,(4). Then
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r.(z i z
r@(x, &) = 3 | A2rp, (x, &, ) dA (11.45)
r

and we have
i
82856;‘ ’r((,f,’)(x, &= 5 'rf A7 (InA)k 8§6£ ron (x, &, A)dA. (11.46)

But in view of Proposition 11.2, we have the estimate
1005 ra) (%, & )| £ Cpp g (LHIE]+ [AIVm) ™™ V1L xeK,  (11.47)

where K is some compact set in the coordinate neighbourhood under
consideration. From this it follows that

|00 ran (%, E DS Cp x UHIENVHIAHIADT,  xeK, (11.48)

and via (11.46) we get (11.38) for 'R%). [

Exercise 11.1. Extend Theorem 11.2 to the situation described in Exercise
10.1.

§12. Analytic Continuation of the Kernels
of Complex Powers

12.1 Statement of the problem. Expressing the kernel in terms of the
symbol. Let M be a closed manifold, 4 an elliptic operator on M, satisfying
(10.1) and (10.2), which makes it possible to construct the complex powers. For
Re z < —n/m we denote by 4, (x, y) dy the kernel of A* (this then depends on the
parameter x € M and is a density on M and may, in local coordinates defined for
y €Y, be expressed as A4, (x, y) dy, where dy is the Lebesgue measure defined by
the local coordinates and A4,(x, y) is a continuous function on M x Y). By a
abuse of language, this function 4, (x, y), which depends on z and on the local
coordinates in a neighbourhood of y, is called the kernel.

Our immediate goal is to construct an analytic continuation (in z) of the
kernel 4,(x, y) to the entire complex z-plane €. Note, that if X, Y are open
subsets of M, then A4,(x, y) is uniquely defined for x e X, y € Y by the values
(A*u,v) for ue C§(X) and ve C(Y).

Now let X be a coordinate neighbourhood (not necessarily connected),
which we identify with an open subset of IR". If we write the DO B € L™ (X)
in the form

Bu(x) = [e'*™ ¢ b(x, Q) u(y)dydg,
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where b € S'(X x R™), then for / < —n the kernel 4 (x, y) is continuous and is of
the form

A(x,p)= [ ¢ b(x,&)de.

The restriction of the DO A? to X (cf. 4.3) can be represented in the form
A*=A4, ,+ R, ,, where 4, , is a properly supported YDO and R, , is an
operator with kernel R, (x, y, z) e C* (X x X x C), holomorphicin zand equal to
zero for x and y close to each other. Denoting by a(x, &, z) the symbol of 4, , we
will also by abuse of language, call this symbol the symbol of A*. The kernel
A,(x, ), for x, ye X close to each other, may be represented in the form

A, (x,y) =[N ¢ a(x, & z)dE. (12.1)

The kernel 4, (x, y), for Rez < —n/m, is continuous and holomorphic in z.
For x =y we obtain

A,(x, %) = [a(x, &, 2)dE. (12.2)

Note that the result of the integration in (12.2) (and in (12.1) for x and y close to
each other) does not depend on the choice of the “symbol” a(x, ¢, z).

12.2 Statement of the result. In the statement of the result we will make use
of the homogeneous components b%7)-%;(x, &) of the symbol of 4?, which were
constructed in §11. Note here that for Rez<j/m, these homogeneous
components are given by the formulas

BELO,(x,8) = o

mz—j

oo JEBL,(ENdL, j=0,1.2., (123
r

where b2, _;(x, &, A) are the homogeneous components of the symbol of the
parametrix for the operator 4 — A1, also constructed in §11.

Earlier (12.3) was applied only for Rez <0, but the integral in (12.3)
converges for Rez < j/m, hence both parts of (12.3) are holomorphic in z for
Rez < j/m demonstrating their equality for these z.

We shall also need the functions

o) = [r6%, (& —ndr,  j=0,1,2,...,  (124)
o J

mz—j

defined for —1 <Rez < j/m and positively homogeneous in & of degree mz — j.

Theorem 12.1. Let X be a fixed arbitrary coordinate neighbourhood on M,
A, (x, y) the kernels of the complex powers A* of the elliptic operator A, defined for
Rez < —n/m and for x, ye X. Then

1) for x + y the function A,(x,y) can be extended to an entire function
ofz, equalto 0 forz =0,1,2,..;
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2) A,(x, x) can be extended to a meromorphic function in the whole com-
plex z-plane with at most simple poles, which may be situated only at the

—n
points of the arithmetic progression z; = j—m-— J=0,1,..., and the residue
of A,(x, x) at z; is equal to

1
yi()=—— [ bE°(x,&)dc, (12.5)
M jg=1

where d&' = (2m)™"d¢' and d¢' is the surface element of the sphere |¢|=1;

3) if z;=1is a non-negative integer then y,(x)=0 and the value »,(x)
= A((x, x) of the analytically extended kernel at z = | is given by the formula

%)= (~1) L BRACLS (12.6)

Statement 1) is valid uniformly in xeK,, yeK,; K, and K, being disjoint
compact sets in X, 1.e. K, (x, y) can be continued to an entire function of z with
valuesin C (K, x K,). Similarly, statements 2) and 3) are uniform in x € K, where K
is a compact set, i.e. the map z— A, (x, x) viewed as a function of z with values in
C(K), can be extended meromorphically to the whole complex z-plane with poles
at the points z;,j=0,1, ..., with residues y;(x) | g at these poles and values », (x)| x
atl=0,1,2, ....

Remarks. 1) In formula (12.5) the function 5% ° (x, £) appears, which may,
according to the notation in §11, be written also

bR (x, ) = b (x,0), (12.7)

since mz; —j = —n.
2) Since z; < j/m, then instead of (12.5) we may directly write an expression
for y;(x) in terms of 6%, _;(x, £, 2):

. j—n
i J

1) =~ Klj:ldé’ ;1 "B, (x, & A)dA. (12.8)

A similar expression can be written also for x,(x):
1 o)
x’(x)z(—l)l— j dé, Irlbgm(l-#l)—n(xaé’_r)dra (129)
m je=1 0
where [ is a non-negative integer (the subscript —m(l + 1) — n in (12.9) is
obtained by expressing j in terms of [ by ;7" D).
n

3) Note the special formula for the residue of the left-most pole Zo= —n/m:
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1 - n/m ’

Yo === | a,""(x,&)d¢". (12.10)
M je1=1

In the important special case, when a,, (x, &) > 0 for & + 0, it follows from this
formula that y,(x) # 0. In what follows in this case we transform (12.10) to a
form more convenient for applications.

Proof of Theorem 12.1 1. We will make use of the structure theorem 11.2
and the notation used there, viz. B and R, = 4* — B{),. Let us denote by
R, (x, y) the kernel of RF)) and by r{Z) (x, £) its symbol in some chart X. Then, if
x, y€ X we have

RR)(x,y) = [ri) (x,8) €70 2dE. (12.11)

N—n

This integral converges for Rez < and defines for these z a holomorphic

function of z with valuesin C (K, x K,), where K,, K, are arbitrary compact sets
in X. Therefore the statements about holomorphy, poles and residues reduce to
the corresponding statements about the kernels of the operators B{),.

The kernel of B{y)), in its turn, is a sum of terms of the form

B _i(x,y) = [elx7¥¢ b i (x, &) dE, (12.12)

therefore in what follows we will study integrals of the form (12.12).

2. Let K, and K, be disjoint compact sets in X. We will show that B{7) _; (x, y)
is an entire function of z with values in C(K, x K,).
Integrating by parts in (12.12) for x # y, we obtain

B®@

mz—j

(x,3) = [T |x—y| "M AMDE)_(x,8) dE, (12.13)
where M is a positive integer. This integral converges already for Rez

2M+j— . . . .
< Mtjon and defines a holomorphic function of these z with range in
C(K,; xK,), since [x—y|=e>0 for xeK,, yeK,. Since M is arbitrary, it is
clear that B{;)_,(x, y) is an entire function of z with values in C(K, x K,).

3. We have for x=y

Br(:z)Aj(x’x) = j.bf:l—j(x’ §)dg,
or
BR_i(x,x) = [60(8) b2r°(x,8)de, (12.14)

where 0 (&) = 0 ([€]), (1) eC*(RY), w(t)=0fort <4, w(r)=1fort > 1.
Passing to polar coordinates in the integral (12.14), we obtain
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B,(,f;_j(x,x)=<fw(r) r'"z"“"_ldr)( f b::;-?,.(x,c)dé'>. (12.15)

0 =1

Obviously, the second factor is an entire function of z with values in C (K) (K any
compact set in X). The first factor may be decomposed into the sum

© 1 ©
fo@ =" "tdr = fo(r) rm =it 4 [pm==i*n=14r  (12.16)
0 0 1

The first integral in (12.16) is an entire function of z and the second one can
be computed

0 ) 1 ‘ 1
j‘rmz—j+n—ldr= _—— . ! , (12.17)
1 mz—jJj+n m z—z;

j—n
where z; =]—. Therefore B
m

mz—j

(x,x) has one pole with the residue y;(x),

given by the formula (12.5).

Let us verify that y;(x) = 0if z; = /, a non-negative integer. This is clear from
Theorem11.1, part d) (the functions %)% (x, &) are the homogenous com-
ponents of the symbol of the differential operator 4' and therefore vanish for
ml —j <0 and, in particular, for m/ —j = —n).

4. To conclude the proof of 1) and 2) in Theorem 12.1 it remains to show
that A4,(x,y) =0 for x+ y and /eZ, . For this, it suffices to show that if u,
ve Cy(X) and suppu nsuppv = @, then

[A,(x,y) u(y) v(x)dydx =0. (12.18)

This however is equivalent to the fact that {(A'w,v) =0, since in view of
Theorem 10.1 part e), the function {4y, v) is an entire function of z.

Thus we have shown 1) and 2) of Theorem 12.1 and the absence of poles for
zeZ .. In what follows we will in fact give a new independent (although also
more intricate) proof, allowing us to compute 4,(x, x) for /[€Z , . The reader
who is not interested in this computation may omit the remainder of the proof.
without any loss of understanding of the later parts of the book.

5. To investigate the values of 4,(x,x) for zeZ ., it is convenient to use
another approximation of A4,(x,y) which is obtained if we smooth off the
symbols of the parametrix %, _.(x, , 1) instead of the symbols bZ)°.(x, £) of

-m—j mz—j
the complex powers. This was essentially done in 11.3, where we introduced the
operators B_,,_;(4), By,(4), Ry (4), 'BE)_;, ‘B, and 'R{3)) and their symbols,

defined in any coordinate neighbou'rntzlc_)gd X, b_,_;(x,£,4), buy(x,&4),
ron (6, &, 4), 'BE)_i(x,8), bR, (x, ), r&) (x, &) (cf. formulae (11.17)—(11.48)). As
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an approximation of the kernel 4, (x, y) we will use here the kernels 'B{), (x, y) of
the operators '‘B{f):
N-1
BE) () = ¥ BD_;(x.)), (12.19)

j=0

where ‘BE)_;(x, y) is the kernel of the operator ‘BY)_;, expressed by the formula

‘BE)_(x,y) = [l &7 ¢ b (x,&)dE (12.20)
or
’BﬁLﬂ(x,y)==§;»jd§ [rreicnep_ _(x,eA)di.  (12.21)
r

Here an important role is played by the choice of contour I', since, generally
speaking, the integral (12.21) depends on the radius of the curved part of the
contour (the cut-off function 6 (¢, A) entering the definition of b_,,_;(x,¢, 1) is
not holomorphicin A). We shall denote by o™, the radius of the curved part of the
contour I', ¢ > 0. In view of the homogeneity of 5%, _;(x, £, A) in (£, A'™), it is
clear that there is a constant L >0 such that the function 5%, _ (&, A) is
holomorphic in A for |A| < L™|&|™. We take the radius of the curved part of I'
equal to ¢™, ¢ > 0 and such that

o< LIQYIZ+1). (12.22)

Then, if |£|>+ |4|*™ = 1/4 and A €T, we have either |4| > o™ (i.e. 4 belongs to
the straight line part of I') or |A| = ¢™ and

1 m/2 1 m/2
L’"lél"‘zL'"<Z—|/1|2"") =L’"<Z—QZ> > o" = ||

(the last inequality is equivalent to (12.22)). In this way, and in view of the fact
that 0(&,A) =0 for |&|*+ [A|?™<1/2, we may always assume that
b2,,_;(x,&, ) is holomorphic inside the curved parts of I.

The kernels ‘B _;(x, y) are defined and holomorphic for Rez < j/m (for
these z-values, the integral in (12.21) converges absolutely). Our present aim is to
analytically continue these kernels to the entire complex z-plane.

Let us show first of all, that for x+y, the kernel 'B{)_;(x,y) may be
continued to an entire function of z (and furthermore, if X, and K, are disjoint
compact subsets of X, then the kernel ‘BY) _;(x, y) may be continued to an entire
function of z with values in C (K, x K,)). Indeed by the standard integrating by

parts
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B (x,)

i i(x—y) - -
=ﬁjd€ {,{zez(x y) - & |x —y| 2M Ag‘(b_m_j(x’é,,l))d,{, (12.23)

where M is a positive integer, and from this expression the holomorphy of
'BY)_(x, ) for z such that Rez < (j+ 2 M)/m is obvious.

6. We now demonstrate that ‘BY)_;(x,y)=0 for x+y and zeZ,. If
zeZ, ,then A*is a single-valued function and the integrals along the straight line
parts of I' in (12.23) cancel. But also the integral along the curved part of I

equals 0 by the Cauchy theorem, since

QY By 80) = ) Cul03b2,;(x, &, )] [9£6(Z D],

lal+1B1=2M

the function 97 b°  _.(x, &, A)is holomorphic in A inside the curved part of I and

-m-—j

any derivative 0% 6 (£, 4) is constant in A for |1| = const.

7. Let us now study the analytic continuation of the integral

BE)_ (x,x) = i% [ae [40(E,2) b, _,(x,&, ) di. (12.24)
r

Let I'! be the part of I', in |£|2 + |4|*™ > 1 and I'? the part where |£|* + |4|*/™
<1 (for |£] > 1 this set is empty). We then clearly have

—m=j -m=j

§A2608°, _;dd = [22b°, _;dA+ [ A20b°, _;dA.
r r! r2
It is obvious that the integral
e [ A0 A) B (5 E D) di
2n e

is an entire function of z. This entire function equals 0 for z=0, 1, 2, ..., since
then the integrals along the straight line parts of I'> cancel due to the single-
valuedness of A%, and the integral along the curved part is 0 by Cauchy’s theorem
(0(&,4) is constant for |&|=const and |A|=const and b - (x,&,4) is
holomorphic in 4 inside the curved part of I'?). We may therefore prove all the
statements on continuation for the integral

1(2) =5i; fae [azb°,_;(x,& A)dA. (12.25)
p

It is obvious that I''=T for |[£|=)1—¢® and I'' consists of
two rays for |&|<}/1—g*. Let us put I} =T" for |El< Y/1—0* and
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I} =& —g*) ™2 I for |[£| = Y1 — @*. Since it follows from (12.22) that
0/V1—¢* <Lthenb?, _;(x,¢, ) has no singularities for | A| < (¢|£|/1/1— ¢*)"
and by the Cauchy theorem

[ Azb0,, (6, & A dA = [ 7B, _(x, & A)dA. (12.26)
rl

—m=j —m=j
i

Let us now make a change of coordinates, putting

A = e*i*1" on the straight line parts of I';;

A=a™|E|"e?, where o = —n < ¢ < non the curved part of I'}! .

e
V1-¢* ’
The purpose of this change is to derive from (12.25) an integral of a

homogeneous function in (&, ¢) and to proceed as in part 3. of this proof. After
the change, we obtain

zijzzwm_,.d,1=11 if ¢ < Y/1- @,

¢

E%_fizbgm_jd/l=12+13 it 16z Y/1- e,
rl

where
sintz *®
I, =
T Y
Vi-1er
l 3
Fig. 3
: +
mn nz
L=m® [ mermmipe (x, €, —tm)dl,
aitl

1 f i m m i
Iy== [ (a|&]ym=tmeioetnb?, (x, & am[E|"e)do.
2n

—-n
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Let us remark that the sum
[ Lde+ | Lde (12.27)
1K< y1-2 HES%Ery

is an integral of a function in (¢, t), homogenous of order mz+ m —1 —m —jin
the domain consisting of the intersection of a conic domain and the complement
of a ball (Fig. 3).

Introducing spherical coordinates in the space (¢, t), we see that the integral
(12.27) converges absolutely for Re(mz—j—1) < —n—1 and that, in view of
(12.17), it can be written in the form

msin nz
§

- tmz+m—1b(l . E, — m d , /’ 1228
n(mz—j+n) .. m-j (%, &, —t™) d (&, 1) ( )

+12=1

t>o

where d (¢, t)' is the surface element on the unit sphere S in the (&, #)-space. Since
>0 and > p, the integral (12.28) is well-defined as an entire function of z.

Further this whole expression can have only one pole for z = z; =J;’z; if z;# 0,
m

1,2,...,itvanishesforallzeZ , ;if z;=1I€Z , it vanishes for all integer z + /and
there is no longer a pole at z = /. Here one can, of course, write down the value of
(12.28) for z=z;=1€Z , , but it will be more convenient to do this later for the
whole integral (12.295).

Let us consider the remaining term

Ld¢.
1€1> V1 -¢?

Here it is convenient to go over to spherical coordinates in the {-space. We then
obtain

;.eiq)(z+1) [ 8%, ;(x,&amew)dl dp, (12.29)
-n 1€1=1

j Isdf =
1&1> V1 -¢?

where C=const. From this the fact that the integral is meromorphic is obvious
and the only possible pole is at z=z;. If z=1/€Z , we have

mz—j+n

E et (x, & amew) dp=i"" [ w'bl, _;(x,&a"w)dw=0,

-7 |wi=1
since the function b2, _;(x, &, 4) is holomorphic in Afor |A| < a™ From thisit is
also clear that for z= /€ Z , the integral (12.29) vanishes, except maybe at z = z;
(if z;€Z), where in this case there is no pole.

8. In this way we have demonstrated that the integral (12.24) is
meromorphically extendable to the whole complex plane, having no more than
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one simple pole, which is only possible for z = z; == Further, the value of
m

this integral for z=1/€eZ, is zero, with the possible exception of the point
z=[=z;, but then we have no pole at z;. Let us consider now just this case,
z=[|=z;€Z,, and compute the value of the analytic continuation (12.24) at
z=[=z;.

Note that the integral with respect to 4 in (12.24) is convergent for z=z;,
since z; = J—Tn < j/m. Decompose the ¢-integral into a sum of the integrals over
the ball |£] <1 and over its complement |£| > 1. Standard arguments, already
used before, show that the integral over the ball |¢| < 1is0 for z = z;.For || 21
we have 6 (¢, A) =1 and instead of (12.24) it is enough to consider the integral

1=% [ dg [27b°, _;(x, & A)dA. (12.30)

1E1z1 r

Changing to spherical coordinates in the é-space, we obtain

1

I= ———
mz—j+n

f ﬁ (4260, _;(x, &, A) dAde'. (12.31)

¢l=1 r

Using the Cauchy theorem for Rez > — 1 we may contract the curved part of
I' to 0. Then we obtain for (12.31)

sin z

= TN T z O . — !
= tmgim ), Tl mndrd

!

1

The value of this expression for z = z; =/ € Z , equals exactly »,(x), where 3, (x)
is given by the formula (12.6) or (12.9). Therefore ‘BY, (x, x) = 3, (x).

9. Let us now note that the difference

RE) (x,3) = 4, (x,y) — 'BF (x, )

_ 2’7 [ae i,vef(x-w'é ran (6 E AL (1232)
can be extended to a holomorphic function of z forRe 7 < u with values in
C (K x K), where Kisany compact set in X. From this one canrsnee that in the half-
plane Rez < l’;—n the functions 4, (x, y) and '‘B$), (x, y) have the same poles

with identical residues. Further, if z=/eZ, and x#y, then A,(x,y)
= 'B{,(x, y) = 0 (cf. parts 4 and 6 of this proof). It is therefore clear, that by
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. N—
continuity A, (x,y) ='BR(x,y) for all x,y <if / <—~—n>. In particular,
m

A, (x,x) ='B{),(x, x), which together with the result of part 8. completes the
proof of Theorem12.1. [J]

§13. The (-function of an Elliptic Operator and Formal
Asymptotic Behaviour of the Spectrum

13.1 Definition and the continuation theorem. Let A be an elliptic operator
on a closed manifold M, satisfying the same conditions as in the foregoing
section. Let 4, (x, y) dy be the kernel of A%. For x = y we obtain from this kernel
the density 4, (x, x) dx which is well-defined on the whole manifold M and which
can be integrated over M.

Definition 13.1. The function
{,(2) = [ A,(x,x)dx 13.1)
M

is called the {-function of the elliptic operator A.

In the next section we show that { , (z) can be expressed via the eigenvalues of
A allowing us in the self-adjoint case to obtain the simplest theorem on the
asymptotic behaviour of the eigenvalues. For now, we shall be content with the
formal Definition 13.1 and will formulate a theorem on the analytic
continuation of the {-function.

Theorem 13.1. The function (,(z) defined by the formula (13.1) for
Rez < —n/m can be continued to a meromorphic function in the entire complex
z-plane with at most simple poles, which can be situated only in the points of
the arithmetic progression zj=1_7n, j=0,1, 2, ..., except for the points

zi=1=0,1,2,..., and where the residue y; at z; and the value v, = (I), in the
notations of Theorem 12.1, are given by the formulae

fy,(x)dx_ - — jdx j' b0 (x, &) dE’
M 1El=1
= =g Jax [ a¢ JA™ B0, (x LDk, (13.2)

M 18=1 r

jx,(x)dx—( 1)’—§dx [ d9°(x,&)ae

M 1g1=1

= (- 1)‘— fdx | a¢ fr’b-m(,ﬂ) Z(x, & —r)dr. (13.3)

M gl=1
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Proof. Follows from Theorem 12.1 by integrating (12.5) and (12.6) with
respect to x, taking into account the remarks following Theorem 12.1. [

13.2 The spectral meaning of the {-function. In this section we shall assume
that on M there is given a smooth positive density, which by abuse of notation is
denoted dx. Then the kernel of an operator may be identified with an ordinary
function on M x M. In addition, the self-adjointness of an elliptic operator on M
is a meaningful concept.

Theorem 13.2. Let A be a self-adjoint positive elliptic differential operator on
M and let 2;(j=1,2,...) be its eigenvalues. Then

{42 = le, Rez< —n/m, (13.4)
ji=1

where the right-hand side converges absolutely for the indicated z-values. This
convergence is uniform in z in the half-plane Re z < —n/m — ¢ for arbitrary ¢ > 0.

Proof. Let Rez < —n/m and let 4,(x, y) be the kernel of A% which is a
continuous function on M x M. Let {¢;(x)};2 , be complete orthonormal system
of eigenfunctions for A. Decomposing A,(x,y) into a Fourier series in the

complete orthonormal system of functions {g; ()c)@(y)}j?"‘;(=l we obtain

A.00) = ¥ Ko, 0,00 (13.5)

where the series converges in L2 (M x M). If zis real, then by the Mercer theorem
(cf. Riesz and Sz.-Nagy [1], §98) the series (13.5) converges absolutely and
uniformly. Putting x = y in (13.5) and integrating over x, we obtain the identity
(13.4). In the case of a non-real z it is only necessary to note that | 47| = A}, from
which it follows that the series in (13.4) and (13.5) converge absolutely and
uniformly. The last statement of the theorem follows from the fact that if so €
IR, sg < —n/m, then the series (13.5) for Rez < s is majorized in absolute
value by the sums of the series

1 & 1 =2
S Y ARle ™I +5 2 Al
2 i=1 2 j=1

which are themselves absolutely and uniformly converging series with positive
terms. [

Remark 1. One may also prove Theorem 13.2 without using the Mercer
theorem, noting that for Rez < —n/(2m) the operator A* has a kernel
A, (x,y)e [*(M x M) (i.e. A* is a Hilbert-Schmidt operator) and in view of the
Parceval identity we have
Y A= | JA(x,y)Pdxdy, s<-—n/2m). (13.6)

1

i= MxM
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From the group property it follows that for s< —n

As (x’ y) = _‘.As/Z (x’ Z) AS/Z (Z, y) dZ’
or

As (X, y) = IAS/Z (X, Z) As/Z (ya Z) dZ

using the fact that the kernel A, (x, y) is hermitean. Putting now x =y and
integrating in x-we obtain from (13.6) that (13.4) holds for real z < —n/m. The
transition to complex z is accomplished in the same way as above or by using
analytic continuation. ' '

Let usremark however that from this proof'it is hard to get exact information
on the decomposition (13.5) (in particular about the uniform convergence of the
series there).

Remark 2. The equality (13.4) is valid also without the assumption on self-
adjointness of 4. The proof is easily obtained from the theorem of V.B. Lidskii
(cf. Gohberg I.C. and Krein M.G. [1], Theorem 8.4). However, in the non-
selfadjoint case it is not possible to extract any kind of interesting information
about the eigenvalues from (13.4). The only exception is the case of a normal
operator, where in fact the results may be deduced from the corresponding
results in the self-adjoint case.

13.3 Formal asymptotic behaviour of the function N (¢) in the self-adjoint
case. The function V' (¢). Let 4 be as in Theorem 13.2. Set

Nn=31 (13.7)

A=t

for arbitrary r IR, i.e. N(¢) is the number of eigenvalues of 4 not exceeding ¢
(counting multiplicity). It is clear that N(¢) is a non-decreasing function of ¢
which equals 0 for ¢ < 4, . We assume here for convenience that the eigenvalues
have been arranged in increasing order:

0<A ShL<AS... (13.8)

We then have an obvious formula, expressing { ,(z) in terms of N () in the
form of a Stieltjes integral:

{4(2) = Ojot’dN(t)- (13.9)
(4]

Assume now that N(¢) admits the following asymptotic expansion as
t—= 400!

N(t)=c tu+ cytat ... +otn+ O(tan), (13.10)
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where Rea, > Rea, > ... > Rea, > Rea,,,, then

C@= Y q | rd@) + £, (13.11)
1

=1

where f, (z) is holomorphic for Rez < —Rea, , . Since

e ¢] 9] o
t2d(v) = ttea—1d = — ! ,
'1f *) { Ot, z+ o
it follows that (13.11) may be rewritten as
L@ = - Y Sy (13.12)
cal?) = Sz T '

Hence for Rez < —Req, , ; the function {,(z) has simple poles at —a, with
residues —cya;, /=1, ..., k. Therefore knowing the poles of {,(s) and the
residues at these poles allows us to write down a formal asymptotic expansion
for N(¢). In reality however, only the computation of the first term of the
asymptotic expansion works out well. This term, dictated by comparison of

(13.10) and (13.12), must have the form — 10 40 if { 4(s) has its left-most pole at
—5o < 0 with residue r. So

The formula

N(t) ~ — 2 g5 (13.13)
So
will be rigorously proved in the following section using the Tauberian theorem
of Ikehara, while for the present we shall occupy ourselves with the specifica-
tion of its coefficients.
By Theorem 13.1 we have s, = n/m and

ro = —% fdx | a,"™(x,&)d¢". (13.14)

M 1&1=1
Since in the situation under consideration a,,(x, &) > 0 for £ + 0, then o £0, s0
that the pole at —n/m really exists. Formula (13.13) may now be written
1
N(@)~= fdx | a,"m(x,&)d¢" - rim (13.15)
oy je=1

Now rewrite the right-hand side of (13.15) in a more natural form. For this,
introduce the function
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Viy=Q2n)™ | dxdé. (13.16)

a,(x, &)<t
Note that this function has an invariant meaning: it is the volume in T*M
of all points (x, &) such that a,, (x, £) < ¢, multiplied by (27) ™". Here the volume

is given in T* M by the measure, induced by the canonical symplectic structure
(cf. Arnol’d [1)).

Lemma 13.1. We have the following formula

V(t)=%jdx [ apmm(x,&)de’ - ¢mm, (13.17)

M lE=1
and may, therefore, instead of (13.15) write
N@)~ V(). (13.18)
Proof. Let us remark to begin with, that the condition a,,(x, &) < ¢, in view

of the homogeneity of a,,, is equivalent to a,,(x,¢™'™¢) < 1. Thus, changing
variables in (13.16), n =t~ Y/™¢, we obtain

Vo= | dxdng-m.

a, (x,n) <1

Thelater arguments will take place for a fixed value of x, and we shall write a,, ()
instead of a,, (x, ).

dlgNE’
§§

Gm(§)='|

Fig. 4

We have to show that

[ de=> | amE)dz. (13.19)

an(®)<1 7 oje=1
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Let |£'|=1 and d(¢') = sup{t: a,(t&') <1} (Fig.4), so that d(&') is the
>0

distance of 0 from the surface a,,(£) =1 in the direction £'. Let us consider the

infinitesimal cone with vertex in 0 and height d(&') - &', cutting out the area d¢&’

on the surface |£'| = 1. The volume of this cone equals 1 (d (&))" - dE'.
Therefore

joa=1 [ @@y (13.20)

a,(§)<1 n 1€ =1

But a,(&) = <|§| él) €™ a <é'>, in view of the homogeneity of

a,(&); hence if a,({)=1 then a <|§|> [£]7™, from which d(&")=|¢|
=a,(£')”'". Substituting this expression for d(¢') in (13.20) we obtain

(13.19). O

13.4 Asymptotic behaviour of the eigenvalues. We shall now state an
asymptotic formula for 1, as k— + o0, equivalent to the asymptotic formula for
N(?) ((13.13), (13.15) or (13.18)), and infer from this that, essentially, N (¢) as a
function of ¢, and A, as a function of &, are mutually inverse functions.

Denote by ¥, the coefficient of the term "™ in (13.17), so that V, = V' (1).
Then the desired formula is of the form

Ae~Vimm o kmn o as k—+00. (13.21)

Proposition 13.1. The asymptotic formulae (13.21) and (13.18) are equivalent
(i.e. each implies the other).

Proof. 1. Suppose (13.18) holds, i.e. for any ¢ > 0 there exists ¢, > 0 such
that
1—e<N@OV e"m<1+e¢ (13.22)
for t>t,. Choose an integer k, > 0, such that 4, >, and 4, ,,> 4, . Then
show that
1—e<kV A "<+ ¢ (13.23)
for k = k. Indeed, for any k > k,, there exist integers k, and k, such thatk, < k,
<k=zkjand 4, <Ay ,, =4, < ik +1- In particular, we have N (4, ) =k, and
N(4,) =k,, so 'that from (13 22) it follows that
1—e<k, Vi A4, " <1+, (13.24)
1—eSk, V' A" <1 +e. (13.25)



118 Chapter II. Complex Powers of Elliptic Operators

Further, N(t) = k, for 4, <t<4,, so that for these ¢

l—e<k V] lt"m<] 4
and by continuity

1—e<k Vi "m <1 +e. (13.26)
It follows from (13.25) and (13.26) that

1—eSkV A" 1+, (13.27)

and it remains to note that A, = A, . Hence (13.23) is proven. But from this it
follows that

(14 g)~mmpomin femin < ) < (1 — g)~™in 7 min fomin, (13.28)

and this implies (13.21).

2. Now let (13.21) hold. Choose ¢ > 0 and let k,, be an integer such that for
any integer k > k,, the inequality (13.28) holds. Let 4, <¢< 4, , where k; and
k, are the same as in part 1. of this proof. It follows from (13.28) that, in
particular,

1—esk, V7 A "m< 1 +e, (13.29)
1 —e <+ D)V AT ST 4, (13.30)

since 4, ,;=4,,. Choose now a number k, so large that V"' 4;"™ < ¢ for
k = k,. We then obtain from (13.30) that

1-2esk V7P A"m< 1 + 26 (13.31)
But N (t) = k, and therefore from (13.29) and (13.31) we get

1—2eSN@) VA< 1+ 2,
1—2e S N(t) V7 A< 1+ 2e,

from which it follows that
1-2e< NV em< 1+ 2e,

in view of the fact that 4, << 4, , as required. [J
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13.5 Problems

Problem 13.1. Find the poles, residues and values at the non-negative
2

d .
integer points of the {-function of the operator 4 = — e thecircle R/2n Z.

Express the classical Riemann {-function
1
nZ

{(z) = i (13.32)

in terms of { ,(z) and find all the poles, residues and values of { (z) at z=0, —2,
—4, ...

Problem 13.2. Consider the Schrodinger operator 4 = — 4 + g(x) on the
torus T2 = R?/2n Z*. Here q(x) e C*(T?). Express {,(0) in terms of g(x).

Problem 13.3. Let 4 be an elliptic differential operator, mapping C* (M, E)
into C®(M, F), where E and F are smooth vector bundles on M. Let there be
given a smooth density on M and hermitean structures on E and F (a hermitean
metric on each fiber). Show that

index 4 =, 1o (2) = L1y ane(2), (13.33)

where the right-hand side does not depend on z.

(This formula allows us, in principle to write down the index A4 in terms of the
symbol of 4, using Theorem 13.1 which gives the possibility of computing { ;(0)
for B=1+ A*A or B=1+ AA*))

Hint: All non-zero eigenvalues of A4* and 4*A4 have the same muitipli-
cities, since 4 maps an eigensubspace of 4*A4 into an eigensubspace of 44* and
A* acts in the opposite direction.

Problem 13.4. Show that the kernel K(z,x,y) of the operator e4 from
Problem 10.1 is infinitely differentiable in ¢, x and y for ¢ > 0 and for all x € M,
yeM. As t— +0, we have the following asymptotic properties of K (¢, x, ):

a) If x+ y, then K(¢, x,y) = 0(¢") for any N> 0.
b) K(t, x, x) has the following asymptotic expansion as ¢t~ +0:
o j-n
K(t,x,x)~ Y a;(x)t ™, (13.34)
j=0
where o;(x)e C*(M). Express o;(x) in terms of y;(x) and x(x) (cf.

Theorem 12.1) and write down an expression for «;(x) in terms of the symbol of
A.
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Verify that if 4*= A4, then

g}

K(t,x,y)= ) e 4'¢;(x) ¢;() (13.35)
j=0
and the 6-function ’
0(t)= ) e4=[K(t,x,x)dx (13.36)
j=0 M

has the asymptotic expansion

Jj—n

0(t) ~ .i o™ (13.37)

Express index 4 in terms of the 6-functions of the operators 4*4 and 44*.

Problem 13.5. Let E be a hermitean vector bundle on a closed manifold A
with smooth positive density and let 4 be an elliptic self-adjoint differential
operator mapping C®(M, E) into C®(M, E) (not necessarily semibounded).
Consider the function

na(2) =3 (signl) - |47, (13.38)
A

where the sum runs over all the eigenvalues of 4. Show that the series (13.38)
converges absolutely for Re z < —n/m and the function defined by it, n ,(z), may
be continued to the whole complex z-plane as a meromorphic function with

simple poles at z; =];n—, Jj=0,1,2, . ... Express the residues at these poles via
the symbol of A.

Hint. Express n,(z) in terms of {4 (z) and {}(z) where (), (z) and {(z) are
two {-functions of A, obtained by different choices of the branch for A* with
cuts along the upper and lower semi axes of the imaginary axis.

§14. The Tauberian Theorem of Ikehara

14.1 Formulation. The Tauberian theorem of Ikehara allows us to deduce
from the fact that the {-function is meromorphic asymptotic formulae for N(¢)
as t— + oo or for A, as k— + oo (cf. §13). Let us give its exact formulation.

Theorem 14.1. Let N(t) be a non-decreasing function equal to 0 for t <1 and
such that the integral

{(2)= oftsz(l) (14.1)
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converges for Rez < —k,, where ky > 0 and the function

@+

can be extended by continuity to the closed half-plane Rez < —ko. We will
assume that A #+ 0. Then, as t — 400 we have

N(t) ~ ki to (14.2)
0

(recall that f;(t) ~ f,(t) as t > + o0 means that li1+n LWL =1).

(The convergence of the integral in (14.1) for Re z < — k&, easily follows from
a weaker condition. Namely, it suffices to suppose that the integral converges for
Rez< —k, for some k, and the function {(z) thus expressed can be holo-
morphically continued to the half-plane Rez < — k).

Corollary 14.1. Suppose that the function {(z), defined for Rez < —ky by
(14.1), can be meromorphically continued into the larger half-plane Re z < —k,
+ ¢, where ¢ > 0, so that on the line Rez= —k there is a single and moreover
simple pole at — k,, with residue — A. Then the asymptotic formula (14.2) holds.

14.2 Beginning of the proof of Theorem 14.1: The reductions.

Ist reduction. It is convenient to consider instead of {(z) the function
f(z) = {(—z). We then obtain

fl@)= Tt“"dN(t), (14.3)

is

where the integral converges for Rez > k, and the function f(z) —
V4

continuous for Rez > k,. ~ko

2nd reduction: Reduction to the case k, =1. By introducing the function
11(2) = f(koz), we obtain

fi@ =% dN () = | 5 dN, (o),

where N, (1) = N (¢!/%). Since
1

z—1

A A
f(koz)”‘k—z"_“/—{;:fl(z)“g'

0

. A . . A

and since N(¢) ~ T t% is equivalent to N, (1) ~ P then Theorem 14.1 reduces
0 0

to the following statement:
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Let N(¢) be a non-decreasing function and let the integral

f@)=[t7=dN () (14.4)

1
be convergent for Re z > 1, where f(z) — Z—é—l is continuous for Rez > 1. Then
N(t)~ At as t—>+4w. (14.5)

. A
Note that from the continuity of f(z) — 1 for Rez = 1 and the fact that

f(2) 2 0 forreal z > 1, it follows that 4 > 0. Changing N (r) for 4~ N(t), which
results in changing f(z) for 4 ™' f(z), we see that it suffices to show the statement
for 4A=1.

3rd reduction. Let us pass from the Melin transformation to the Laplace
transformation, i.e. make a change of variables = e*. Put N(e*)= ¢ (x). We
then see that ¢ (x) is a non-decreasing function, equal to zero for x < 0 and that
the integral

f@= 3;1 e *do (x) (14.6)

1 . .
converges for Rez>1 and f(z) — s continuous for Rez = 1. We must
show that -

lim e *p(x)=1. 14.7)

x- + o0

4th reduction. Denote H (x) = e *¢(x). The ¢(x) is non-decreasing if and
only if

H(y)zH(x)e*™> for yz=2x. (14.8)
Integrating by parts in (14.6) gives, for Rez > 1
f(z)=zaj?e‘z"qo(x)dx=zo(fe_‘z_”" H(x)dx (14.9)
0
Now put z=1 4 &+ it, where ¢ >0 and ¢ is real. Note that

® 1
—-(z—1)x —
(j)e dx o1

therefore, (14.9) implies
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e T UX(H(x)—1)dx.

Since

z z—1 -1

L - ),
z z

then, putting

h, (1) = % (f(z) -~ 71’1 - 1) I (14.10)
we obtain
h,(t) = [ e *™""(H(x)—1)dx. (14.11)
0

We may now give the following reformulation of Theorem 14.1.

Theorem 14.1. Let H(x) be a function, equal to 0 for x <0 and satisfying
(14.8) for all real x and y. Assume that the integral (14.11) converges absolutely for
any ¢ >0 and the function h,(t) defined by it, is such that the limit

lim b, (1) = h (1) (14.12)

exists and is uniform on any finite segment |t| < 2A. Then

lim Hx)=1. (14.13)

x-+ o

Remark. If H(x) tends to 1 sufficiently quickly (if e.g. H(x) —1¢e L' ([0,
+ o0))), then we obtain (14.12) from (14.13) by passing to the limit under the
integral sign, which one may do in view of the dominated convergence theorem
(the function 4 (¢) then equals the Fourier transform of 6 (x) (H (x) — 1), 0(x) the
Heaviside function). In some sense, the Tauberian condition (14.8) allows one to
invert this statement.

14.3 The basic lemma. It is clear that in order to prove Theorem 14.1" we
have to somehow express H (x) — 1 in terms of 4 (¢) which, formally, is possible
by the inverse Fourier transformation. However, we know nothing about the
behaviour of 4 (t) as t— + oo or about the nature of the convergence of 4, (¢) to
h(t) on the whole line and it is therefore necessary, to begin with, to multiply the
limit equality (14.12) with a finite cut-off function § (¢). These considerations,
linked to the convenience of having transformations with positive kernels (of the
Fejér type), demonstrate that it is convenient to consider § (¢) to be the Fourier
transform of a non-negative function g (v) € L' (R):

3(t)=[e " g(v)dbv. (14.14)
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We shall assume that § (¢) is a continuous function with compact support
such that §(0)=1, ¢(v) =0 and g (v) € L' (IR). From this it follows that

Tog(v)dv =1. (14.15)

The existence of a function g (¢) of the type described may be shown in the
same way as m 6.3 (at the beginning of the proof of Theorem 6.3 a function
o(t) € C °°(IR ) is constructed which satisfies all these requirements). We can
also exphcltly define o(¢) , putting

7]
) 1= l1=2,
=1 o p>2.

Then indeed, for a fixed v + 0 we have

i |t| _ Zeitv ltl eitu |t| 2
c=fer(1-)a= ] T a(1-5) 55 (1-5)

-2

2 eitv ) eitu 2 eitv -2
= | ——signtdt=
2y 2

1—cos2v 1 sin?v
4mv?

2 -T2

o A4mv? 2nv T

from which all the necessary properties of g (v) are obvious.

Lemma 14.1. For any fixed A >0

lim j H(y——)g(v) dv=1. (14.16)
y=>+to -
Proof. 1. Put §,(r) = §(¢/A) and g, (v) = Ag (Av) so that g,(¢) is the Fourier
transform of g, (v). It is clear that

jH(y——) (v)dv = fH(y—v) 0;,(v)av, (14.17)

and since g, (v) possesses the same properties as g (v), it suffices to prove (14.16)
forA=1.

2. Putting F.(t) = g(¢) h,(¢), we compute the inverse Fourier transform of
the function F,(¢) with compact support, taking into account that ¢ (¢) and 4,(¢)

are the Fourier transforms of the absolutely integrable functions g (v) and
() (Hv)—1)e ¢

+ ©

[ e F(t)ydt= Toe"y@(t) [T(H(x) - l)e’““""dledt
— - © 0
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= TO (H(x)—1)e™** [Tj@(t) ei"y”"’d‘t:| dx  (14.18)
0 —

+

= g (H(x)—1) e"**o(y—x)dx.

As a result, as one might have anticipated, we obtain a convolution and we
have made sure that (14.18) holds everywhere and in the usual sense (the change
in the order of integration is permitted by the Fubini’'s theorem).

Let us now rewrite (14.18) in the form

+

[ e Edi+ [e = o(y=dx = [Hx) e~ o(y—x)dx  (14.19)
- 0 0

and take the limit as e— +0. Since supp F,  supp ¢ and F,(z) — F(¢) uniformly
in tesupp ¢ (here F(1) = ¢(t) h(2)), then the first integral on the left-hand
side has a limit as ¢— +0 for any y. The same also holds for the
second integral (e.g. by the dominated convergence theorem). Therefore, the
integral on the right-hand side of (14.19) has for any y a limit as e— +0. Since
H(x)e ** g (y—x) converges monotonely as ¢— +0 to H(x) ¢ (y—x), we get

[ e F(tydi+ | o(y—x)dx = [HE e (y—x)dx. (14.20)

Now let y tend to + co. By the Riemann lemma

+
lim [ e®F(1)dt=0.
y>+w -

In addition, it is clear that lim | ¢ (y—x)dx = 1. Therefore, it follows from
(14.20) that y2t@ o0

a0

lim [H(x) o(y—x)dx=1. (14.21)

yo + oo

But

+

[HM e -ndx= | HE oly=2dr= [ Ho= 0©)do,

so that (14.21) implies the statement of the lemma. [J
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14.4 Proof of Theorem 14.1°. 1. First, we show that

lim H(y)<1. (14.22)

y->+ o

Since

a v + v

| H(J}-;) edv £ | H<y—z) 0@ dv
for any a> 0, it follows from Lemma 14.1 that

fm | H(y—%) o(W)dv < 1. (14.23)

y2+tw -~g

Now, in view of the Tauberian condition (14.8) we have

2a
H(y—E>ZH< —g>e_7 for ve[—a,d].
A)= A ’

Now, it follows from (14.23) that

2a a
lim H(y——g>e T owar=s1,
y=>+ o j. —a

or

2a a -
@ H(y) = e7<j g(v)dv) B (14.24)

—a

Inequality (14.24) holds foranya > 0and A > 0. Leta— + o0 and A — + o0 in
this inequality in such a way that a/4 —0. Then we obtain the required estimate
(14.22) from (14.24).

2. We will now verify that

lim H(y)=1. (14.25)

y=+ o
To begin with, note that (14.22) implies the boundedness of H (y):
IHy) =M, yeR!, (14.26)

in view of which

§ H<y— ;) e()dv = a(b), (14.27)

lolzb
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where a (b) —» 0 as b— + oo (this means, in particular that the integral on the left-
hand side of (14.27) approaches 0 as b— + oo, uniformly in y and A).
Since

+ o b
_j' H(y—%)g(v)dv: [+ 7

—b lvlzb

then, by (14.27) and Lemma 14.1 we obtain for arbitrary b > 0

lim | H<y—§>g(u)dug1—a(b). (14.28)

Y2t pgp

Let us again use condition (14.8). We have

b v\ -%
H(yﬁ)zH(y—;) Y. ve[—b,b],

from which, in view of (14.28), it follows that

b\ %2 »
lim H<y+1>e‘l fodvz1—a(b),
=b

y-» +©

or

w0 -1
lim H(y)z 1—a) e T <_5b9(v) dv) : (14.29)

y-s+ oo

Now let b— + o0 and A — + o0, so that b/A — 0. Then from (14.29) we obtain the
desired inequality (14.25). [J

Problem 14.1. Let N(¢) be a non-decreasing function, equal to 0 for t <1
and let the integral (14.1) be convergent for Rez < —k,, some k, > 0. Assume
furthermore, that the function { (z), defined by (14.1), can be meromorphically
continued to larger half-space Rez < —k, + ¢, where ¢ > 0 so that on the line
Rez = —k, there is a single pole at — k, with principal part 4 (z+k,) " in the
Laurent expansion (here / is a positive integer, equal to the order of the pole at
—kg). Show that

(-1)-'4

NO~

-t (nr)!
as t— + oo.

Problem 14.2. Prove the Karamata Tauberian theorem:

Let N (¢) be a non-decreasing function of t e R, equal to 0 for £ < 1 and such
that the integral
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0(z) = [ e "dN (1) (14.30)
0
converges for all z> 0 and
0(z) ~Az7* as z-+40 (14.31)

(here 4> 0 and a > 0 are constants). Then

A

NO~ o

1 as to+o. (14.32)

§15. Asymptotic Behaviour of the Spectral Function and
the Eigenvalues (Rough Theorem)

15.1 The spectral function and its asymptotic behaviour on the diagonal. Let
M be a closed n-dimensional manifold on which there is given a smooth positive
density and let 4 be a self-adjoint, elliptic operator on M such that

a,(x,8)>0; ¢+0. (15.1)

Then 4 is semibounded. Denote by 4; its eigenvalues, enumerated in
increasing order (counting multiplicities):

M S,

By ¢;(x) we denote the corresponding eigenfunctions, which constitute an
orthonormal system.

Let E, be the spectral projection of A (the orthogonal projection onto the
linear hull of all eigenvectors with eigenvalues not exceeding ¢). It is clear that

Eu=7Y (4,9)¢;. (15.2)

LSt

Definition 15.1. The spectral function of A is the kernel (in the sense of L.
Schwartz) of the operator E,.

Taking into account that on M there is a correspondence between functions
and densities, we may assume that the spectral function is a function, not a
density. From (15.2) it is obvious that this function, e(x, y, t), is given by the
formula

e(x,y,0) =Y ¢;(x) m (15.3)

ASt
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and, in particular, belongs to C*(M x M) for every fixed ¢. Let us note
immediately the following properties of e(x, y, t):

1) e(x,x,1) is a non-decreasing function of ¢ for any fixed x e M;

2) the function N () introduced in section 13.3, can be expressed in terms of
e(x, x,t) by the formula

N(t) = [e(x,x, 1) dx, (15.4)

M

where dx is a fixed density on M.

Now assume that local coordinates in a neighbourhood of x are so chosen,
that the density coincides with the Lebesgue measure in these coordinates and
put

V.= | dct. (15.5)

an(x,§) <t

Theorem 15.1. For any x € M the following holds:
e(x,x,t) ~V. (1) as t—>+w (15.6)

Proof. 1.To begin with, note that without loss of generality we may
assume 4, =1. Indeed this is satisfied by the operator 4, =A4+ MI for
sufficiently large M. Now, if e, (x, y, ) is the spectral function of 4,, we have
e(x,y,t)=e,(x,y,t+M). Therefore, the asymptotic formula e, (x, x, t) ~ V. (¢)
implies e (x, x,t) ~ V. (t+M). But

V(t+M)=V. (1) (t+ My"™ =V, (1) "1 +00™ ) ~ V(1) "=V, (1),

which implies (15.6).

2. Thus let 4, =1. We may then define complex powers A* of 4 in
accordance with the scheme of §10. Using (13.5), we may for x = y express the
kernel A, (x,y) of A% in terms of the spectral function as follows

A, (x,x) = 0ftzafe(x,x,t), (15.7)

where d signifies the differentiation with respect to ¢ (for a fixed x this is simply a
Stieltjes integral). In view of Theorems 12.1 and 14.1 we obtain now for e (x, x, t)
the asymptotic formula

e(x,x,t) ~ [’11 | a;"/"‘(x,f’)d‘é’] g, (15.8)

=1
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Anelementary transformation of the right-hand side of this formula, carried
out in the proof of Lemma 13.1, shows that it equals ¥V, (¢), implying (15.6). O
15.2 Asymptotic behaviour of the Eigenvalues

Theorem 15.2. Let A satisfy the conditions described at the beginning of this
section. Then one has the following asymptotic relations

Nt ~V(@), t— + 0, (15.9)
Ao~ V(1) Tmmgmn ks 4o, (15.10)
where V (t) is defined by the formula (13.16).

Proof. In §13 we showed the equivalence of (15.9) and (15.10). (Pro-
position 13.1). Let us prove (15.9). This is done on the basis of the Tauberian
theorem of Ikehara, by analogy with the proof of Theorem 15.1. Indeed, again
we may assume that A, = 1. Then for Rez < —n/m, we clearly have the formula

(2= Ofot’dN(t)- (15.11)

It remains to use Theorems 13.1 and 14.1 and Lemma 13.1. 0

Remark. One can derive (15.9) from (15.6) by integration over x. To justify
this integration, it is necessary, however, to prove the uniformity in x of (15.6),
which requires in several places (in particular, in the proof of the Ikehara theo-
rem) the verification of uniformity in the parameter. To avoid this cumbersome
verification, we have preferred to give an independent proof.

15.3 Problems
Problem 15.1. In the situation of this section prove the estimate
le(x,y,0)| < Ct"™,
where x, y e M and the constant C >0 does not depend on x, y and ¢(t=1).

Problem 15.2. Let A be an elliptic differential operator, on closed manifold
M with smooth positive density, which is normal, i.e.

A*A = AA* (15.12)

a) Show that A has an orthonormal basis of smooth eigenfunctions ¢, (x),
J=1,2,..., with eigenvalues A; € C, such that

4| »>+c as jo+oo. (15.13)

b) Show that if N (¢) denotes the number of 1 j>such that [4;| < ¢, andif V' (¢)
is defined by the formula
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Vio=Qm)™ [ dxde, (15.14)
an(x &)<t
then
N ~V(@) as t—+oo. (15.15)
Problem 15.3. Deduce Theorems 15.1 and 15.2 from the results of Pro-
blem 13.4 and the Tauberian theorem of Karamata (Problem 14.2).

Problem 15.4. Let M be a closed manifold, 4 an elliptic differential operator
on M, such that a,,(x,§) >0 for £+ 0. Let 4; be its eigenvalues and N, (¢) the
number of eigenvalues with ReA; <t (here we take for the multiplicity of an
eigenvalue 4, the dimension of the root subspace E, , cf. Theorem 8.4), N, () the
number of eigenvalues with |4;| < ¢. Show that

N (@)~ N,(t) ~V() ast—>+o0, (15.16)
where V' (¢) is defined as before. Show that
Ay~ V() mmfmin k— 400 (15.17)

(this means, in particular, that Im 4, has a lower degree of growth than Re 4,).
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§16. Formulation of the Hormander Theorem and Comments

16.1 Formulation and an example. Let M be a closed n-dimensional
manifold on which there is given a smooth positive density dx and let 4 be an
elliptic, self-adjoint operator of degree m on M such that a,,(x, &) > 0 for £ # 0.
We will use the notations e (x, y, 1), N(4), V. (2) and V' (4) introduced in §15. The
following theorem refines Theorems 15.1 and 15.2.

Theorem 16.1 (L. Hérmander). The following estimate holds
le(x,x,A) =V, ()| L CA»"Dm  1>1, xeM, (16.1)
where the constant C > 0 is independent of x and A.
Corollary 16.1. The following asymptotic formula holds
NA=VA) 1+0GA" ") as A-+ow (16.2)

Remark 16.1. In general the estimate of the remainder in (16.1), (16.2)

cannot be improved. This can be seen by looking, for instance, at the operator
2

A=— 75z on the circle S =IR/2nZ. The corresponding eigenfunctions are
of the form
| S
Yi(x) = —=e*, k=0, 1, =£2,...,
V2n

and the eigenvalues are 4, =k* k=0, +1, +2, ....

Further, since |y, (x)]*= (2n) !, then clearly e(x,x,4) = @2n) ! N(A).
Since V,.(A)=(2n) ' V(1) then (16.1) and (16.2) are equivalent. So it
suffices to show that the estimate of remainder in (16.2) can not be improved.
But in this example (16.2) has the form N(i) = V(4) (1+0(1" %)) or
N(4) =21/A+0(1). The estimate O(1) can not be improved because N (4)
has only integer values.

M.A. Shubin et al., Pseudodifferential Operators and Spectral Theory

© Springer-Verlag Berlin Heidelberg 2001
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Later, in §22, we will study a more interesting example, which is a
generalization of the present one (the Laplace operator on the sphere) and shows
that (16.1) cannot be improved in the case of arbitrary » and m.

16.2 Sketch of the proof. First of all, the theory of complex powers of
operators, allows a reduction to the case when A is a ¥DO of order 1. In this
situation we will show, that for small ¢, e?4 is itself an FIO, with a phase function
which is a solution of a certain first order non-linear equation. Let us now
remark, that the kernel of e is the Fourier transform (in4) of the spectral
function of 4. From this the asymptotic (16.1) is obtained, by invoking
Tauberian type arguments for the Fourier transformation.

The remainder of this chapter is as follows: §17 contains some indispensible
information on first order non-linear equations; in §18 an important theorem on
the action of ¥DO on exponents is proved, from which, in particular, the
composition formula for a WYDO with an FIO follows; in §19 the class of phase
functions corresponding to'¥'DO is studied; in §20 we construct the operator eit4
in the form of an FIO for a first order operator 4; in §21 Theorem 16.1 is proved
in the general case (there is also information about e (x, y, 4) for x # y); finally,
§22 contains the definition of the Laplace operator on a Riemannian manifold
and the computation of its spectral function in the case of a sphere.

Problem 16.1. Compute N (4) and e(x, x, ) for the operator

ks ik 02
A=-a=-(Z_4+ % 4+ + 2
(i;‘xf + 0x3 toet 6x2>

on the torus T" = IR"/2n Z" and verify that the asymptotic formulae (16.1) and
(16.2) hold.

§17. Non-linear First Order Equations

17.1 Bicharacteristics. Let M be an n-dimensional manifold and a(x, ¢) a
smooth real-valued function, defined on an open subset of 7* M. Consider the
Hamiltonian system on T* M, generated by a(x, £) as Hamiltonian:

A

{5: _a., 17.1)
Oa oa oa Oa .

where a, = <‘E’ e ‘E) a, = (‘E, cee 5&:) and (x, &) are the coordinates

on T*M, induced by a local coordinate system on M. It is well-kown, that the
vector field on T*M, defined by the right-hand side of (17.1), is independent
of the choice of local coordinates on M (cf. e.g. V.I. Amol’d [1]).
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Definition 17.1. A solution curve (x(¢), &(¢)) of (17.1) is called a
bicharacteristic of the function a(x, &).

A bicharacteristic is not necessarily defined for all t € IR. In this case we
assume that it is defined on the maximal possible interval (concerning this
consult also Problems 17.1 and 17.2).

Proposition 17.1. The function a(x,&) is a first integral of the system
(17.1), i.e. if (x(t),&(t)) is a bicharacteristic of the function a(x,§), then
a(x(t),&(t)) = const.

Proof. We have

% a(x(t), E(1)) = ax+ a;é =a.a;, —aa,=0. O

Proposition 17.1 makes sense of the following definition:

Definition 17.2. A bicharacteristic (x(¢), £(¢)) of the function a(x, &) is
called a null-bicharacteristic if a(x(t), £(t)) = 0.

17.2 The Hamilton-Jacobi equation. Consider the first order partial
differential equation

a(x,¢.(x) =0, (17.2)

where ¢ is a smooth, real-valued function, defined on an open subset of M and
¢, its gradient. Such an equation is called a Hamilton-Jacobi equation. For its
treatment, it is convenient to introduce the graph of ¢,, i.e. the set

o =16, 0.(x)), xeM} cT*M. (17.3)

Proposition 17.2. If ¢ is a solution of (17.2), then the manifold I, is invariant
under the phase flow of the system (17.1), i.e. if (x(¢), £(¢)) is a bicharacteristic
of a, x(t) for t€[0,b] belongs to the domain of ¢ and (x(0), {(0)) eI, then
(x(0), (1)) T, for all t€[0,b].

Proof. In view of the uniqueness theorem, it sufficies to verify that the
Hamiltonian vector field (a,, —a,) is tangent to I', at all its points. This is
equivalent to the following: if (x(z), £(¢)) is a bicharacteristic and (x(0), £(0)) €T,

(i.e. £(0) = ¢,(x(0))), then {di (&) — (px(x(t))]H = 0. But this follows
from the computation: ! t=0

t=0

d
{E HORES (x(r))]}
— 4 (x(0), £0) = Pue (x(0) a(x(0), & (0)

0

t=

Il

[

0
- EX— [a(x, (px(x))]x=x(0) =0. 0
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In what follows the only important case for us is when a(x, &) is positively
homogeneous with respect to & of degree m, i.e.

a(x,t&) =t"a(x, &, t>0,¢+0, (17.4)
where m is any real number. Such functions are characterized by the Euler
theorem:

¢-a;=ma. (17.5)
Proposition 17.3. Let a(x, &) be homogeneous of degree m and ¢ (x) a solution
of (17.2). Then ¢ (x) is constant along the projections of the null-bicharacteristics

of the function a(x, &) belonging to I',, 1.e. if (x(t), §(t)) is a null-bicharacter-
istic and £(0) = ¢, (x(0)), then ¢(x(t)) = const.

Proof. We have

d .
7 P X)) = 0. x=9.a,= ¢, (x(1)) ay (x(1), £(1))

= @ (x (1)) ag (x (1), @ (x(1)) = ma(x(2), o, (x(1))) =0. UJ
17.3 The Cauchy problem. The Cauchy problem for the Hamilton-Jacobi

equation (17.2) consists in finding a solution ¢ (x) of this equation, subject to the
condition

ols=vw, (17.6)

where Sis a hypersurface (submanifold of codimension 1) in M and y € C®(S).
Locally, we may consider the hypersurface as a hyperplane, i.e. by choosing the
local coordinate system in a neighbourhood of a point x, €S, we may achieve
that

S={x: x,=0} 17.7)
so that y = y (x'), where x’ = (x, ..., x,_). In this coordinate system, it is
convenient to formulate the condition of being non-characteristic, guaranteeing
local solvability of the Cauchy problem in a neighbourhood of the point x' € S:
the equation

a(x', 0,y (x"),4) =0 (17.8)

has a simple root 4, i.e. a root A eIR, which in addition to (17.8) satisfies

0
a—gj (x", 0,y (x'),4) 0. (17.9)
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Let a point 0eS be fixed. Then by the implicit function theorem, the
equation

a(x,£,4)=0 (17.10)

for |x| <eand |¢' — y, (0)]| < ¢ has a solution A = a’(x, £"), which is a smooth
function of x and ¢’. It is easy to verify that a’ (x, £") is homogeneous of the first
order in &', so we may assume that it is defined for |x| < ¢ and for all &' #
0 in a conical neighbourhood of ¥, (0). Equation (17.10) for [x| < e and
for a vector (§', ) close to the direction of (v/,(0), a'(0, ¥, (0))), may be
represented in the form

A—d(x,¢)=0. 17.11)

Therefore the local Cauchy problem takes the following form: find a solution
@ = @(x) of (17.2), which satisfies (17.6) and, additionally, satisfies

Jo
0x,

0,0) = a'(0,y..(0)). (17.12)

Since in this situation it is possible to pass from (17.10) to (17.11), our
problem may be written in the following form

do [ 0p\
P a (x, 6x’> =0, (17.13)
?la=0=y(x), (17.14)
i.e. the matter reduces to the case
a(x,§)=¢,—a'(x,¢). (17.15)

Let us consider the bicharacteristics of a (x, &) of the form (17.15). Their
equations are

i=—ap(x, 8,
%=1, (17.16)
¢=da,(x,&).

Consider a null-bicharacteristics (x(f), £ (¢)) belonging to I', and starting in
S, i.e. such that x,(0) = 0. Then it is obvious from (17.16) that x,(¢) = ¢. Fix
another point x" = x'(0) €S. It is clear that the condition (x(0), £ (0)) e ', means
the following

0p

CO =y ), &O) =5

(x',0), 17.17)
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and the condition a(x(0), £ (0)) = 0 gives
¢ (0)=a'(x',0,y. (x). (17.18)

Therefore, the null-bicharacteristic belonging to I', and such that x,(0) = 0
and x'(0) = x’, is uniquely defined. From (17.17) and (17.18) the smooth
dependence on x' is clear. In addition, if we consider the transformation

g1 (%', x) = (%" (%), Xn) (17.19)

defined for |x| < ¢, then from the initial condition x’(0) = x’, it follows that its
Jacobian is 1 for x,=0, so that g is a local diffeomorphism. Now, from
Proposition 17.3, it necessarily follows that

p(0)=y(g™' ™), (17.20)

where [g~'(x)]’ is the vector, obtained from g~ !(x) by neglecting the last
component (corresponding to the notation x’ for x = (x, x,)).

Therefore, we have shown the uniqueness of the solution of the local Cauchy
problem and obtained a formula, (17.20), for this solution. The existence of this
solution is a simple verification. We recommend the reader to do the following
exercise.

Exercise 17.1. Show that formula (17.20) actually gives a solution of the
local Cauchy problem as described above.

17.4 Global formulation. We would like to formulate sufficient conditions
for the existence of a solution of the Cauchy problem in a neighbourhood of .S
without restricting to a small neighbourhood of a point on S (although the
neighbourhood of the hypersurface S may be very small, in the sense of, for
example, some distance from S). First, these conditions must of course,
guarantee the existence of solutions of the local problem at any point x €S and
secondly, roughly speaking, provide continuous dependence of the root 4 of
equation (17.8) on x. This means, that on S we may define a covector field
&= E&(x")eTEM, continuously depending on x’ €S and such that

1) i*¢(x") = w,.(x"), where i: S— M is the natural inclusion map and y,. (x")
is the gradient of y (x') at x’ € S, viewed as a covector on S (an element of T%S);

2) Introduce local coordinates as described in 17.3 in a neighbourhood of
any point x’€S. Then

E(x) = (W (x), A(x)),

where A (x’) is a root of (17.8), satisfying (17.9), i.e. satisfying all the conditions
for the local solvability of the Cauchy problem. Let us note that (17.12) may be
written, here without local coordinates as

P, (x)=¢(x"), x'eS (17.21)
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Therefore, the final statement of the Cauchy problem goes as follows: find a
solution of (17.2), defined on a connected neighbourhood of the hypersurface S,
satisfying the initial condition (17.6) and the additional condition (17.21). In this
form, the problem has a unique solution, depending smoothly on the parameters
(if any), provided that the given quantities a, S, w and £ also depend smoothly on
these parameters.

Remark 17.1. Condition 1) is obviously necessary (assuming the rest is also
fulfilled) for the solvability of the Cauchy problem and signifies simply the
absence of topological obstructions to the global existence of a field & (x’), the
local existence and smoothness of which is ensured by solvability conditions of
the local problems at the points x' € S.

17.5 Linear homogeneous equations. Equation (17.2) is called /inear homo-
genous if a(x, &) is linear in ¢, i.e.

a(x,§)=V(x)- ¢, (17.22)

where V (x) is a vector field on M. The projections on M of the bicharacteristics,
are in this case the solutions of the system

=V (), (17.23)

and the solutions of (17.2) are simply the first integrals of the system (17.23). The
same system (17.1) contains also, along with (17.23), the equations

¢=-V.(x-¢ (17.24)

which are linear in £. A standard growth estimate for |&£(¢)] shows that if
x(t) e K, where K is a compact set in M, then |£(¢)| is bounded on any finite
interval on the ¢-axis. Therefore a bicharacteristic is either defined for all ¢ or
its projection x (¢) will leave any compact set K C M. The condition that S is
noncharacteristic means, that V(x) is everywhere transversal to S.

Let us consider the map g mapping (x’, ¢) into x (¢) with x(¢) a solution of the
system (17.23) with the initial value x (0) = x'. If there exists ¢ > 0 such that x ()
is defined for any x’ for all |z| < ¢, then g determines a map

g Sx(—¢e) > M. (17.25)

If g is a diffeomorphism, then the solution of the Cauchy problem with initial
data on S is defined on the image of g. It is therefore important to be able to
estimate from below the number &> 0, for which the map (17.25) is a
diffeomorphism. One important case, where such an estimate is possible will be
shown below.



140 Chapter III. Asymptotic Behaviour of the Spectral Function

17.6 Non-homogeneous linear equations. These are equations of the form

V) 0.0 +b(x) @(x)=1(x), (17.26)

where b(x), f(x)e C*(M), V (x) is a vector field on M, ¢ (x) is an unknown
function and ¢, its gradient. If x(¢) is a solution of the system (17.23) then
obviously

d
7 @)+ b(x () ¢ (x(0) = f(x(1),

from which ¢ (x(#)) can be found as a solution of an ordinary first order linear
differential equation, provided that ¢ (x(0)) is known. The basic feature
following from this is that the domain, on which a solution of the Cauchy
problem exists, depends only on V (x) and S and is independent of the right-hand
side f(x) and the initial value y € C*(S).

In particular, in what follows, we will need an equation of the special form

n—1 aQ)
- 2 4(x) =+ b(x) e =f(x), 17.27)

noj=1 0x;

0o
O0x

where x = (x', x,), x' € M' for some (n— 1)-dimensional closed manifold M" and
X, € (—a,a)with a > 0. The system (17.23) (for the corresponding homogeneous
equation) is of the form

{x =V®, (17.28)

Xy=1.

The solutions x(¢) of this system which start at x,=0, are defined for
te(—a,a) and if we put S = M’ = {x: x,= 0}, then the map g of the preceding
section becomes a diffeomorphism g: M — M, where M = M’ x (—a, a) and
where it is clear from (17.28) that the “fiber” M’ x x, is mapped onto itself
diffeomorphically. Because of this, the Cauchy problem for (17.27) with initial
condition

Plea=0=y(x), x'eM, (17.29)

has a solution ¢ € C*®(M).
In a number of cases one can carry out similar arguments also for non-
compact M'.

Problem 17.1. Let a(x, &) be defined for x € M, £ # 0 with degree of
homogeneity 1 in &£. Show that if (x(), £(¢)) is a bicharacteristic, then it is
either defined for all # or x(#) will leave any compact set K C M. In particular,
if M is compact, then all bicharacteristics are defined for all 7 € IR.
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Problem 17.2. Show that the same holds for an arbitrary degree of
homogeneity of a(x, &), if condition of ellipticity holds:

a(x,&)+0 for £+0, xeM.

§18. The Action of a Pseudodifferential Operator
on an Exponent

18.1 Formulation of the result. Here we describe the asymptotic behaviour
as A — +oo of the expression A(e*¥™), with A a ¥DO and ¥ a smooth
function without critical points.

Theorem 18.1. Let X be an open set in R", AeL7 ;(X),1—0=d<pg, 4
properly supported and with symbol a(x, £). Let y (x) € C*(X) and y . (x) % 0 for
x €X (here y_ denotes the gradient of ). Then for any function fe€ C*(X) and
arbitrary integer N 2 0, for . 2 1 we have

D? 7) eitex(2)
g@een)|

A(feitv) = etiv [ S a® (x, L ()

la|<N

4 Amm @ UDN R (x x)], (18.1)

where 0,(») =y (») =y (x) = (y—x) -y (%), a®(x,&) = 0za(x,{), and for
Ry (x, ) the following estimate holds

|0y Ry (x, )| < C, v g AP, x€K, (18.2)
7N, K

where K is compact in X and the constants C, y x do not depend on A. If there are
Sfamilies of functions f(x), v (x), bounded in C®(X) (i.e. the derivatives 0" f(x),
0’y (x) are uniformly bounded on any compact set for arbitrary fixedy) and if the
gradients y ., are uniformly separated (in absolute value) from Q on any compact
set, then the constants C, y  in the estimates (18.2) are independent of the choice
of functions f, y of these families.

Remark 18.1. The statement of this theorem is similar to that of
Theorem 4.2 on the transformation of the symbol under diffeomorphisms and,
as will become clear in what follows, the theorems are actually equivalent.
However, in view of the importance of Theorem 18.1, we shall give two proofs
for it: one derived from Theorem 4.2 and an independent one, essentially based
on the stationary phase method. The latter allows us to deduce from
Theorem 18.1 the invariance of the class of ¥DO under diffeomorphisms and
the formulae for change of coordinates. The reader is recommended to pursue
this in the form of an exercise (historically this was the first method by which
the invariance of the class of WDO under diffeomorphisms was demonstrated).
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Remark 18.2. 1t is useful to note right from the beginning, in what sense
(18.1) is asymptotic as A — + co.
It is clear that the condition y(x) # 0 will ensure the estimate

|a® (x, Ay ()| £ C, A", xeK. (18.3)

Let us now verify that D?(f(z) ei*e-@)|,_, is a polynomial of degree not
higher than |«|/2. Indeed we have

Dz (f(2) eire) (18.4)
= Y .y DIf(2) - A(DIes(2)) ... (Do (2) e,

Yot ¥t ... t=a

where in this sum |y;| =1 for j=1, 2, ..., k. Since g,(z) has a zero of second
order for x =z, then in (18.4) for x = z only terms in which |y;| 2 2,j=1, ...k,
k

remain. But Z ly;l < lal, so we obtain 2k < || as required.

j=1
Now, taking (18.3) into account, we see that

a® (x, Ay (x))

D‘z z eMQx(z)
z (f(a)' ) § Ca,[( im—(a—1/2)|a|’ XEK,

zZ=X

giving the required decrease in the degrees of growth of the finite terms in
formula (18.4), since ¢ > 1/2.

18.2 First proof of Theorem 18.1. Let us make a change of coordinates
y=u(x)=(xy,..., X,-1, ¥ (x)). This change has Jacobian v, and may be made,
therefore, only where y, #+ 0. The general case however can be easily reduced to
this case using a partition of unity and a rearrangement of the coordinate axes.
Indeed 4 is properly supported and consequently for any compact set K, there
exists a compact set K, such that Au|, only depends on u| . Therefore
A (fe'™)|, may be written as a finite sum of terms of the form 4 (f;e'*), with
f€C¥(X) and where to any j there exists an integer k, 1 < k < n, such that
Y5 (x) £ 0 for xesuppf;.

Thus, lety;, + 0, x € Xand let 4, be the operator 4 written in the coordinates
y=u(x) (cf. §4). Let a, (y,n) be the symbol of 4,. By Theorem 4.2 we have

a; (y, 11) |y=%(x) = e—ix(x)-nA(eix(x)-n)

1 .
= T —a® (5% ()n) (DI N |+ 1y (x,m),

|la| <N
where

w(2) =%(z) — % (x) — %' (x) (z—x), ryeSy; @ VAN(XxRY.
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In particular, putting n = (0, ..., 0, 1), we obtain precisely formula (18.1) for
f=1 and where Ry can be estimated as in (18.2). The statements about
uniformity and the case of arbitrary f are obtained by repeating the proof of
Theorem 4.2; we leave this to the reader as an exercise. [J

18.3 Second proof of Theorem 18.1. For simplicity, we shall assume in this
proof that §=0 and g =1.

Note, once again, that since A is properly supported, we may assume that
feC3°(X). Put, for brevity, I(1) = e-itv() 4 (feitv®)(x) (for a fixed x). We have
I(A) = ja(x, &) f(p) ervOI-v+iG-n-sdy dE . (18.5)

Let us now make the change of coordinates ¢ = A(:
1) =2"[a(x,A0) f(p) eitv)-v@-0-0-0dy d( . (18.6)
We want to find the asymptotic behaviour of this integral as 1 — + co. We shall

see that a major role (and this is the point of the stationary phase method) is
played by neighbourhoods of the critical points of the function

g0, =v() -y - -x (. (18.7)
Now, since g; = x — y, g, =y, (») — {, there exists exactly one critical point of
this function, the point y = x, { = w_(x). For short we put ¢, = . (x). Introduce

the cut-off function y € C°(IR™), x (z) = 1 for |z| < ¢/2, y (z) = 0 for | z| > ¢, where
&> 0 and consider the integral

T =2 [a(x,40) x(y—x) 1 (&) f(y) ers0.0dydf . (18.8)
Then for any N> 0
[I(A)—T(A)| = Cya™. (18.9)
Indeed, putting
L= 3-0*+x=»1" w10 D,+(x—y) D,

we see that 'Leits(0) = ei4s(»0. Integrating by parts in the oscillatory integral
I(4) — I(A), and considering that

W' D=0+ (x=3»)?12¢e >0 on supp[l—x(y—x) x(—&)],

we see that

1) = T(A) = A fe*s0:0 [N[a(x, 20) (1 —x(y—x) x(C— &) f(W)]dydL,
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and transforming this oscillatory integral into an absolutely convergent one
(cf. §1) we easily obtain the estimate (18.9) due to the factor A7, in the
expression for L. Analogously, one also obtains estimates for the x-derivatives
from the difference I(A) —I(4). However, note that they follow from the
estimates of I (1) — I(4) with arguments similar to the proof of Proposition 3.6.
In the sequel we shall omit estimates of the derivatives, leaving them to the
reader.

Thus, instead of I(4), we may consider 7(1). Making yet another change of
coordinates { = ¢, + 4™ ', we obtain

Ty = Jere=n1 a(x, 28, +1) x(%) 1(r=x) () ek dydy.  (18.10)

Expand a(x,A¢,+1) in a Taylor series at n =0:

a(x, A +n) =) a®(x,AL) —Z, + ry(x,1,4),
!a!<N .
where

1
(A=Y ¢ [U=D""'n*a® (x, Al +1tn)dt.
0

ol =N

Multiplying this expansion with the cut-off function x(n/4) x(y—x) and
substituting the result into (18.10) we obtain

I =3 fenma®(xaL)

|la|<N
x x(%) (=) f() evew dydn + Ry(x, D), (1811)

where

1
Ry(x,))= Y ¢ fdydn [(1-0)""1n*a® (x, ¢ +1n)
0

le| =N

xx(y—x) x G) eI f(y) et ds. (18.12)

As follows from the arguments above, the asymptotic behaviour of the finite
parts in formula (18.11) does not change if we remove the cut-off function
x (/2). But then these terms can be easily transformed, by the Fourier inversion
formula:

[ (x,38,) T (y=) f(9) eveordy dy

=a%(x, AE)) Dj (f(y) et _,
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so that it only remains to estimate the remainder Ry, or to estimate, uniformly in ¢
(0<t=1), the integral

(%A, 0) = [n*a® (x, 2+ tn) x (y—x) X(%) e (f(y) e dy dn

= ) Cep [N (x, AE + 1) xS (y—x) 1 G) D¥(f(y) e dy dn

a+a'=a
(18.13)
where |a| = N.
Let us introduce the notation

@, (e, At = 7 (%) @ (x, AE, 4 11)

If the number ¢ in the definition of x (z) is chosen so thate <|&, |/2, then for d, one
has the estimates

10,084, (x,m, 4, 8)| < Cpp Am NP1 (18.14)

Now let us use (18.4) and substitute into (18.13) the expression obtained
from this for D*'(f (y)e™). In this expression all the terms contain prod-
ucts '

A DY 0 (y) - (DYoL (3), (18.15)

in which [y, [+ ... + |y, | £ N.If k £ N/2, we do not transform this product. If k
> NJ/2, then by the Dirichlet principle, in (18.15) there are no less than k — N/2
indices y; such that |y;| = 1. But then, by the Hadamard lemma

Dyex(3) ... Dro. (M= Y gx (x—y),
Iyi2k—Nj2

where g, (y, x) is a smooth function (in x and y), defined for y sufficiently close to
x. Inserting this expression into (18.13) and integrating by parts (utilizing the
exponent e’ " allowing us to change (x—y)” into (—D,)"), we see that
r,(x,4,1) is a linear combination of terms of the form

L) = A*[aQ (x,n, 2, 1) ei=nn eite) f(y, x)dy dy, (18.16)

where g1 = 0)a,and f(», x)is smooth (in x and y) and supportedin |y — x| < e.
The indices k and y are related by |y| 2 k — N/2. Taking into account that the
volume of the domain of integration in # in (18.16) does not exceed CA", and
using (18.14) we obtain for 7, (1) the estimate

[, (A)| S CAKFm-WN+Dhtn < Cgm+n=Nj2
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which allows us to conclude the proof by applying the type of arguments used in
the proof of Proposition 3.6. [

18.4 The product of a pseudodifferential operator and a Fourier integral
operator. Let X, Y be open sets in IR"*and IR"r and let P be an FIO of the form

Pu(x) = [p(x,p,0) e u(y) dydf, (18.17)

where p (x, y,0) eS™ (X x Y xIR") and ¢ (x, y, 0) is an operator phase function
(cf. §2, Definition 2.3). Let there also be on X a properly supported PDO
AeL7 ;(X) with symbol a(x, ). Since P maps Cg°(Y) into C*(X) and &' (Y)
into 2’ (X) and 4 maps the spaces C*(X) and 2'(X) into themselves, then the
composition A4 - P is defined as an operator, mapping Cy°(Y) into C*(X) and
&'(Y) into 2'(X).

Theorem 18.2. Let1— o <6 < ¢ £ 1. Then the composition Q = A - P is also
of the form (18.17) with the same phase function ¢(x,y,0) as P and with an
amplitude of the form

q(x,y,0) = e~io=20 a(x,D,) [p(x,p,0) efox»0], (18.18)
with the asymptotic formula

D: (p(Z, ¥, 6) eiQ(Z,x,y,o))
ol

q(x,,0) ~ Y a® (x, ¢.(x,,0)

as |0|—>+© (18.19)

where Q(Zaxayag) = (p(Zayae) - (p(x’yae) - (Z—X) ' (px(xayae)‘

Remark 18.3. Since ¢ (x, y, ) is not smooth for 8 =0, it is not immediately
clear from (18.18) that Q is an FIO. This is the case however, since adding an
operator with smooth kernel to P we may assume that p(x, y,6)=0for |[0| < 1.
Then (18.18) defines a smooth function in all the variables and the same holds for
all terms in the expansion (18.19), which has the usual meaning (cf.
Definition 3.4). However, an operator with smooth kernel may always be
written in the form (18.17) with an amplitude p (x, y, 0) which has compact
support in 6 and equal 0 for |0| < 1 (cf. the hint to Exercise 2.4). Therefore Q is
an FIO with phase function ¢.

Proof of Theorem 18.2. Let us introduce the set

C, = {(x,5,0): 95(x,7,6)=0}.

used in §1 and §2. Note that ¢ (x, y, 0) # 0 for (x, y, 8) € C, by the definition of
an operator phase function. Changing P by adding an operator with a smooth



§19. Phase Functions 147

kernel, we may assume that supp p (x, y, ) lies in an arbitrarily small conical
neighbourhood of the set C,, (cf. Proposition 2.1) and, in particular that ¢ +0
on suppp. In addition and in accordance with Remark 18.3, assume that
p(x,y,6)=0 for |6]| < 1.

Now note, that since 4 continuously maps C *(X)into C*(X), we may apply
it under the integral sign in (18.17) (for this it is necessary to begin by
transforming the integral into an absolutely convergent one, as in §1; note that
the variable x is not involved in this change, being just a parameter). Now it is
only necessary to verify (18.19), understood in the sense of Definition 3.4 (cf.
also Remark 18.3). But this is a trivial consequence of Theorem 18.1, putting A
=|0]| and viewing y and 0 as parameters. Indeed, we have

q(x,,0) = A" e=thot=r8) a(x,D,) [A™™ p(x,,0) eitotxr],

where 0" = 0/|0|. Noting now that by varying the parameters y, 0 the functions
@ (x,9,0'), A~ p(x,y,0) belong to a bounded subset of C*(X), we see that
Theorem 18.1 applies. [

Exercise 18.1. Obtain from Theorem 18.2 the composition formula for two
properly supported DO of the type L™ (X) (cf. Theorem 3.4).

Exercise 18.2. Let Aand Pbeasin Theorem 18.2. Prove the result, similar to
Theorem 18.2, for the operator Q, =P - A.
Hint. Use transposition.

Problem 18.1. Obtain from Theorem 18.1 the change of variable formula
for PDO (cf. Theorem 4.2).

§19. Phase Functions Defining the Class
of Pseudodifferential Operators

19.1 In the formulation of Theorem 4.1 there is an example of a class of
phase functions, for which the corresponding class of FIO coincides with the
class of ¥DO. In the sequel, we shall need the following variant of this theorem
for non-linear phase functions.

Theorem 19.1. Let X be an open set in R" and ¢ (x, y, ) a phase function on
X x X xIR" such that

1) 0e(x,3,8) =0<>x=y;

2) ¢pr(x,x,8)=¢.

Then, if 1 — ¢ £ 6 < g, the class of FIO with phase function ¢ and amplitude
P(x,,8) €Sy 5 (X x X xIR") coincides with the class L7 5(X). The class of FIO

with phase function ¢ and with an amplitude a(x, y, ) which is classical, coincides
with the class of classical ¥DO.
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Remark 19.1. Conditions 1) and 2) for nearby x and y, may be expressed in
one single condition

@ (x,,8) = (x=y) ¢+ 0(x=yI*£]). (19.1)

19.2 Proof of Theorem 19.1. 1. Since the kernels of FIO with phase
functions satisfying condition 1) of Theorem 19.1 are smooth for x+ y by
Proposition 2.1, then we may assume that all amplitudes are supported on an
arbitrarily small neighbourhood of the diagonal x = y.

2. Let ¢, ¢, be two phase functions, satisfying the conditions of
Theorem 19.1. Denoting by L7 ;(X, ¢) the class of FIO with phase function ¢
and with amplitudes in the class S}’ ; (X x X x IR"), we see that it suffices to verify
the inclusion

0.s(X,0) = Ly (X, 94), (19.2)

because it clearly implies that all the classes Lj ;(X, ) coincide and, in
particular, that they coincide with L7 ;(X).

3. Denote by 4, the class of all functions y (x, y, &), which are positively
homogenous of degree & in &, smooth for ¢ % 0 and defined for nearby x and y.
Note that #, is an algebra, containing the smooth functions of x and y as a
subalgebra, and that 5, is a 5#,-module.

For us it is essential that for nearby x and y, the difference ¢, — ¢ can be
written in the form

i 0p 0¢
0, — = by —~ —, b,eH,. 19.3
! j,kz=1 Jk aéj &y i ! ( )

Let us verify this. From the Taylor formula it follows that

3l7) id

Y (xj_yj) + Z ajk(xk_yk)a

3,

where a;, €, a;(x, x,£) = 0. This can also be written in the form
¢z =I+4)(x—y),

where [ is the unit matrix and A4 is a matrix with elements in 3¢, equal to 0 for
x =y. But then, for nearby x and y the matrix (I+ 4) ! exists and has elements
from 5, . This means that we may write

n . a(p .
X =y =), dg 5 dp€X,. (19.4)
k=1 k

Now, using (19.1) for ¢ and ¢, , we see that on the diagonal (asx=y) ¢, — ¢
has a zero of order two and by the Taylor formula
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O, — Q= Z Ejk(xj—yj)(xk—yk)a Ejke‘;fl'
jk=1
Inserting here the expression for x; — y; from (19.4), we obtain (19.3).
4. Consider now the homotopy

p=¢0+te;—9), 0=r=1. (19.5)

Each of the functions ¢, satisfies (19.1). A trivial repetition of the above
argument shows that instead of (19.3) we may write

2 09, 09,
o= Y pt 0000 19.6
o= L big (19.6)

where b}, e#,; and depends smoothly on .
Now let P, be the FIO given by the formula

Pu(x) = [eio@rd p(x,y,&) u(y) dydé.

Then
d’ ;r r i
W(Ptu)=Hp(x,y,é)l (py— o) e u(y) dydg
=Y [{d . 00 99 o, pudyde 19.7)
i 0G0, ’ '
where d;  es#,. Without loss of generality, we may assume that p (x, y, )

=0 for |€| <1,sothatd,  peS™*"(XxXxIR"). Wenow integrate by parts
in (19.7), using the formula

0P o, = i1 9 e
0¢; 0¢;
This integration demonstrates that
o7 BEles ' (K0, (19.8)

where all estimates are uniform in ¢. But if we now put

(=1y 1)) &P,
J' ar’ |-

0;=

eLg3 TPO(X, 0y),

then, by the Taylor formula,
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k-1 kl tk—l dkP, d 99
Po=j\=ZOQj+(—1) g(k—1)! ks (19.9)

Theremainder in (19.9) has a kernel with increasing smoothnessas k — + 0o. Itis

therefore clear that if 0 ~ )" Q; (adding the amplitudes asymptotically), then
j=0

Qel7;(X,¢,) and P,—Qel *(X),
which shows (19.2).

The fact that classical amplitudes remain classical under this procedure, is
clear from the construction. [

Problem 19.1. Let ¢,, ¢, be two phase functions such that

_x 0, 00,
1= 2= 2 buge g,

where b, € C* (X x X x (IR"\ 0)) and b;, homogenous in £ of degree 1. Show that
L7 ;(X,9,) < Ly s(X, 01).

§20. The Operator exp (—itA)

20.1 Definition and formulation of results. Let M be a closed n-dimensional
manifold with a smooth density and let A be a self-adjoint, classical ¥DO of
degree 1 on M with principal symbol q; (x, £) satisfying the condition

a,(x,8) >0 for £+0 (20.1)

(in particular, 4 is elliptic). Let {¢,}, -, ,, .. bea complete orthonormal system
of eigenvectors for 4 and J, the corresponding eigenvalues. If u (x) e C* (M) we
denote by u, the Fourier coefficients of u(x) with respect to the system {¢,(x)}:

u, = (U, @) - (20.2)

Proposition 20.1. If u(x) e C* (M), then
u(x) = ), @(x), (20.3)
k

=1

where the series converges in the topology of C*(M).



§20. The Operator exp(—itA) 151

Proof. We clearly have
ukif = (u, AN(Pk) = (ANua ?) 5

and since A¥u e C*(M), we may apply A" termwise to the series (20.3) for any
NeZ,, obtaining each time a series converging in L*(M). But from this it
immediately follows that for any s € IR, the series (20.3) converges in norm in
H*(M), since for s= NeZ ., this norm is equivalent to ||u|| + || AV u||, with || - ||
the L?(M)-norm. From this and the embedding theorem 7.6, the required
statement follows. [

This proposition allows us to make the following

Definition 20.1. The operator exp (—itA4) for ¢ eR is defined by the formula

@

exp(—itA) u(x) = Y, exp(—ith) u, @ (x). (20.4)
k=1
Clearly the series (20.4) for u € C* (M) converges in the topology of C* (M).
Further, if u e H*(M), s an integer, then this series converges in norm in H*(M)
(cf. the proof of Proposition 10.2). The operator exp (—it A) is for integer s a
bounded operator on H*(M). Note, that it is also a unitary operator on L*(M).
Another definition consists in considering the Cauchy problem

ou .
7 +iAu=0, (20.5)
Ulmo = o (20.6)

where u = u(t,x) e C* (R x M), uy, € C*(M) and the operator 4 in (20.5) acts
on x for any fixed ¢. Solving this problem by the ‘“Fourier method”, we see that
the solution is given by (20.4), with u replaced by u,, i.e.

u(t, x) = exp (— itA) ug(x). (20.7)

The solution of (20.5)-(20.6) is also unique. This can be seen, for instance by
writing for a solution u (¢, x) the expansion

0

u(t,x) = Z a () ei(x),
k=1
which, being inserted into (20.5)—(20.6) gives the equations ¢; (¢) + iA,c, (1) =0,
with the initial values ¢, (0) = (u,, ¢,), from which one can uniquely recover

¢ (D).

Theorem 20.1. If ¢ > 0 is sufficiently small, then for |t| < ¢ one can represent
U () = exp(—itA) in the form of a sum of an operator with a smooth kernel in t, x
and y and an FIO, given by the phase function

@ (6, x,9,8) =y (xy,0) — ta; (,0) (20.8)
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linear in t, and by an amplitude p (1, x, y, &) which is a classical symbol of order 0,
smooth in t and such that the following estimate is fulfilled

|aza£,y,!p(t7 X, Y, é) | é Caﬂ<é>_!a!' (209)

Example 20.1. Consider in IR" the operator 4 = }/ —4 with symbol [£].
The Cauchy problem (20.5)-(20.6) for functions decreasing as |[x|— + o0
can be solved using the Fourier transformation in x. Indeed, since Au(x)

= FZL(1¢]4(¢)), then
u(t, x) = exp (—itA) uo(x) = F . (e7" i1y ()
= [[e!Tn e y(y)dy d¢.

We see that in this case (formally this does not follow from the theorem how-
ever) the operator exp(—it A) is an FIO with phase function (x — y) - § — ¢]|.

20.2 Proof of Theorem 20.1. 1. Let us construct the operator Q(¢), which
approximates U (¢) and is an FIO of the form

Q) f(x)=[fq(t,x,y,8) e*@*>9 f(y)dyd&. (20.10)

The operator U (¢) satisfies the conditions
{(D,+A) U()=0, (20.11)
uoy=1. (20.12)

We will try to choose Q(¢) satisfying the conditions

{(D,+A) 0(H) el =(M), (20.13)
00)—IeL *(M). (20.14)
More precisely, the left side of (20.13) will also be a smooth function of ¢ with
values in L™ ®(M).

The linearity of the problem, allows a reduction, using a partition of unity, to

the case of constructing ¢ and ¢ in local coordinates.
In view of Theorem 18.2, (20.13) will be satisfied if

e~iv[D,+ A] (geiv)eS™ ™, (20.15)

where A operates on x.
Writing down an asymptotic expansion for the symbol a(x,£) and for
q(t,x,,¢) in terms of homogeneous functions, we have
a~a; +ay+a_;+...,

q~qot+q-;+qg_,+....
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Then by Theorem 18.2
e~ [D,+ A](ge’) ~ (¢, +a,(x,0.) o+ To+T_y + ...,

where r; is the sum of terms of degree of homogeneity ;.
We require

@+ a,(x,0)=0. (20.16)

The initial values
Pli=o=v (%0 (20.17)

must be chosen, so that for = 0 we may guarantee (20.14). But for this we have
to require that y be a phase function, corresponding to the class of ¥DO (cf.
§19), i.e. for nearby x and y

vy, =(x-y) &+ 0(x=y?|&]). (20.18)

We will look for this function in a neighbourhood of the diagonal x = y. The
term O (|x—y|?|&]) in (20.18) is necessary in order to achieve linearity in ¢ for
the function ¢ (t, x, y, &), which — in its turn — is useful since later on we will take
the Fourier transformation in ¢. Thus, we look for ¢ in the form

o(t,x,,8)=y(xyE) —ta (0.

This is yet another requirement on ¢. We will see that it can be satisfied.
Putting this expression for ¢ into (20.16) yields:

-a’(yyé) + al(x’Wx(x’yaé)) =0.

Setting x =y, we obtain using (20.18) that a’'(y, &) = a,(y, £). Hence

<P(t,X,yaf)=W(X,y,é)—tax(y,f)’ (2019)

where y (x, y, £) satisfies the equation

ai(x, ¥x(x, ¥, ) = a1(y, §). (20.20)

Instead of (20.18) we require
V(Y8 lx-y)-e=0 =0, (20.21)
Yo%, 0,8 -,=¢, (20.22)

from which (20.18) immediately follows. The relations (20.20)—(20.22) define a
Cauchy problem for y, in which y and ¢ are parameters. In this, we may assume
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that |£| =1, since solving this problem for || =1 we can afterwards extend y
by homogeneity (of degree 1) to all values of £&.

Let us note, that the plane (x—y)- ¢ =0 is non-characteristic, because
0¢a; (x,&) # 0 in view of the Euler formula ¢ - 0,4, (x,{) = a, (x, £). From the
results in §17 it is clear that the solution exists for x which are close to y and,
furthermore, that the corresponding neighbourhood of y in which the solution
exists, may be chosen uniformly in y, £ so that the function y (x, y, £) is defined in
some neighbourhood of the diagonal x = y.

2. It follows from Theorem 19.1 that there exists a classical symbol
I(x, y,£) € CS°, which is supported on an arbitrarily small neighbourhood of the
diagonal x =y and

ST (x, y, 8)eVe? f(y)dydt — f(x) = kf (x), (20.23)

where k is an operator with smooth kernel.
From (20.23) and (20.14) it now follows that we must have the following
initial condition for g:

q0,x,9,6)=1I(x,y,&) (modS™%). (20.24)

If we introduce the decomposition of I(x,y,£) into homogeneous
components

I~Lh+1_,+...,
then (20.24) may be rewritten in the form

q9-;0,x,9,)=1_;(x,,8, Jj=012,... (20.25)

We now write out the equations for the functions g_;, given by (20.13) and
(20.25). The first order terms equal 0 in view of (20.16). For the 0-th order terms
we obtain

a a a 6;(p .
6th + Z a(l )(x’ (Px) aqu + Z a(l )(x7 (px) 7“'-'- 9o + o (X, (px) qdo= 0 5
laj=1 laj =2 .

(20.26)

9oli=0=1o,

where a{’ = 0fa,. This Cauchy problem allows us to define ¢, (z, x, , ¢) for
small z. Furthermore, for any integer j = 0 we obtain the following equations,
called transport equations:
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atq—j + Z a(la)(xa (px) 6zq~j
la] =1

aa
+ Y aP(xe) =
lal =2 x:

q_;+iag(x,0)q_;+ R;=0, (20.27)

q—j|t=0= I—j,

where R; only depends on go, g_y, ..., 4_-1)-

In view of the reasoning in section 17.6, the solution of (20.27) may be
defined in the same t-interval as the solution of (20.26).

Hence, we finally obtain an operator Q (¢), defined for || < ¢, which is an
FIO and for which

(D,+4) 0()=K(1), (20.28)
QO)=1+k, (20.29)

where K (¢) has a smooth kernel with a smooth dependence on ¢t and where k isan
operator with a smooth kernel.

3. Let us now demonstrate that [U(¢) — Q ()] is an operator with infinitely
differentiable kernel in ¢, x, y (for |t| <¢). For this consider the operator

RO =U(-1) Q1) — I (20.30)

and differentiate it with respect to ¢:

DR(t)=-DU) (=) 21+ U(-1) D,Q))
=AU(-1) Q() = U(—-1) AQ() + U(—1) K(r).  (20.31)

The validity of this computation follows from the described structure of Q(¢)
and from the remarks on U(¢), made at the beginning of this section (the
derivative is of course taken, after having applied R(¢) to some function
u(x)e C*(M)). Since U(£) 4 = AU (v), it follows from (20.31) that

DR(t)=U(—-1) K(¥). (20.32)

On the other hand, it is clear from (20.29) that
RO)=k. (20.33)
Since U(—t) K(¢)is an operator with smooth kernel in ¢, x, y, integrating (20.32)
and taking (20.33) into account, we see that R (¢) has the same property and then

from (20.30) it is clear that the operator U(¢) — Q (¢) = — U (¢) R(¢) also has
a kernel which is smooth in ¢, x, y for |t|<e. [

Problem 20.1. Let A be a classical first order ¥DO on M, satisfying (20.1)
but not necessarily self-adjoint. Carry out the construction of the parametrix
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Q (¢) for this operator and show that the Cauchy problem (20.5)-(20.6) has a
unique solution and that for the operator U (¢) =exp(—itA4), defined by this
problem, the statement of Theorem 20.1 is also true.

Hint: Obtain an integral equation of the Volterra type for U (¢), using the
operator Uy(7) = exp (—itd,), where A, =1(A+ A*).

§21. Precise Formulation and Proof of the Hormander Theorem

21.1 The singularities of the Fourier transformed spectral function near zero
and estimates of the averaged spectral function. Let e(x, y,4) be the spectral
function of the same (first order) operator 4 asin §20, U(t, x, y) the kernel of the
operator exp (—itA). If ¢;(x) are the eigenfunctions of 4 with eigenvalues 4;, we
have

e(x,y,0) = Y ¢;(x) ¢;(), (21.1)
L4
U(’: X, y) = Ze_iljr (Pj(x) (P](y) H (212)

where the latter series is summed in the sense of e.g. distributions on M x M,
depending smoothly on ¢ (this is easy to prove by arguments similar to those used
after Definition 20.1). It follows from (21.1) and (21.2) that

U(t,x,y) = [e-"d,e(x,y,4), (21.3)

where the integral is understood as a Fourier transformation (from 4 to ¢) in the
distribution sense.

Let ¢ (4) eS(IR') and let § (¢) = F,_,, ¢ (4) be the Fourier transform. Then
from the known properties of the Fourier transformation it follows that

e U x,y)=F,_, [e(d—p) de(x,y,u). (21.4)
Now choose g (4) such that
1) o(A)>0 for all AeR*;
2) 0(0)=1;
3) supp ¢ (¢) = (—¢, €), where ¢ > 0 is sufficiently small.

Exercise 21.1. Prove the existence of such a function ().
Hint: This is done by analogy with the construction of y (x) at the beginning
of the proof of Theorem 6.3.

Let now Q (¢, x, y) be the distribution kernel of Q (¢), constructed (for small
[¢]) in §20. In view of Theorem 20.1, we have

U(t,x,y) — Q(t,x,9) e C®((—¢,€) x M x M). (21.5)
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Thus the functions U(t, x, y) and Q (1, x, y) have the same singularities in a
neighbourhood of the point 1=0.
Now (21.4) implies

Lemma 21.1. The function
fe(A—w) d,e(x,y,p) — FZi(6() Q(t,x,)) (21.6)

is a smooth function in all variables, tending to 0 faster than any power of A as
A— + 00, uniformly in x, yeM.

Let us now compute the second term in (21.6). This can be easily done,
thanks to the linearity in ¢ of the phase function ¢ (¢, x, y, &), in the definition of
the operator Q (¢).

First we compute formally, not worrying about convergence of the integrals.
In the notation of §20 we have

Q(t,x,y) = [q(t,x,y,&) eiw&x»H-a0:00 ¢ (21.7)
FLi@(0Q (1 x,») (4)
=Q2r) ' [6(1) g1, x,y, €) etd-im0.0+ivir0) dr dE . (21.8)
Set
R(A,%,9,8) = Qm) 1 [6(1) q(t, %, , ) erdt. (21.9)
Then

FL00 QL x,»))(A) = [R(A—a,(3,8), x,»,8) everddl.  (21.10)

Let us now note that R(4, x, y, &) is a smooth function of all variables and,
furthermore since ¢ (¢, x, y, &) is a smooth function of all variables (including ¢),
then R rapidly tends to 0 as |1]— + o0 and we have for any N > 0 the estimates

92080103 R(3, %, 3, &) | £ Copan <& A, (21.11)

Here R admits an asymptotic expansion into homogeneous functions
in ¢ From (21.11) it is clear in view of the ellipticity of a,(y,&), that
R(A—a,(y,8),x,y,&) rapidly tends to 0 as |£|— + oo, hence the integral in
(21.10) is absolutely convergent.

As for the justification of the transition from (21.8) to (21.10), which was
done formally, it remains to note that it is valid for symbols ¢ (¢, x, y, &) which
have compact support in £, and perform the standard passage to the limit, as in
the definition of oscillatory integrals (cf. §1).

Taking Lemma 21.1 into account, we see that we have proven

Lemma 21.2. If R is defined via the formula (21.9), then for any N >0

Ife(A—wyd,e(x,p,u) — [R(A—a,(, &), x,y,&) ev=r0dE |
< Cy(1+14) 77, (21.12)

where Cy, is independent of x and y.
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Let us now estimate the second term in (21.12).

Lemma 21.3. We have
[JR(A—a,(3,8),x,,8) ev&r0dE| < CA+|A])N Y,
where C does not depend on x and y.

Proof. Let us denote, as in §15:

V= [ dc.
a,(y,$) <4

Since the function a, (x, £) is homogenous of degree 1 in £, then
V,(4) =V, (1)A".

Let us now utilize the obvious identity

(21.13)

(21.14)

(21.15)

JR(A=a,(,8),x,,8) ever0dl = [R(A—0,x,,8) ev&rddV, (o),

both sides of which are defined due to the estimate (21.11). Taking (21.15)
into account, we see now that the left-hand side of (21.13) can be estimated via

Cy [ A +1A=a) M dV,(0) = G [ (1+1A=a]) ™M o™ do.
0 0

But in view of the obvious inequality 1+ |6| £ (1+ |[A—0c|)(1+|A|) we have

A+1A=a)™e" P S A+ |A=a)VT A+ AD"T

Therefore
I(l+|l——al)‘" o" ldo
S A+ T @4 li=a) ™ do = CA+IAY,
from which (21.13) follows. L[]

Corollary 21.1. The following estimate holds

[Je(A—md,e(x,y,))| < CA+ AN,

where C is independent of x and y.

(21.16)
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21.2 Passage to estimates of the spectral function
Lemma 21.4. The following estimate holds
le(x,x,A+1) —e(x,x,4) | S C(1+ A1) 1, (21.17)
where C does not depend on x and A.
Proof. Since g (A) is positive and non-zero on [—2,2], we have
142
feG—wde(x,x,u) 2 C | de(x,x,u) 2 Cle(x,x,A+1) —e(x, x,2)],

A-1

where C > 0; the statement of the lemma follows now from Corollary 21.1. [

Lemma 21.5. The following estimate holds
le(x,y,A+1) —e(x,y, )| £ CA+[A)" T, (21.18)

where C does not depend on x,y and A.

Proof. 1t follows from (21.1) that

e(x,y, A+ —e(x,y, )= Y 0;(x) ¢;(»),

A<lSa+1

and from the Cauchy-Bunyakovskij-Schwarz inequality we get

|e(xay:l+1)_e(xaya’1)|

1/2 1/2
é[ > I%-()O!’] [ ) Iqoj(y)lz]

A<l gA+d A< A+1
=(e(x,x, A+ 1) —e(x,x, )" (e(y,,4+1) —e(y, 5, )"
SCA+ap!

by Lemma 21.4 (with the same constant C). [J
Lemma 21.6. The following estimate holds
le(x,y,A+p) —e(x,y,4)| < CA+[A|+[p)" " A +1u)), (21.19)

where C is independent of x, y, A, u.

Proof. We can prove (21.19) by partitioning e(x, y, A +u) —e(x, y, A) into
a sum of at most 1 + |u| terms, estimated as in Lemma 21.5. O
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Lemma 21.7. The following estimate holds
|Je(A—p)e(x, y,u)du—e(x,y, )| £ CA+[A])"", (21.20)

where C does not depend on x, y, .

Proof. We use the fact that g eS(IR") and | ¢ (1) dA=1. With the help of the
obvious inequality

T4+ A+ u] S A+]4) (T + |ul))
we obtain

Ife(A—p) e(x,y,u)du—e(x,p,3)|
=[[e(A~p) [e(x,y, 1) — e(x,y,A)] du|
=|Jo@)leCx,y, A +u) —e(x,y,1)]du]
STA+ A+ )™ A+ u)Mdus CA+]AN,

as required. [

Lemma 21.8. We have

A
_f difo(A-wde(x,y,p)—e(x,y, )| S CA+ A" L. (21.21)

Proof. Integrating by parts, we have

feG—wde(x,y,1)= [ (A—p) e(x,y, u)du,

from which

i i

_I (Je(A—wd,e(x,y,p))dA = _I (J o' (A—n) e(x,y, 1) du) dA
A

=I<_I Q’(l—u)dl> e(x,y,mdu=[o(A—p) e(x,y,p)du,

so that (21.21) now follows from (21.20). [

Taking Lemma 21.2 into account, we derive the following

Proposition 21.1. We have

e(x,y,A)— [[ R(o—a, (y,8),x,y,&) ev=ride d¢

o<k

<CU+la, (21.22)

where C is independent of x, y, A.
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21.3 The Hormander theorem for first order operators. We would like now
to rewrite the estimate (21.22) in a simpler form. Note, that in view of (21.9)

iJ:R(L x,3,8)dA=q(0,x ,8) = 1(x,9,9). (21.23)
Therefore, putting
j R(o,x,y,8)do, 1<0,
R (t,x,9,6)=1{ — TR(G, x,y,Edo
=j R(o,x,y,&)do — I(x,,8), >0,

the following estimates for R, follow from (21.11):

102080 Ry (A, x,,&) | £ Copyn < AN, (21.24)
We clearly have,
[J R(6=a,(3,6),x,,8) eive»0do d¢
g<i
= j- I(x,y,&) eiw(x,y,i)d‘é-{—le(,{—al 7, 6), x, y, &) ev&xrOJE
a,(n9<i

One can show by analogy with Lemma 21.3 that

If Ry (A=a,(3,8), %, y,£) ev&r0dE| < C(A+]A])"".

Therefore we see that the following holds
Lemma 21.9. We have

e(X,y, '1)— j I(X, Y, é) eiW(X,y,C)dé

a; (¢ <4

SCA+1A)",  (21.29)

where C is independent of x, y, A.
For further simplification we need

Lemma 21.10. For nearby x and y we have

[ 1(ep,8) everadi— | ever0dE

a (5.8 <4 a,(y,¢)<4

sCa+]apt,

where C does not depend on x, y, A.
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Proof. From the proof of Theorem 19.1, it is easily deduced that for nearby x
and y

I(x,y,)-1l=CA+ED™" (21.26)

Therefore

[ ey —1)everods|<C [ (1+[E))7"dE
a9 < a4 0,9 <

SC [ A+laD)dE=C [ 1+ |uhdV,(w)

aj<i n<i

A A
SCIA+p) ™ w  du S ClA+|p)" " 2du £ CA+(A]) 1,
0 0

as required. [J

Note, that if the pair x, y belongs to some compact set in M x M, disjoint
from the diagonal, then we may assume that I(x, y,£) =0 and, in this case,
Lemma 21.9 implies that |e(x, y,A)| < CA+|A])" L.

We summarize these results in the form of a theorem.

Theorem 21.1. 1) Let y (x,y, &) be defined for nearby x and y and let

a, (x’ WX(x,ys é)) =a (ya é)’ v I(x—y)-¢=0 = 0’ Wx|x=y = C (2127)

Then for nearby x and y we have

e(x,y,))— [ ewer0dE| < CA+|ANTY, (21.28)
a; (5, <4

where C does not depend on x, y and J. In particular, we have
le(x,x, )=V, < CA+|A]"". (21.29)

2) Ifthepair x, y belongs to a compact set in M x M disjoint from the diagonal,
then

le(x, p, )| £ CA+[A)" . (21.30)

Corollary 21.2. The following asymptotic formula for the number N(1) of
eigenvalues of the operator A smaller than A, holds

INA)— [ dédx|SCA+|A"1.

a,(x,8)<a
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21.4 The case of higher order operators. Let 4 be a self-adjoint elliptic
differential operator of order m on a closed manifold M with principal symbol
a,(x,£) = 0. Let us construct for nearby x and y a function y (x, y, &) such that

A (X, ¥ (X, ,8)) = a,, (3, 0), (21.31)
Vie-p-e=0=0, ¥li=y=2¢, (21.32)

from which it follows that y is homogeneous of degree one in ¢ and such that
(8 =x-y) {+0(x=y?I¢) as x-y. (21.33)

Theorem 21.2. For the operator A of order m described above we have:
1) For nearby x and y

n—1
ey, )~ | erwrodf|SCU+AD ™, (21.34)
an (18 <4
where C does not depend on x and y.
In particular,
L
e, x = | dE[SCA+IADT (21.39)
a,(x, &)<k
and consequently,
n—1
NA— [ dedé|SCA+IAD™ . (21.36)
a,(x,§)<i

2) If the pair x, y belongs to some compact set in M x M disjoint from the
diagonal then
n—1

le(, , )| S CUA+[AD ™ . (21.37)

Proof. Let us first note that, without loss of generality, we may assume 4 > 0
(if this is not true for 4, then, in view of Corollary 9.3, it is true for 4 + cI, for
sufficiently large ¢ > 0). Introduce the operator 4, = A'/™. This is an elliptic
pseudodifferential operator of order 1 with principal symbol a,(x,¢)
= a,(x, &)''™ It is clear that (21.31), (21.32) for v (x, y, &) simply coincide with
the equations (21.27). In addition it is clear that

e, =Y 0;(x) 0,0 = Y 0;(x) 0;(») = ey (x,y,Am),

4,54 Alimg gtim

where e, (x, y, 4) is the spectral function of 4, . All statements in Theorem 21.2
now follow from the corresponding statements in Theorem 21.1. [J



164 Chapter III. Asymptotic Behaviour of the Spectral Function
Problem 21.1. Consider the case of a homogeneous operator a(D) with

constant coefficients in IR". Write down e (x, y, 1) as an integral and verify the
estimates (21.34), (21.35) and (21.37) directly.

§22. The Laplace Operator on the Sphere

22.1 The Laplace operator on a Riemannian manifold. 1) Let M be a
manifold with a Riemannian metric, i.e. in any tangent space T, M there is given

a bilinear form (-, -)» with a positive definite quadratic form. If x, ..., x"
. . 0 J \. .

are thelocal coordinatesin an open set U = M, then <F’ ceey a—;) is a basis for

the tangent space at all points in U. Denoting * x

0=(2).()
gijx_ a‘xix, Wx>’ ( )

n

we obtain a positive definite matrix g;;(x). If now v = ) v/ p e T .M, then

j=

{v,0) = i g (x)v'vl. (22.2)

ij=1

The cotangent space T M is, by definition, the dual of T, M. A basis of it
(for x € U) consists of the 1-forms dx’, defined by the relations

i 0 i
<dx,(§>=5j.

A metric on a vector space E induces an isomorphism of E with E*. With the
help of this isomorphism we may transfer the metric from E to E*. Fixing x e U,
let us compute {dx’, dx’> at x. Which tangent vector corresponds to dx’? Denote
its coordinates by a™*, k=1, ..., n; then we have to satisfy the condition

i i a i a ‘ i
3= () = (1% ) = B e

from which a** = g the elements of the matrix inverse to || g; ||. We now have

(@ = < 5o dX’> — g, (22
k=1
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n

i.e. for any cotangent vector a = Y a;dx'e T} M

i=1

{a,a) = Zn: glaa;. (22.4)

i,j=1

2) Now introduce on the Riemannian manifold a smooth density (volume)
such that in the tangent space the volume of a parallelepiped in an orthonormal
system equals 1. For an arbitrary parallelepiped, defined by the vectors
ey, ...,e,, the volume equals

vol{e,, ..., e,} = |det {e, ..., e} ], (22.5)

where ef! is the column of coordinates of ¢; in the orthonormal basis. Formula
(22.5) follows from the fact that the volume has to be an additive, non-negative
invariant of parallelepipeds.

What about the case where the coordinate basis is not orthonormal?
Let us then consider the operator 4, mapping an orthonormal basis e}, ..., e,
into the basis e, ..., e,. The columns of its matrix (in the basis e}, .. ., e}),
will be the coordinates of the vectors e; in the orthonormal basis e/, so that
vol{e;, ..., e,} = |detd| = }/det(4*A).

Now, the matrix elements of 4*4 in the basis {e;} are of the form

(A*Aej, e}y = (Ae;, Aejy =e;, €. (22.6)

. 0 0 -

Therefore, the volume of the parallelepiped T A equals ]/ g,
x x

where g=det| g;;(x)|| and the volume of an arbitrary set F in the local
coordinates of U is defined as

vol(F) = | 1/ g(x) dx' ... dx". (22.7)

It follows directly from the change of variable formula for an integral that
the integral (22.7) is independent of the choice of local coordinates. We may
therefore take it immediately as a definition of vol (F), defining a smooth
positive density dv on M by the formula

dv=1g(x) dx' ... dx". (22.8)
3) For any differential operator

A: C(M)— C®(M)
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there exists a unique operator A*, such that

(4f.8)=(f,4%8), [ geCy(M), (22.9)

where

(f,8)=[f(x) g(x) adv. (22.10)

Analogous arguments hold also for operators on sections of vector bundles
over M, if in each fiber of the bundle we have a hermitean metric (positive

definite hermitean form), which replaces f(x) g (x) in (22.10).

Let us define a scalar product on the space of 1-forms A'(M), taking on
T*M ® € the hermitean scalar product induced by the metric on T}XM
introduced above. Consider the operator

d: C*(M)— A (M), (22.11)

mapping a function /' e C* (M) to its differential df € A* (M), defined by the fact
that if v e T, M, then {df, v) = (vf) (x), where (vf) (x) denotes the derivative of f
in the direction v. In coordinates:

#=3 G

The operator 6: A' (M) — C*(M) is defined as the adjoint of 4, i.e. § = d*.
Definition 22.1. The Laplace (or Laplace-Beltrami) operator on functions
4: C*(M)— C=(M)
on a Riemannian manifold M, is defined by the formula
4=-6-4d. (22.12)
Analogously, the Laplace operator is defined on p-forms A?(M) as
A= —(do+dd): AP(M)— AP (M),

but we will not consider this case.

It is immediately clear that the Laplace operator has the following
properties:

a) 4*= 4,

b) if T: M—M preserves the metric on the tangent spaces and
T: C*(M)— C®(M) is defined by Tf = fo T, then

AT=T4,
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i.e. 4 commutes with isometries;
¢) if M is closed, then (4, f) < 0 and from 4f = 0 it follows that f = const.

4) Let us compute é and A in local coordinates. We have

<5<i§1aidx">,f>=<.i adxl, Y Eaf; )

= i jgija‘ ox’ fdx— Zlff[ j(l/gg‘jai)]dx

i j

~17$ 2| s Wesa | Vaas,

from which
5(2 aidxi>=—1— Z i(]/ggijai) (22.13)
i=1 1/§ ij=1 axj
and
1 & 0 . of
= = — v, 22.14
Af =ddf gw};l ax,<1/§g 6x'> (22.14)
Example 22.1. Inthe Euclidean space IR" with its standard metric, we obtain
2
- 0
Af Z a i2°

Note that all invariants of A are also invariants of the Riemannian mani-
fold, in particular, the residues and the values of the ¢-function.

Exercise 22.1. Compute in local coordinates the principal symbol of the
Laplace operator on a Riemannian manifold.

22.2 The Laplace operator on the sphere S". The n-sphere S" is the following
submanifold of R"*?:

St = {(xo, e, XM E": (xH)r= 1}.
i=0

There is a metric on S”, induced by the standard metric on R"*' and
correspondingly a Laplace operator, which we denote by Ag. There is the
following method for computing A, using the operator 4 on R"*!,

Proposition 22.1. Let f(w) be a function on S™ and extend it to R"**, putting

700 =1(7%)
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i.e. by homogeneity of degree 0. Then

Agf=Af | s, (22.15)
or

) x) =r"?4sf, (22.16)
where r = | x|.

Proof. The equivalence of (22.15) and (22.16) is obvious, since 4fhas degree
of homogeneity —2.

Let us prove (22.15). Denote temporarily by 45 the operator on S*, defined
by the right-hand side of (22.15).

The group of isometries SO (n+ 1) acts on S” by restricting to S” the rotations
of R"*!, Using this group, any unit tangent vector may be mapped into any
other such vector. Therefore, the principal symbol of an operator commuting
with all isometries, is constant on all unit cotangent vectors (and, consequently,
is uniquely defined up to a scalar multiplier). Clearly the operators 45 and 45
commute with the action of SO (n+1) on functions. Therefore, there exists a
constant 4 such that the operator A5 — A4 has order 1. But this operator also
commutes with SO (n+1) and since there are no linear functions which are
invariant with respect to rotations and since the multiplication term of A5 — 14
is constant because of rotational symmetry, then the operator 45— A4 is a
multiple of the identity, and, consequently, is zero, because 451 = 4,1 =0.
Hence A5 = A4,. From what follows, it will be clear that A = 1, on the other hand
this can be verified by computing 45 and 45 on any non-harmonic function on
the sphere. [

22.3 Eigenvalues of the operator 4 . Let us compute 4 in polar coordinates.
Let r = |x| and w = x/|x|, then

4(f(r) g(@)) = (4f) g+ f(48) + 2(VS) - (V) = (4/)g + f(4g), (22.17)

since (Vf) - (Vg) = 0 (VS is directed along the radius vector and Vg is
directed along the tangent). Let us compute Af (r). We have

x o, 1 ()

Fyi=—, xixt = 3 -

r r r

From this we obtain

n 0 i n iy2
40=3 (—’-} f’(r)> SRR

2
i=0 r

n iy2
+3 (-S)ro=ro+iro.

1
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Therefore

ﬁn@l

6r2+;6_r+—

4=
)

Ag, (22.18)

where Ag is applied on the unit sphere with subsequent extension by
homogeneity of degree zero. Formula (22.18) is true also on arbitrary functions
(linear combinations of functions of the type f(r)g(w) are dense in the space
C2(R™!\ 0)).

In particular, for f(r) = r#, we obtain

A(rrg(w)) = r 2 #[Asg+ [ (u—1)+nulg]
=r 2" Asg+uu+n—1)gl. (22.19)

It follows from (22.19), that the following proposition holds

Proposition 22.2. The equality A(r*g(w))=0 (for r#*0) is equivalent
to the fact that g(w) is an eigenfunction of the operator — Ag with eigenvalue
A=pu(u+n-—1).

Since all eigenvalues of the operator — 4 are non-negative, we may assume
that 4 >0 or u <1 —n. Note that the quadratic function A(x)=pu(u+n—1)
takesall values A > 0 for 4 = 0 and each of them exactly once. It is therefore clear
that the eigenvalues A > 0 are in a one-to-one correspondence with those u = 0,
for which there exists a non-trivial function g (w) such that r#g(w) is a harmonic
function on R"*! \ 0. But then, by the removable singularity theorem, the
function r*g(w) is harmonic everywhere on R™! and, consequently, is a har-
monic polynomial by the Liouville theorem. In particular, 1 is an integer.
Clearly the converse is also true, i.e. the restrictions to S" of homogeneous,
harmonic polynomials are eigenfunctions of the operator — 4 with eigenvalues
A=k(k+n—1),where k=0,1,2, ... and by the maximum principle we see that
a harmonic polynomial is uniquely defined by its restriction to S". Hence, we
have proven

Theorem 22.1. The eigenvalues of the operator — Ag are A=k(k+n—1),
where k =0,1,2, ... and the multiplicity of the eigenvalue k (k+n—1) equals the
dimension of the space of homogenous, harmonic polynomials of degree k.

22.4 Computing the multiplicity. Let M, be the space of homogeneous
polynomials of degree k. Let us compute N, = dim M, . A basis in M, is given by
the monomials xf . .. x¥, where k,+ k, + ... + k,= k. The number of ordered
partitions of k into a sum of n + 1 non-negative numbers equals the number of
ordered partitions of K + »n+ 1 into a sum of n+ 1 positive numbers, which in
turn equals the number of ways of choosing n from n + £, i.e. equals

N, = (":k> =(’17T]§)—!=ni!(k+n) (k+n—1) ... (k+1). (22.20)
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Note that 4 determines a map

A: M~ M,_, (22.21)

and one has the exact sequence

0> H >M > M,_, (22.22)

where H, =Ker 4|, is the space of homogeneous, harmonic polynomials of
degree k, the dimension of which we would like to compute.

Theorem 22.2. 1) The operator A: M, — M, _, is surjective.
2) There is a direct sum decomposition

M= @ r»H_,, (22.23)
k—-2120
where r*=x2+ ... + x2.
Corollary 22.1. a)
dimH,=N,— N,_,. (22.24)

b) If fand ¢ are two polynomials, then there exists a unique polynomial u such
that

du=f, ul!x[=1=(p|!x]=1 (22.25)

(i.e. the Dirichlet problem for the Poisson equation in the unit ball is solvable in
polynomials).

¢) The harmonic polynomials cannot be divided by r*.

Derivation of Corollary 22.1 from Theorem 22.2. a) The relation (22.24)
follows from the fact that the sequence (22.22) can be rewritten in the form

0-H-M->M,_,>0. (22.26)

b) In view of part 1) of the theorem, the solvability of (22.25) reduces to the
case f = 0, where it is obvious in view of (22.23).

¢) Also obvious in view of (22.23). [J

Proof of Theorem 22.2. Both statements are proved at the same time by
induction in k.

For k =0, 1 the statements of the theorem are true. Let them be true also for
all I<k.

1°. Show that H,nr?M,_,=0. Since by the inductive hypothesis we have

- 21
M ,= @ r'Hey,

k—21-220



§22. The Laplace Operator on the Sphere 171

then
r’M,_,= @ r’H._,

k—-2120
>0

and if h, e H,nr*M, _, then
he=3 orth,,. (22.27)

>0
k-2120

Now consider the harmonic polynomial h=h,— ) ¢h,_,,. We have

>0
degh<k and h, is the homogeneous component of 4 of degree k. Since
hl\x=1=0, then A =0 from which h, =0, as required.

2°. From the condition M, > H, ® r’* M, _,, we obtain
dimH, < N,— N,_, (22.28)
where the equality is equivalent to the decomposition
M=H®rMm,_, (22.29)
3°. From the exact sequence (22.22) it follows that
dimH,= N, —dimAM)= N, — N,_,, (22.30)
where the equality is equivalent to the surjectivity of the operator
4. M- M, _,
4°. From (22.28) and (22.30) it follows that dim H, = N, — N, _, from which
follows the surjectivity and the decomposition (22.29) and hence, by the
inductive hypothesis the decomposition (22.23) also follows. []

Corollary 22.2. The multiplicity of the eigenvalue A = k(k+n—1) of the
operator — Agis equal to N, — N, _,, where N, is given by the formula (22.20).

22.5 The function N (1) for the operator —Ag. It is clear that

Nk(k+n—1)+0)= Y dimH,= Y (N,—=N,_;)=N,+ N,_,. (22.31)

Isk ISk

But from (22.20) it is also clear that N, is a polynomial of degree n in k with
leading coefficient 1/n!. It therefore follows from (22.31) that

2
N(k(k+n—1)+0) ~n—'kn~r12_' [k (k+n—1)]"2. (22.32)
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From (22.31) it also follows that
N(k(k+n-1)+0) = Nk(k+n—1)—0) = Ny— N,_, = P,_, (),

where P,_, (k) is a polynomial in k of degree n — 1. Therefore

n—1

N(k(k+n—1)+0)— N(k(k+n—1)—0) = ck" ' > c[k(k+n—1)] > , (22.33)

where ¢ > 0. From (22.32) and (22.33) it is clear that

N@) = ;‘—, AME(1+0 (@A), (22.34)

where the term O (A~ '/?) is sometimes greater than ¢4~ /2 i.e. the remainder

estimate is the best possible (in any case as far as the exponent is concerned).

Let us verify that (22.34) is exactly the asymptotic formula from
Theorem 21.2 (which, in particular, also shows that the multiplier A from the
proof of Proposition 22.1 equals 1). We have to verify that

2n! = Q2m) "V, V] (22.35)

where V, is the volume of the unit n-ball and V) is the area of S” (Riemannian
volume).

’

V,_ . . . .
Clearly V, = "n L and from this everything reduces to the identity

vy 22D

n-1Vn = W (22.36)

0
Let us compute V,_, and prove this relation. Put /= j e % dx; then
]
I"'= [ e-Wit+xDdx, ... dx,

x20

and in particular

n/2 © 0
= [ e-+sddx dx, = | dp j're"’dr=E je"dz:ﬁ,
20 0o 0 4 5 4
n/2
from which I=§, I"=n2,l . Now note that
n_ Va1 N T I 31 g Vioa n
I"= r"leTdr = o Ebfz e dz—z—————"HF 5/

Oty 8

2"



§22. The Laplace Operator on the Sphere 173

2n"/?
T rw2)

As is well-known, integration by parts yields I' (a+1) = oI () for a« >0,
from which for n=2k we obtain

n n
F(§>=F(k)=(k—1)!=<—2-—1>!.

If nown=2k +1, then
n 1 1 3 531 1
rG)=r(erd)= (=) (=3)- 3330 G)

but I' <1> = 2 1/; = ﬂ , from which

2)” TV,

from which we obtain ¥V, _,

Now let n be even. Then

r (g) r <"—2+—1>= G—l)! 27" (-1 Y/

= 2‘6"‘)(;1—2)!! 27" (n—) Yo =2-2""(n=1)! Y,

from which

, , 27'["/22 . n("+l)/2 2(27’[)"
Vn—an = = ,
2:27"n—1)1Y/n (n—1)!

as required. The case of odd n is considered in the same way.

Problem 22.1. Write down the expression for the Laplace operator in the
Lobacevskii plane (hyperbolic plane).

Problem 22.2. Compute the eigenvalues for the Laplace operator on the
n-dimensional real projective space IRP" with the natural metric (induced by
the metric on the sphere S” under the two-fold covering S"— IR P").

Problem 22.3. Compute the eigenvalues of the Laplace operator on the
n-dimensional complex projective space € P" with the natural Kdhler metric
(cf. S.S. Chern [1)).



Chapter IV
Pseudodifferential Operators in IR"

§23. An Algebra of Pseudodifferential Operators in IR"

The aim of the study of pseudodifferential operators on R" is to describe
various effects connected with the behaviour of functions as |x|— + . A
fundamental role is played here by non-local effects, so we have to give up the
requirement of properly supportedness of pseudodifferential operators,
unposed, without loss of generality, in the local theory (Chapter I).

23.1 The classes of symbols and amplitudes
Definition 23.1. The symbol class ' (R"), where m €IR, 0 < ¢ < 1, consists
of the functions a(z) e C*(IR"), which satisfy the estimates

|0%a(z)| < C(zdm e® | zeRV. (23.1)

Example 23.1. Any polynomial a(z) of degree m belongs to I''"(IRY).

Let us note immediately that if ael'J*(RY) and bel:(R"), then
abel7»*™(RY) and dZa el 21*I(IRY). Further, given a linear monomor-
phism j: R'>R", aeI'"(R") and j*a=ao j, then j*aeI'™(R'). Note that

N I™(RY) = S(RY). (23.2)
Definition 23.2. Let a;eI'Js(R"), j=1, 2, ..., mj— — o0 as j— + o and
ae C*(R"). We will write
an~ i a;, (23.3)
if for any integer r = 2 o
a— ri: a;eI'T(RY), (23.4)
i<

where m, = max m;.

jzr

The following propositions are similar to Propositions 3.5 and 3.6.

M.A. Shubin et al., Pseudodifferential Operators and Spectral Theory

© Springer-Verlag Berlin Heidelberg 2001
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Proposition 23.1. LetajeF;"f(IRN),jz 1,2,...,wherem;— — o0 asj— + .

Then there exists a function a, such thata ~ ), a;. If another function a’ has the
same property, then a— a' €S (IRY). i=1

Proposition 23.2. Let q;€ F;"f(IRN), j=1, 2, ..., where mj—>—c0 as
j— 4+ 0. Let a e C*(IR¥) and for any multiindex o let the following estimate holds
for some constants u, and C,:

[0;a(2) | = Co{zp*. (23.5)

Finally, let there exist I; and C; such that [;— — oo as j— + o and the following
estimates hold

r—1

a(2) - 3, 4;(2)

j=1

< C D" (23.6)

Then a ~ ) a;.

ji=1
Exercise 23.1. Prove Propositions 23.1 and 23.2.

We now would like to consider operators of the form
Au(x) = [[e'*™ ¢ a(x, &) u(y)dydt, (23.7)

where a(x, &) e'J(IR*"). However, as is evident from the considerations in
Chap. I, it is convenient to consider at once a more general formula for the action
of the operator

Au(x) = [[e*™ *a(x,y, ) u(y)dy dg, (23.8)

where the function a(x, y, &) is called the amplitude.
We will describe the class of amplitudes, which will be useful in what follows
Definition 23.3. Let II7(IR*") denote the set of functions
a(x,y, &) e C*(IR3"), which for some m' satisfy
1030807 a(x,y,£)| S Copy (2™ eI PN (x—yym retetin, (23.9)

where z = (x, y, &) eIR*".

It is clear that if aelI™(IR®"), then 0fa(z)elly ¢*I(R>") and if
bell™(R3"), then abell™*™ (IR3"). We have I''(R*") < IT; (IR*"). Since
{z)[{x—y) 21, then between the classes II} (IR*") there are the inclusions

m’ n m’’ 3n ’ ” ’ "
oy (R3O (R  for msm", ¢'Z¢".
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If a(x, y, &) eIy (IR*™), then a(x, x, &) e Iy (IR?™).
The most important example of an amplitude of the class IT7(IR®") is
provided by the following

Proposition 23.3. Let a linear mapp: R*"—>IR" be such that the linear
mapR*"—~R?", mapping (x,y) into (p(x,y),x—y), is an isomorphism. Let
b(x,&) eIy (IR*"). Define the amplitude a(x,y,&) € C*°(R3") by the formula

a(x,y,8) =b(p(x,),0). (23.10)

Then a e IT7 (IR").

Proof. The functions | x|+ |y|and |p(x, y)| + |x — y| give equivalent norms
on IR?". Therefore, for the proof of the proposition it remains to use the easily
verified inequality

(A+1pO, |+ ¢
(1—Hp(x,y)|+|x—y|+|§|)sS I+ Ix=y))*, sekR,

from which the estimates (23.9) follow for a(x, y, &) with m' = |m|. U

Corollary 23.1. If belJ(IR*"), then a(x,y,&)=b(x,¢) and a(x,y,¢)
= b(y,¢) belong to I} (IR>").

23.2 Function spaces and the action of the operator. Now we introduce the
space Cy°(IR") consisting of functions u € C* (IR") such that

|0*u(x)| £ C, (23.11)

for any multiindex |a|. The best constants C, in (23.11) constitute a family of
semi-norms for a given function, defining a Fréchet space structure on C° (IR").

The operator A of (23.8) is conveniently studied in the space C*(IR"). In
order to give the correct definition of the oscillatory integral appearing in (23.8),
we shall have to proceed as in §1. For this purpose, let initially a(x,y, &)
€ C& (IR*"). Then the integration in (23.8) in reality is performed over a compact
set and we may carry out an integration by parts, using the identities

(x—y) MLD M 7V 8 = gl E (23.12)
(G TND YN X7V 8 = fE T E (23.13)
where M, N are even non-negative integers. From (23.8) one obtains
Au(x) = [[e 775 x—yy "MCDHM{DHN
x K& Ma(x,y, &) u(y)]dyd¢ (23.14)
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If the amplitude a € IT7 (R*") satisfies (23.9) and if u € C;°(R"), then clearly
for m— N<—n, m'+m— M < —n, the integral (23.14) becomes absolutely
convergent, defining a continuous function of x eIR". Increasing M and N, we
will obtain integrals which are convergent also after differentiation with respect
to x. Hence the operator defined by (23.14), is a continuous map

A: C#(R") - C=(IR") (23.15)

For m <0, we will also obtain a map 4: C°(R") - C;°(IR"). This same map
could also be defined using a cut-off function y (x, y, &) € CF (R>"), x(0,0,0) =1
and the formula

Au(x) = lil;no ([ y(ex,ep,e&) a(x, y,&) u(y) dydé.  (23.16)

The identity of the two definitions (23.14) and (23.16) is verified in the same
way as in §1 and we leave this verification as an exercise to the reader.

In particular, the operator A is defined on the space S (IR"). Let us show that
it gives a continuous map

A: S(R") - S(R"). (23.17)
Indeed, using the inequality
A+IxD < A+ D A+ Ix=yD*, k>0,

we see from (23.14) that

(1+1x)*14u(x)| = G,

for any k and a similar estimate holds if we replace Au(x) by 0% (Au(x)). From
this we also have AueS(IR") for ueS(R") with an estimate of seminorms
guaranteeing the continuity of the map (23.17) (which also could have been
obtained from the closed graph theorem).

Finally note, that since the transposed operator

Au(y) = ([ a(x,y,&) v(x)dxdd (23.18)

by similar reasoning, maps S (IR”) into S (IR"), then 4 can be extended by duality
to a continuous map

A: S'(R") > S'(IR").

Definition 23.4. The class of operators 4 of the form (23.8) with amplitudes
a e I17 (IR*") will be denoted by Gy (R") or simply by G (if the dimension n is
clear or unimportant).
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Itis useful to have a description of the operators belonging to the intersection
G~ *=()Gr. We shall show that this intersection is independent of ¢ and

consists of operators with kernels K ,(x, y) e S(R?"). Clearly it suffices to
consider the case ¢ < 1. Note that the operators with amplitudes a(x, y, £) and
x=y> MDY a(x, y, &) coincide, from which we see that if A€ G~ >, then 4
can be determined by an amplitude a(x, y, ¢) satisfying (23.9) with arbitrarily
small (arbitrarily close to — oo) numbers m and m'. But then A has the kernel

K (x,p) = [0 ¢ ax,y,0)de, (23.19)

belonging to S(IR?"). From this, it follows in particular that 4 defines a
continuous map

A4: S'RMH-> SR, (23.20)
given by the formula

Au(x) = (K (x, ), u(-)). (23.21)
In the general case the kernel K, (x, y) is defined by the formula
(Kpo) = [ a(x, 0,0 o(x,y) dxdydl, ¢eS@R™), (2322

and is a distribution K, €S’ (R?").

Exercise 23.2. Denote by C;*(IR") the space of functions u € C*(IR"), with
the property that for any multi-index « one can find constants C, and y,, such
that

[0%u(x) | £ Co{x)t. (23.23)
Show that an operator 4 € G defines a map
A4: CP(R") - C*(R"). (23.29)

Exercise 23.3. Let AeGy(IR") and K, the kernel of 4. Show that
K, e C*(IR?"\ 4), where 4 is the diagonal in R"x IR".
23.3 Left, right and Weyl symbols

Theorem 23.1. An operator A € G’ of the form (23.8) can be written in any of
the following three forms

Au(x) = [[e*" "6, (x,&) u(y)dyde, (23.25)

Au(x) = [ 6, (3,8 u(y)dyde, (23.26)

Au(x) = [[e ¢, <f‘ﬂ

5y é) u(y)dydé. (23.27)
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Here ,,, 0,, and 0, belong to I’ T(IR?"), are uniquely defined and have the
following asymptotic expansions:

0459 ~ L 01D 8) (2328

0., (O~ :—, 02 (=D a(x,3,8) 4=y, (23.29)
1 1 1\!8+7!

040 (X,8) ~ ﬁZv T <§> 08t (=D)E Dl a(x,9,8) |y=x- (23.30)

This theorem allows the introduction of

Definition 23.5. The functions o, ,, o, ,and g, , from the formulae (23.25)-
(23.27) are called, respectively, the left, right and Weyl symbols of the operator 4.

Although we shall not use any other symbols, let us show the following
generalization of Theorem 23.1, containing a parameter 7 € IR and also allowing
us to avoid repetitions in the proof of Theorem 23.1.

Theorem 23.2. Let A €G] of the form (23.8) be given. Then for any 1eR
A may be uniquely written as

Au(x) = [[ € b (1—1) x+1,&) u(y)dy dé, (23.31)

where b, e I'7 (R*"). Here b, has the following asymptotic expansion
1
b, (x,&) ~ ) Byl A=) 38+ (=D Dla(x,y,8)|,-..  (23.32)
ﬂ’y . .
Definition 23.6. The function b, (x, &) will be called the t-symbol of A.
Proof of Theorem 23.2. Putting

{ v=>1-1)x+1Yy, (23.33)
w=x-y,
we obtain
X=v+1TW,
(23.34)
y= U—(I—T)W,
from which
a(x,y,=a@+tw,v—-(1-1)W, ). (23.35)

Let us now expand the right-hand side of (23.35) at w =0 in a Taylor series:

— 1\l
awyo= ¥ CDT gl (x—y @250) 0,0.0) + 1y
B+yisn-1 PV (23.36)
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where

L= Y cpx—y)fT -

1B+yI=N

x (0207a) (v+ttw,v—t(1—-1)w,{)dt, (23.37)

and cg, are constants.

In (23.36) the expression (0%0]a)(v,v,¢) signifies that in the function
0801a(x,y,&) it is necessary to take v = (1 —1) x + ty instead of x and y. The
expression (0207a) (v+ttw, v—t(1~1)w,{) in formula (23.37) has a similar
meaning.

Now note, that the operator with amplitude (x—»)**” (640]a) (v,v,¢)
coincides with the one given via the amplitude

(=D *7(3%03a) (v,0,8) = (= )P1* PG DLD}a) (v,0,).

Therefore it follows from (23.36) that 4 can be represented in the form of a sum
A= Ay+ Ry, where 4, is an operator with t-symbol

1
bN(x’é): Z B'*"T!ﬂl(l_T)!y!6g+y(_Dx)ﬂDza(x’yaé)|y=x’
Beyisn-1 PV
and Ry is an operator with amplitude ry(x,y,&). Note that Ry is a linear
combination of a finite number of terms having amplitudes of the form

@£+13433a) o+tow, v = (1 =0 w.&) (A=) dr,

O ey

IB+yl=N.

Let us show that this amplitude belongs to the class I17~*"¢(IR*"). For this it
sufficies to show that this is true for the integrand, with all estimates uniform in ¢
(note that this is obvious for each fixed ¢ + 0 and true for 1 =0 by Proposition
23.3). In view of the relations

v=>_0-1) (v+ttw)+1(v—t(1—1)W),
tw=(+ttw) — (v—t(1—1)W)
it is obvious that

lo+ttw|+jv—t(1—1)wW| <c.

C~1
lo] + |tw] -

A

where C >0 and C does not depend on ¢ €[0,1]. Therefore

|(02+70807a) (v+trw,v—t(1—T)w,&)]
S C+ v+ tw]+ | E))" 2N (1 + | tw])™ *2eN,
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Since for m' + 29N = 0 we have
A+ [ow)™ *2eN < (A [o]+ [w]+[ED™ 2N (1 + o] +E) 72,
it is clear that if, in addition, m'+ m=>0 and m — 29N £0, then

[(08*73802a) (v+ttw,v—t(1—T) W, &)
S CUA+[|+[EN ™™ 72N (A +]vl+ [tw]+ €)™+
S CA+|v[+[EN 2N (14w
SCA+ v+ |w] + |g|)m—2@N(1 + |w|)m'+2m+20N’

where C does not depend on ¢. One obtains the estimates for derivatives in an
analogous way.
Now let the symbol b'(x, &) e 'y (IR*") be such that

B~ Y (bn(x &) — by (x,8)).
N=0

Then, if A’ has t-symbol b'(x, £) it is clear that 4 — A'e G~ %, i.e. the
operator 4 — A’ has a kernel belonging to S (IR?").

Let us now verify that if 4 has a kernel K, €S (IR*"), then it has a t-symbol
b.(x, &) € S(IR*") and the correspondence between kernel and symbol is a one-to-
one correspondence. From formula (23.31) it is clear that this correspondence is
of the form

Ki(%,y) = Fihoy b (1= x+12,8), (23.38)
b (0,6) = F,.. K (0+1tw,0—(1—17) W) (23.39)

((23.39) is obtained from (23.38) by a change of coordinates and the Fourier
inversion formula). In particular, for any K,eS(IR*"), we can find
b.(v, &) e S(R?") by formula (23.39).

We next show the uniqueness of the t-symbol in the general case. For this we
note that (23.38) is always true when A is given via a t-symbol b_(x, £) and if the
partial Fourier transform, which appears in this formula, is understood in the
same sense as the Fourier transform of distributions (cf. §1). Thereby, the
inversion formula is also true, leading to (23.39) after the linear change of
coordinates (23.34). Also, from formula (23.39), the uniqueness of the t-symbol
is obvious, taking into account the uniqueness of the kernel K,. [

Corollary 23.2. The class of operators G, coincides with the class of operators
of the form (23.25) with the left symbol o , ,(x, &) € '] (IR*"). The same is also true
if we replace (23.25) by (23.26) or (23.27) and 6, by o, 0r 0, ,,.

23.4 Relations between the different symbols. The symbols of the transposed
and adjoint operators. The expression for the t-symbol in terms of the 7,-symbol
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for a different 7, can be easily obtained from Theorem 23.2 in the form of an
asymptotic series. Indeed, if an operator A has the t,-symbol b, (x,¢), this
signifies that it may be determined via the amplitude

a(x,»,8)=>b (1—-t)x+1,»9).
But then, by Theorem 23.2 its t-symbol has the asymptotic expansion

(=D

b(x,O)~ % By (1 =) (1 —1,)P1 [ g8+ Y DE* Vb,
B.y Y
or
b(x,8) ~ Y., 08D%b,, (x,£), (23.40)
where
(— 1)l

= A By [e(@ =) [(1 =7) 7,]" (23.41)

and, in particular, we have ¢, = 1. Now, transforming (23.41) using the Newton
binomial formula (Lemma 3.4), we obtain

¢ L [(1-7)t,e—t(1—1))e] L (ty—7)ll.
ol o!

a

wheree=(1,1,..., 1).

Thus, we have proved

Theorem 23.3. Symbols b, (x, &) and b, (x, ) of the same operator A € Gy are
related via

b5~ (e~ 02D3b, (x,). (23.42)

In particular, b (x,&) — b, (x,€) e 'y~ 2¢(IR?").

Let us now consider the transposed operator ‘4, defined by the formula

{Au,vy =<{u,'4vy, u, veS(R"), (23.43)

where

Cu,vy = [ u(x) v(x)dx.

R
From the formula

(Au,vy = [[[e b (1—1) x +12,8) u(y) v(x)dydx d¢
= ([0 b (1) x+ 1y, —&) u(y) v(x)dydxd¢
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it follows that if 4 has a t-symbol b (x, &), then ‘4 has the (1—1)-symbol
by _.(x,&), given by the formula

by (x,8) = b.(x, =) (23.44)

From Theorem 23.3 it now follows

Theorem 23.4. If A € Gy, then'A € G} and the t-symbol 'b.(x, ) of 'A can be
expressed in terms of the t- symbol b.(x, C) of A by the formula

h,(x,&) ~ Y :—' (1—27) 62D%b,(x, — ). (23.45)

Now let 4* be the adjoint of A, defined by

(Au,v) = (u, A*v), u, veS(R"), (23.46)
where

(,0) = [ u(x) v(x)dx. (23.47)

R*
By analogy with Theorem 23.4 one can show

Theorem 23.5. If A€ G}, then A* € Gy and the t-symbol b} (x, &) of A* is
related to the (1 —1)- symbol b, _.(x,8 of A via the relation

b¥(x,8) = by, (x,9), (23.48)

and can be expressed in terms of the t-symbol b, (x, £) of A via the asymptotic series
1
b*(x, &) ~§ ) (1-=27) 62‘D“b (x,8). (23.49)

Corollary 23.3. If A€Gy, then
Ogn(X,8) =04,(x0). (23.50)

In particular, the condition A = A* is equivalent to the real-valuedness of the Weyl
symbol 6, (x, ).

23.5 The composition formula

Theorem 23.6. Let A'€ Gy, A" € Gy Then A’ > A" € G;’"*"’z and ifb;l(x, )
is the ©,-symbol of A’ and b (x, &) the t,-symbol of A", then the t-symbol b (x, £)
of A’ o A" has the asymptotic expansion

be(x, ) ~ ) Capys(0 DID), (x, £))(8) DD}, (x, £)), (23.51)

a.B,y.8
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where c,5.5 are constants (depending on t, 1, and t,) such that cyo00 =1 and the
sum runs over sets of multi-indices o, B, y and 6 such that « +y= 4+ 6.
In particular, we have b (x,&) — b, (x,£) b, (x,&) e g™~ 2¢ (R?").

Proof. Taking Theorem 23.3 into account, we see that it suffices to consider
only one arbitrary triple of the numbers 7, t, and 7, . Let us take for simplicity
1,=0, 1,=1. A” can be written, using the symbol bj (y, ), as

A"u(x) = [[e* b1 (,8) u(y)dy de,

A% = fer 2 b{ (3, &) u(y)dy. (23.52)

or

A’ has the form
Av(x) = [[e ™7 by (x, &) u(y)dydé = e ¢ by (x, &) 1 (§)de. (23.53)
From (23.52) and (23.53) it follows that
Ao A"u(x) = [[e!™77¢ by (x, &) by (»,&) u(y) dy dE, (23.54)
i.e. Ao A” is determined via the amplitude
a(x,»,8) = by (x,8) by (y,O) eI "™ (R").

From this we have A’ o A" € G+ *™:. Applying Theorem 23.2 we obtain for
b.(x,8)

—1)8
(W)T P11 =) O+ [(DEBy (x, ) (Db} (x, £))]

and by the Leibniz rule (Lemma 3.3)

b(x, &)~ Y
B.v

=) (B+y)!
ﬂ,);i,s W

ote=p+y

b(x,8) ~ ol (1) (32D8b) (EDIBY),  (23.55)
as required. [J

Inserting into (23.55) the expressions for b, by in terms of b; , b;, we obtain
formulae for the coefficients c,4,; in (23.51), which may sometimes be
simplified. For instance, one can show by analogy with Theorem 3.4 the
following

Theorem 23.7. Under the assumptions of Theorem 23.6 one has

1
bo(x,&) ~ ) o1 (080 (x, ) (D3bg (x, 0)) - (23.56)
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Problem 23.1. Show that the left symbol g, ,(x, {) of an operator 4 € G can
be expressed in terms of 4 by the formula

0,,(x,8) =e ™ A (™0, (23.57)
where A acts on the variable x.
Problem 23.2. Show that if 4" € G}, A" € G, then

(=i

g 2 0EDLe, (3 ) (@FDlo ().

(23.58)

O (X 8) ~ Z

Problem 23.3. Consider the polynomial
(tx +...+t,x,+7, D+ ... +1,D )Y

in the variables f, t€R" with operator coefficients (x; is viewed as the
multiplication operator by x;) and write it in the form

N!
1*1% A
Ja+B]=N “'ﬂ'

Show that A, is an operator with the Weyl symbol x*¢&”.

§24. The Anti-Wick Symbol.
Theorems on Boundedness and Compactness

24.1 Definition and basic properties of the anti-Wick symbol. Put
Oy (x)=n""*exp[—x?2], xeR". (24.1)
Then @,eS(IR") and ||, =1, where || - | denotes the usual norm in
L? (IR™), generated by the scalar product (23.47). Denote by P, the orthogonal

projection in L? (IR") onto the vector @,. Clearly, the Schwartz kernel of this
projection has the form

K(x,y)=n""? exp[—(x*+y?)/2]. (24.2)

Computing the Weyl symbol ¢, of P,, we get, using formula (23.39) with t =3;

o0(x,8)=F,, <x+%v, x—%v). (24.3)
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Now, taking into account that

P n/2 62
F,,; exp(—av®) = (—) exp(— —), a>0, (24.4)
o 4a

we obtain from (24.3) that

2

oo (x,&)=F,,,n™"? exp<—x2—%) =2"exp[—(x2+¢&2)].  (24.5)

Now let z = (x, &), z, = (xo, £,) €IR*". Consider the operator P, with Weyl
symbol g, () of the form

0, (2) =0¢(z2—2p). (24.6)

It is easily verified that
P.=M,T PT, 'M.", (24.7)
where M, is the multiplication operator by ¢™ % and T, is the shift operator by

Xoin I (IR") Le. T, u(x)=u(x—x,).SettingU, = M, T0 we see that P, can be
written in the form

P, =UPU," (24.8)
from which it is obvious, since U, is unitary that P, is the orthogonal projection
onto the vector @, = U, @, .

We wish to consider the following operator, being a linear combination of
operators P, , zeR*":

A=[a(x,&) P, dxdt, (24.9)

where a (x, &) e 'y (IR?"). As for the meaning of this formula, let us note that the
following can be immediately verified: if u(x)eS(R"), then (P, :u)(x,)
eS(IR2"%). Due to this, (24.9) makes sence if we consider it on functlons
u(x)eS(IR™), and one can easily ensure that 4 maps S (IR") into S (IR").

Definition 24.1. An operator 4 of the form (24.9) is called operator with anti-
Wick symbol a(x, &).

The convenience of anti-Wick symbols is demonstrated by

Proposition 24.1. If a(z) 20, then A 20, i.e. (Au,u) = 0 for ue S(R™).
Proof. This follows from the fact that P, > 0 for any z, e R*". []
Corollary 24.1. If a(z2) is real-valued, then

4]l = sup la(2)], (24.10)

zeR?"
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where
l4l= sup [[Aull/llull.

ueS(R"), u+0

Proof. The statement ||A]| <M is equivalent, for self-adjoint 4, to the
non-negativity of the operators M—A and A+ M, which is obvious for
M = sup |a (2)| from Proposition 24.1. []

zeR?"

Corollary 24.2. For a complex-valued function a(z) one has the following
estimate

41l = 2 sup |a(2)]. (24.11)

zeR*"

Proof. 1t suffices to use Corollary 24.1 for Rea and Ima. 0J

Remark 24.1. In fact, (24.10) holds also for complex-valued functions a (z)
(cf. Problem 24.4), although we shall not use this.

24.2 Connection between the anti-Wick symbol and the other symbols.

Theorem 24.1. Let A be an operator with anti-Wick symbol a(z) = a(x,&) e
I'](R*"). Then A€G? and the Weyl symbol of A can be expressed as

b(zy=n""[e 1= q(z')dz’. (24.12)
Further, any t-symbol b (z) of A has the asymptotic expansion

b.(2) ~ ) c,0%a(z), (24.13)

where c, are constants (depending on t), such that ¢, =1 and ¢, = 0 for odd |«|. In
particular

b.(2) — a(z) eI 2¢(R"). (24.14)

Proof. The relation (24.12) is obvious from (24.9), (24.5) and (24.6). In view
of Theorem 23.3 it suffices to show (24.13) for 1 =1, i.e. for the Weyl symbol.
Let us expand a(z’) in the Taylor series at z:

a@@)= —:, (0°a(2) (z' =2+ ry(z, 2), (24.15)
al|<N .
where el

Wi, z)= Y c;(z’—z)“}ﬁaa(z+t(z’—z)) A—n¥1dr,  (24.16)

le|=N

and where ¢, are constants.
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Inserting (24.15) into (24.12) we obtain

b(z)= ), c,0%a(z) + Ry, (24.17)
Ja| <N
where
¢, = e [ze 1 dz (24.18)
ol n”

(from which obtain in particular, ¢, =1 and ¢, =0 for odd |«[), and
Ry(2)=n""fe " ry(z,2)dz".

Let us show that Ry (z) e I'7 "¢V (IR?") (from which we have, in an obvious
manner, the required expansion (24.13)). It is convenient to rewrite Ry (z) in the
form

Ry(@= 3 ¢ j"dtj"dw cwre M (0%a) (z+w) 1=V 71,

|| =N

implying that 8! Ry (z) has the form of a sum of terms like
1
fdtfdw-we I"" (0Fa) (z+1w) 1 -7,
]

where || = N+ |y|. Clearly it suffices to estimate the expression
Ls(2) = [dw-wee ™ (3 a) (z + tw). (24.19)

uniformly in 7 €[0,1]. To estimate /,;(z) we decompose it into the sum of two
integrals:

I;(z) over the domain |w| < |z|/2,

I;3(z) over the domain |w| > |z|/2.
For 1,;(z) one has the estimate
|1(2)| < Cazym eV ID f(wdV e "dw = Cp(zym eI (24.20)
and I;3(z) can be estimated as follows:

@ISCy | MY @RS G 421)

[w]>z|/2

for an arbitrary k. From (24.20) and (24.21) we immediately have the required
estimate for I,5(z). [
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Theorem 24.2. Let A’ € G}'. Then there exists an operator A € Gy, such that A
is given by the anti-Wick symbol

a@)el™R>  and A-A'€G™>, (24.22)

i.e. the operator A— A’ has the Schwartz kernel K, ,.(x,y)eS(R*").

Remark 24.2. Not every operator 4 € G} has an anti-Wick symbol a eI’}
(this is clear for instance, from the fact that the Weyl symbol b (z) as defined by
formula (24.12), must be a real- analytlc function in z € IR*"). The actual find-
ing of the anti-Wick symbol from a given Weyl symbol requires the solution of
the inverse heat equation. Theorem 24.2 shows that if one disregards symbols
in S(IR"), this process becomes possible.

Proof of Theorem 24.2. Let A’ have the Weyl symbol b’ (x, £). Consider the
operator 4, with anti-Wick symbol a,(x,&) = b'(x, &) and put 4] =4" — A,.
Then A4; € G7~?¢ by Theorem 24.1. Denote by 4, the operator with anti-Wick
symbol a, (x, &), equal to the Weyl symbol of 47. We have

A'=Ag+ A, + Ay, A,eGr*e.

Continuing by induction, we may construct a sequence of operators 4;, /=0,
1,2, ..., with anti-Wick symbols a;(z) e 'y~ ?/¢(IR*"), such that
N—-1
m—2¢gN
— ) A;eGpTieN, (24.23)

j=0

Let a(z) eI'7 (IR*") be such that

Then if A4 is the operator with anti-Wick symbol a(z), (24.22) follows from
(24.23) as required. [J

24.3 Theorems on boundedness and compactness

Theorem 24.3. The operator A € G0 can be extended to a bounded opera-
tor on L*(IR").

Proof. Inview of Theorem 24.2 and Corollary 24.2 the statement reduces to
the case 4 e G~ *, where it is obtained from the obvious estimate

I401% < [J1K(x, »)|? dxdy, (24.24)

resulting from the Cauchy-Bunjakovskij-Schwarz inequality (cf. also Appen-
dix3). O
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Theorem 24.4. The operator A € G for m < 0 can be extended to a
compact operator on L*(IR").

Proof. First note, that the operators in G~ * are Hilbert-Schmidt operators
(cf. Appendix 3), hence they are compact.

Now let 4 € Gj', m < 0. Using Theorem 24.2, we may assume that 4 has the
anti-Wick symbol a (z) e ' (IR?"). Let x (z) € Cy* (IR*"), x (z) =1 for |z| £ 1. Put
a,(z) = x(z/L)a(z) and let 4, be the operator with the anti-Wick symbol q, (z).
Then sup |a(z)—a,(z)|—0 as L— + oo and in view of Corollary 24.2 we

zeR?"
therefore have ||4—4,||—»0 as L— + .
But 4, is compact for any L since A, € G~ *. From this the compactness of 4
also follows. [J

24.4 Problems

Problem 24.1. Prove the boundedness theorem in the same way as Theorem
6.1 was proved.

Problem 24.2. Prove the compactness theorem 24.4 without using the
theory of the anti-Wick symbol.

Hint: Verify with the help of polar decomposition of 4, that compactness of
A is equivalent to compactness of A*A; show that compactness of 4*4 is
equivalent to compactness of By = (4*A4)" and obtain the latter for large N from
the fact that K, (x, y) € L* (IR*").

Problem 24.3. Consider the system of vectors {®,}, g: defined in 24.1.
Show that the map I: f— (f, ®,) defines an isometric embedding of L? (IR") into
L*(R>), i.e.

112 =@m™" [ (£ ®.)|*dz (24.25)

(one says in this case that the vectors ¢, constitutes an overcomplete system with
respect to the measure (27) "dz in the space IR?").

Problem 24.4. Show that an operator 4 with an anti-Wick symbol a(z) can
be written in the form

A=I*M,I, (24.26)
where M, is the multiplication operator by a(z) in L? (IR*") and the operator I:

L*(R"— [?(R?") wasintroduced in Problem 24.3. Derive from this the validity
of (24.10) for complex-valued functions a (z).

Problem 24.5. Introduce the Wick symbol ¢ (z) of an operator 4 € G} with a
Weyl symbol b(z) by the formula

c@)=n""fe b () dz (24.27)
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Show that c(z) can be expressed in terms of b(z) via the asymptotic series

c(2) ~ Y cadb(2), (24.28)

where ¢, =1 and ¢, =0 for odd |«].
Verify that the Wick symbol ¢ (z) of 4 can be expressed by the formula

c(z) =(49,,9,). (24.29)
Derive from this that

sup [c(2)| = [14]].

zeR?"

Problem 24.6. Let a(z)—0 as |z|— + co. Show that the operator 4, defined
by the formula (24.26) is compact.

Problem 24.7. Let 4 be a compact operator in L*(IR”) and let ¢ (z) be defined
by the formula (24.29). Show that ¢(z)—0 as |z|— + o0.

Problem 24.8. Let 4 € G for some m € R and let b (z) be the Weyl symbol of
A. Show that the boundedness of A4 is equivalent to sup |b(z)| < 0.

zeR?"
Hint: Use Corollary 24.2, Problem 24.5 and the construction from the proof
of Theorem 24.2.

Problem 24.9. Let 4 and b(z) be as in the foregoing problem. Show that the
compactness of 4 is equivalent to the condition b(z)—0 as |z| = + 0.

Hint: Use Problems 24.6, 24.7 and the construction in the proof of
Theorem 24.2.

Problem 24.10. Show that a differential operator with polynomial coef-
ficients in IR” has a polynomial in z = (x, £) as its anti-Wick symbol.

Hint: On polynomials one can solve the inverse heat equation, since the
Laplacian is nilpotent on the polynomials of a given degree; if b(z) is a
polynomial Weyl symbol of A, then its anti-Wick symbol has the form

a(z):e_%db(z)= i i<-4>kb(z). (24.30)
S k4

Problem 24.11. Compute the coefficients ¢, in formula (24.13) fort =14, i.e.
in expressing the Weyl symbol through the anti-Wick symbol. Show that this
series can be written in the form

4 | A k
b(z)~eta(z)= Z o <Z> a(2). (24.31)

Hint: In computing the coefficients ¢, one may assume that a(z) is a
polynomial.
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Problem 24.12. Let A be a differential operator with polynomial coefficients
on IR". Show that 4 may be uniquely expressed in any of the two forms

A=Y cya*(@*), (24.32)
a, B

A=Y cga*)fa, (24.33)
a,p

0 0 0 0
- —_—— _ = — -
where a _<x1 8x1""’x" 6x,,>’a <x1+ax1,...,x,,+ax ),anda,ﬁ

n

are n-dimensional multi-indices, the sums (24.32) and (24.33) are finite and c,,
¢, are complex constants. Show that in this case the anti-Wick symbol a (x, £)
and the Wick symbol ¢(x, &) of 4 are given by the formulae

a(x,&) =Y cp(x+il)*(x—i&)*, (24.34)
a, p

c(x,8) =) cp(x—i&)f (x+i&). (24.35)
@, p

§25. Hypoellipticity and Parametrix. Sobolev Spaces.
The Fredholm Property

25.1 The class of hypoelliptic symbols and operators
Definition 25.1. We shall write a(z)e HI' ;"""O(IRN), if a(z) e C*(RY) and
there is an R such that the following estimates hold for |z| = R
ClzI™ = la(2)| = Cy 21", (25.1)
|0%a(z)| < C,la ()| |z]~¢*™, (25.2)

where C, C,, C, are positive constants.

From this it follows that a(z) e I'" (R").
This class of symbols has properties close to those of the symbols in §5.

Definition 25.2. By HG}" ™ (IR") or HG}"™ we denote the class of operators
A, given by the t-symbols
b e HI'J»™(IR*").

Clearly, HG}"™c G7'.
For the justification of Definition 25.2 we need

Proposition 25.1. If it is true for some t €R that b,e HI']"™, then it is true
also for all teR.
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Proof. The proof is based upon Theorem 23.3 and the following Lemma
proved in the same way as Lemmas 5.1-5.3 and Propositions 5.2-5.4.

Lemma 25.1. 1) The classes HI'J"™(IR") satisfy:

a) if a(z)eHIy"™, then a™'(z)e HI' ;™ ™ (|z| 2 R) and (0*a)/ael ;"
(Iz| 2 R);

b) if aeHI "™, a' e HI ] ™, then aa’ e H[M+™ ™ot ™,

©) ifaeHI' ;"™ and rel'] where my <my, then a+reHI ™.

2) The classes HG™ ™ satisfy:

d) if AcHGy'™, A'€e HG ™, then A- A' e HGy*™"mo*™s;

e) if AeHGy ™, then 'A e HGy ™ and A* e HG}"™;

f) if AeHGy ™ and Re Gy where my < m,, then A+ Re HG}"™.

Exercise 25.1. Prove Lemma 25.1.

Exercise 25.2. Prove Proposition 25.1.

25.2 The Parametrix and regularity. By analogy with Theorem 5.1 we can
prove

Theorem 25.1. If A€ HG} ™ then there is an operator Be HG ;™ =™ such
that

BA=I+R,, AB=I+R, (25.3)

where R;eG™>, j=1, 2. If B' is another operator in G} for which either B'A
—IeG ™ or AB'—IeG™ ™, then B'— Be G~ ™.
Exercise 25.3. Prove Theorem 25.1.

Corollary 25.1. Let A€ HG} ™. Then the following statements hold:
a) If ueS'(R") and AueS(R"), then ueS(R").
b) If ueS'(R") and Aue C*(R"), then ue C*(R".

Proof. Follows in an obvious way from Theorem 25.1 and the results in
232. 0O

25.3 Sobolev spaces. Consider for arbitrary s €R the operator L, differing
from the operator with the left symbol b(x,&) = (1+|&|*+|x|?)¥? by an
operator in G3, s’ <s. It is easily seen that L e HGS .

Definition 25.3. The space Q°= Q°(IR") consists of the distributions
ueS'(R" for which L ue L*(IR").

By analogy with Theorems 7.1 and 7.2 we can prove

Theorem 25.2. 1) If A € G} then A maps
A QP> Q5™ (25.4)
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2) If AeHG ™, ueS'(R") and Aue Q’, then ue Q™.
Exercise 25.4. Prove Theorem 25.2.
Since the class | ) GT contains all differential operators with polynomial

coefficients, it is clear that Theorem 25.2 implies
Corollary 25.2.

Ne'=s@n, U =Sm".

Now we introduce a Hilbert space structure on Q°. Note that we may assume
that L__ is a parametrix of L, in the sense of Theorem 25.1. Then

L Li=I+R,, ReG™ "~
Let p>s, p an even integer. Put
(u,v)y= (L, L) + Y, (x*D?R,u, x*D*R,v). (25.5)
lal+(BI<p
From the representation

u=L_Lu— Ru (25.6)

-s S

it is clear that (25.5) defines a pre-Hilbert structure on Q°. By analogy with
Proposition 7.2" one verifies that

Proposition 25.2. The scalar product (25.5) defines a Hilbert space structure
on Q°.
Exercise 25.5. Prove Proposition 25.2.

Finally, by analogy with the argument in §7, one proves the following
statements.

Proposition 25.3. The scalar product (-,-) in L*(R") induces a duality
between Q° and Q ~° (the exact formulation as in Theorem 7.7).

Proposition 25.4. The operator A€G} can be extended to a continuous
operator A: Q°— Q° "™ and to a compact operator A: Q°— Q* """ ¢ for e > 0. The
embedding operator Q°— Q°~¢, ¢ >0, is compact for any seR.

Exercise 25.6. Prove Propositions 25.3 and 25.4.
25.4 The Fredholm property. By analogy with Theorem 8.1 is proved

Proposition 25.5. If 4 e HG}™, then A eFred (Q*, Q°~™) for any seR. The
space Im (A |y.) in Q°~™ is the orthogonal complement to Ker A* with respect to
the scalar product (-, ") in L*(IR").

Note that
Ker (4],) = Ker (45 g+ = Ker (4]5gn) (25.7)
for any 4 e HG" ™.
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To extend Proposition 25.5 to operators A € HGy" ™ (with my < m), it is
necessary to regard 4 not as an operator from Q° into Q°~™, but as an operator
in the topological vector spaces S(IR"), S'(IR") and similar spaces or, as an
unbounded operator

As,s’: QS_’ QSl ’ (258)

where s’ = s—my, with the domain D, consisting of those u e Q° such that
AueQ®. '

Definition 25.4. Let E, and E, be two topological vector spaces, 4 an
unbounded operator from E, into E, with the domain D,. The operator 4 is
called Fredholm operator if the following conditions are fulfilled:

a) dimKer4 < + w0;
b) Im 4 in a closed subspace in E,;
¢) dim Coker 4 < + c0.

Theorem 25.3. 1) The operator A€ HGY ™ defines a Fredholm operator
from S(IR") into S(IR") and from S'(IR") into S'(IR").

2) The operators A; ;. of the form (25.8) defined by A are, for s' = s — my, also
Fredholm operators.

Remark 25.1. We consider the weak topology in S'(IR"). Since in Definition
25.4 the topology appears only in b), it is clear that the Fredholm property also
holds in all stronger topologies.

Proof of Theorem 25.3. Let the duality between S (IR") and S’ (IR") be given
by the extension of the scalar product (-, -) from L?(IR"). Note that the finite-
dimensionality of Ker A and Ker A* follows from Theorem 25.1 since due to
the inclusion

Ker A = Ker BA < Ker(I+R,)

the question reduces to the case 4 = I + R, for which everything is obvious. We
shall now consider the inclusion

A(S'(R") >AB(S'(RM) = (I+R,) (S'(RY).
For the operator /+ R, the Fredholm property on S'(R") follows from
Proposition 25.5. Therefore the subspace 4 (S’(IR") is closed in S’'(R") and
codim 4 (S’ (IR") < + oo which proves the Fredholm property of 4 in S’ (IR™).

Let us prove the Fredholm property of 4 in S (IR"). It suffices to verify
only conditions b) and c) in Definition 25.4. We shall show that

AS(R") = {u:ueS(R"), ul Ker 4*}, (25.9)
where orthogonality is in the sense of L*(R"). First, note that

AS'(RY) = {u:ueS'(R"), ul KerA*}, (25.10)
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since A (S'(IR")) is closed in S'(IR"), and S(IR") is the dual of S$’(IR"). But now
(25.9) follows from (25.10) since

A(S(R") = A(S"(R")) NS (R")

in view of Corollary 25.1. (25.9) shows the Fredholm property of 4 on S (IR").
Finally let us verify the Fredholm property of A4, . for s'=s— m,. Once
again, it only remains to verify that

ImA, , = {u:ueQ, ul Ker 4*}. (25.11)

Let ueQ*, ue(Ker 4*):. Then u = Av, where veS’'(R") in view of the
already proven relation (25.10). But from Corollary 25.1 we then obtain that
veQs ™ ie veQ?, since s < s + m,. This shows (25.11). [

By analogy with Theorem 8.2 one proves

Theorem 25.4. Let A€ HG,"™ and Ker A = Ker 4* = {0}.
Then there is an operator A~' € HG; ™ ~™, which is the inverse to A.

Exercise 25.7. Prove Theorem 25.4.
Problem 25.1. Show that the operator A € HG}" ™ is Fredholm in the space
G (R7).

Problem 25.2. Show that if a differential operator 4 with polynomial
coefficients has a t-symbol a(z) elliptic in z = (x, &), then the symbol of its
parametrix B has an asymptotic expansion in terms of homogeneous functions
in z for |z| > 1.

§26. Essential Self-Adjointness. Discreteness of the Spectrum

26.1 Symmetric and self-adjoint operators. Let H, and H, be Hilbert spaces
and suppose we are given an, in general unbounded, operator

A: H—-H,. (26.1)
As usual, D, denotes the domain of A (it is understood that this domain is given

with 4, which is then a linear map from the linear subspace D, into H,; note that
writing (26.1) does not imply that A is defined on all of H,). The adjoint operator

A*: H,— H, (26.2)

is definedif D ;is dense in H, and, in this case, D . consists of all v € H, , for which
there exists a vector g e H, with

(Au,v) = (u,g), u€ Dy, (26.3)
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(on the left-hand side of (26.3) is the scalar product in H, and on the right-hand
side thatin H,). Itis clear that g is uniquely defined and by definition A*v=g.In
particular, we have the identity

(Au,v) = (u, A*v), wueD,, veD,. (26.4)

Definition 26.1. Let H be a Hilbert space. An operator 4: H— H is called
symmetric if

(Au,v) = (u, Av), u, veD, (26.5)

Definition 26.2. An operator 4: H— H is called self-adjoint if A= A*.

It is obvious that a self-adjoint operator is symmetric. The converse is in
general not true.

Definition 26.3. An operator 4A: H,— H, is called closed, if the graph G,
consisting of all pairs {u, Au}, where ueD,, is a closed subspace in H, ® H,.

Exercise 26.1. Show that if 4* is defined, then it is closed.

Exercise 26.2. Let an operator 4 be bounded, i.e. there exists a constant
C> 0, such that || du}| < C|lul|, ueD,. Show that 4 is closed if and only if D,
is a closed subspace of H, .

The well-known closed-graph theorem (cf. Rudin [1]) states that if D, = H,
and A is closed, then 4 is bounded. Obviously the same holds if D, is a closed
subspace in H, .

Let an operator A: H, —» H, be given. We say that 4 has a closure A, if the
closure G, of the graph G, is again the graph of (closed) operator, which we
denote by A. In particular, any symmetric operator A: H— H hasa closure if D,
is dense. Indeed, it is enough to verify, that if u, is a sequence of vectorsin D,
such that lim u,=0 and lim Au,= f, then f= 0. But for ve D, we obtain

n- oo n- oo

(f,v) = lim (4u,,v) = lim (u,, Av) =0,

from which we have /= 0. Note that if 4 is a symmetric operator, then so is 4.

Definition 26.4. An operator A: H— H is called essentially self-adjoint if D,
is dense in H and 4 = 4*.

In particular, A* is then an extension of 4 and, hence, 4 is symmetric.
A criterion for essential self-adjointness is given by

Theorem 26.1. A symmetric operator A: H—H with dense domain is
essentially self-adjoint if and only if the following inclusions hold

Ker(4*—il)= Dy, (26.6)
Ker(A4*+il) = Dy. (26.6")
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Proof. 1. The necessity of (26.6) and (26.6") is obvious. To verify their
sufficiency, let us first note that since 4* is an extension of 4, it follows from

(26.6) that Ker(4*—il) = Ker(A—il). But Ker(4—il)=0 since 4 is
symmetric. Therefore, from (26.6) it follows that

Ker(4*—il)=0. (26.7)

Similarly, from (26.6’) we find that
Ker(4*+il) =0 (26.7")

2. Let usnow verify that (4 — iI) ™! (defined on (4 — i) (H)) is bounded. We
have

IA—iDfI? = ((A—iDf, (A=iDf) = IAfI* + I f11%, (26.8)

since (Af, 1) is a real number in view of the fact that A is symmetric. It follows
from (26.8) that || f||> < (A —iD) f|?, i.e.

IA=iD""gl < llgll, ge(A—il)(H).

3. Itisclear that 4 — ilis closed. Therefore (4 —il) ™! is also closed and since
(A—il)~" is bounded, its domain (4 —il)(H) is closed in H. However the
orthogonal complement of (4—il)(H) is obviously equal to Ker(4—il)*
= Ker(4*+il)=0. Therefore (4A—il)~! is everywhere defined. By similar
reasoning, (A+iI)~! is also everywhere defined.

4. Let us verify that (4 —il)~! and (4+iI)~ ! are adjoint to each other. We
obviously have

(A—ihu,v) = (u,(A+i)v), u, veDy.
Denoting (4 —il)u = f and (4+il)v= g, we obtain the required relation
(L A+iD7'g)=((A~i)""f,8), f geH.
5. Let us finally verify that 4 = 4*. We will use the following easily verified
fact: if B is an operator in H, such that (B~!)* and (B*)™! are defined, then

(B~Y)*=(B*)"!. We have

A*=A*= (A+iD)*+ il = {[(A+il) ']} +il
= {[(A+i) "} '+ il =[(A—i)" | " +il=A—il+il=1,

as required. [J
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26.2 Essential self-adjointness of hypoelliptic symmetric operators. In this
section we shall denote by A" the operator which is formally adjoint to an
operator A Gy, i.e. the operator 4* € G}, such that

(Au,v) = (u, A*v), u, veCL(R".

In the preceding sections we have written 4* instead of 4%, but here the
notation 4* will be reserved for the adjoint operator in the sense of section 26.1.

Theorem 26.2. Ler AeHG; ™, where my>0 and A*=4. In [*(R")
consider the unbounded operator A, defined as the operator A on the domain
CSP(IR"). Then A, is essentially self-adjoint and its closure coincides with the
restriction of the operator A (defined on S’ (IR")) to the set

Dz = {u:ue *(R"), Aue I*(R")}. (26.9)
Proof. 1. Denote by D the right-hand side of (26.9). Since
(Au,v) = (u, Av), ueSR", veS'(RY, (26.10)
it is clear that D = D, and in addition
Alp= A3 5.

Let us verify that indeed D=D,,. Let veD,,, i.e. ve L?(R") and for some
fe L?(IR") the identity

(Au,v) =, f), ueCy(RY), (26.11)

holds. But it follows from (26.10) that the same identity holds if we replace f by
Av. Therefore Av = f,i.e. v e D asrequired. Thus we have demonstrated that the
right-hand side of (26.9) equals D, .

2. In order to now use Theorem 26.1, we will verify the inclusion
Ker (4§ —il)= Dy, (26.12)
From what we have already shown, it is clear that
Ker(A¥—il) = {u:ue *(R"), (A—il)u=0}.
Taking into account that 4 — il € HG}" ™, it follows from Corollary 25.1 that
Ker (4} —il) = S(R"), from which (26.12) follows, since 4 maps S(IR") into

S (IR") continuously and C{°(IR") is dense in S(IR"). Similarly one proves the
inclusion Ker (4% +il) = Dz , which concludes the proof of Theorem 26.2. [J
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26.3 Discreteness of the spectrum

Theorem 26.3. Let A€ HG} ™, where my>0 and A* = A. Then A has
discrete spectrum in L* (IR"). More precisely, there exists an orthonormal basis of
eigenfunctions @;(x)eS(R"), j=1, 2, ..., with eigenvalues A;€R, such that
|4;]= + 00 asj— + c0. The spectrum o (A) of A= A* in L*(R") coincides with the
set of all eigenvalues {1;}.

Proof. The proofis similar to that of Theorem 8.3. In view of the separability
of L*(IR"), there exists a number 4, € IR\ 6(4). But then Theorem 25.4 implies
that (A—A,0)" '€ HG,;™ ~™ and, in particular we see that (4—4, D7 'is
compact and self-adjoint in 22 (IR"). The remainder of the proof is a verbatim
repetition of the proof of Theorem 8.3. [

Problem 26.1. Let A € G} be such that there are numbers 4, € C, such that
ImA, >0,ImA_<0and

(A—A,I)eHG™™ and (4—2i_I)eHG™™

for some m, eIR. Show that if A* =4, then 4 is essentially self-adjoint.

Problem 26.2. Let H,, H, be Hilbert spaces and let 4: H,—>H,,and 4™:
H,— H,, be such that

(Au,v) = (u,A*v), wueD,, veD,..

Show that if 4* 4 is essentially self-adjoint, then 4+ = A* and 4 = (4*)*.
Hint: Consider in H, @ H, the operator defined as the matrix

0 47
QI_<A 0)
Then the conditions A+ = A* and 4 = (4 *)* are equivalent to the essential self-
adjointness of the operator A. Compute Ker (A + iI).

Problem 26.3. Let 4 € HG"™, m,>0. Denote by 4; the operator 47,
restricted to C(IR"). Show that A5 = A% and 4, = (47)*.

Hint: Use the result of Problem 26.2, after extending the operators 4, and
Ag to S(R").

Remark 26.1. The result in Problem 26.3 means that the ““strong and weak
extensions coincide” for an operator A e HGJ"™ for m, > 0: if u€ L*(IR") and
Aue L*(IR"), then there exists a sequence u;€ Cy°(R") such that u;—»u and
Au;— Au as j— + oo in the L*(IR")-norm.

Problem 26.4. Prove analogue of Theorem 8.4 on the structure of the
spectrum, eigenfunctions and associated functions for operators 4 €e HG; ™,
mg > 0.
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Problem 26.5. Let an operator 4 have the anti-Wick symbola(z) eI’} (R?™)
and let A, be self-adjoint in L?>(IR"). Let a(z)— + o as |z|— co. Show that
Ay has discrete spectrum in the sense of Theorem 26.3 and that A; — +o00 as
Jj = +o0.

Problem 26.6. Let 4 € G be such that A, is self-adjoint in Z?(IR") and has
discrete spectrum such that 4,— + 00 as j— + 0. Let ¢ (z) be the Wick symbol of
the operator 4. Show that ¢(z) - + o0 as |z|— + 0.

§27. Trace and Trace Class Norm

27.1 The trace and the Hilbert-Schmidt norm expressed in terms of the
symbol. Here we make use of notations and facts concerning Hilbert-Schmidt
and trace class operators which are presented in Appendix 3.

Let us begin with the formal expression for the trace in terms of the -symbol.
Let A€Gy, let b (x, &) be the t-symbol of 4 and K, its kernel. We have formally

K,(x,y)=[e* P b (1-)x+1y,8)dE, (27.1)
from which

K, (x,x) = [b,(x,&)d¢
and

SpA = [b,(x,&)dxdE. (27.2)

Note that (27.2) means in particular, that its right-hand side is independent
of r.
Proposition A.3.2 yields

1413 = [I1K,(x,p)|*dxdy = [|K,(x,x+2)|* dxdz. (27.3)
But by (27.1)
K,(x,x+z)=[e " ¢ b (x+12¢)d¢. (27.9)

Therefore we have formally

JIK (x, x+2)|>dxdz = [ K,(x, x+2) K,(x,x+2) dxdz
= [e* "=9p (x+12,&) b, (x+12,1) dEdndxdz
= [e* "=9p (x,£) b,(x,n) d¢ dndx dz
= [I[e = ¢b, (x,&) d& |*dxdz = [|b,(x, &) |> dE dx (27.5)
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(we have here used the shift invariance of the integral and the Parceval identity
for the Fourier transform). As a result we obtain

4113 = [1b.(x,8)|*dxd¢, (27.6)
where again the right-hand side is independent of ¢

Proposition 27.1. The correspondence between operators A€G™* and
t-symbols b, (x,&) e S(R?*") extends by continuity to an isometry between
S, (L*(R") and L*(R") such that (27.6) holds. If A€GYy, then the condition
A €S, (L*(IR") is equivalent to b, € L*(IR*") for some t and this then holds for all ©
and the formula (27.6) also holds in this situation.

Proof. The computations (27.3)-(27.6) are justified for A € G~ ® or, what is
the same, for K, € S (IR?"). Since G~ isdense in S, (L* (IR")) and S (IR?") is dense
in L?(IR2"), the existence and uniqueness of the required isometry is obvious.
Finally, the last statement is obvious from the uniqueness of the t-symbol. [J]

Corollary 27.1. If A€ G} and m < —n, then A €S, (L*(IR")).

Prbposition 27.2. 1) If AeGy and m < —2n, then A €S, (L*(IR") and for
any fixed m < —2n and t€R there exist constants C and N, such that the
following estimate holds

4l = C Y sup {|01b (2)|<zp~™ e} (27.7)

lyIsN %

2) For AeGy, m< —2n, formula (27.2) for the trace Sp A holds for any
TelR.

Proof. 1) Choose an operator P € HG?/>™/ for Ker P = Ker P* = 0,
so that P~! € HG-™/2-m/2 exists (the existence of an operator P of this type
follows, for instance, from Theorem 26.3). In view of Corollary 27.1, we have
P? € 8| (L*(IR™)). But from the obvious representation A = PZ(P‘ZA) and
the fact that P~2A € G) c £ (L*(IR"), it follows that A € §; (L2(R")).
Therefore the inclusion

Gr S, (I*(R"), m<—2n. (27.8)

is proved.

Let us now prove (27.7). It can be obtained in two ways: either by a direct
sharpening of the arguments carried out so far (from similar estimates in the
composition formula and the boundedness theorem) or from the closed graph
theorem. The latter route is shorter and is commonplace for many argument of
this type, although it is also rougher. We will carry out carefully the
corresponding arguments.

Introduce in G} a Fréchet topology, defined by semi-norms of the form

|Allwy= Y, sup {|67b,(2)[<z)~mF e}, (27.9)

7IsN 2
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We have to show that the embedding (27.8) is continuous in the natural
Banach space topology on S, (L?(IR")). In view of the closed graph theorem (cf.
e.g. Rudin [1]) it is only necessary to show that this embedding has a closed
graph. This is most conveniently proved constructing a Hausdorff space M such
that

Gr e S, (L*(RY)) =M (27.10)

where both embeddings G} « M and S, (L*(IR™) c M are continuous. Now as M
we may, for instance, take S, (L?*(IR")), since the continuity of the embedding of
G7 and S, (I*(R") in S,(L*(R") follows immediately from Propositions 27.1
(formula (27.6)) and A.3.7 (estimate (A.3.29)).

2) Now we will prove (27.2) for 4 € GJ', m < —2n. Note that both its parts
are continuous on Gy'. But forany m’ > m, G~ > is dense in G} in the topology of
GY7'. Therefore, it suffices to prove (27.2) for Ae G~ *.

We would like to carry out carefully the argument from A.3.5. This is triv-
ial, if we present A in the form A = L, o L,, where the operators L; and L,
have kernels with enough continuous and rapidly decreasing derivatives. But
the latter representation can be constructed by an argument similar to the one
used in 1) of this proof. O

27.2 A more precise estimate of the trace class norm in terms of the t-symbol.
The estimate (27.7) is not very convenient, since it contains a weight-function
increasing in z. At the same time, we see that || 4 ||, does not change if we shift the
-symbol by some vector z, = (x,, &,) € R*". Indeed, if b, (x, &) is the t-symbol of
A and if we denote by A4, the operator with the T-symbol b, (x — x,, £ — &), then
we obtain

A u(x)= [ (1 —1) x+1p — X0, & —&o) u(y) dy dé
= _fefl<x~xo)—<y—xo>1-¢ b.(1=1) (x—x,)
+ (¥ —x0), ¢ —&o) u((y—xo) + xo) dy d¢
= Jerto e € b (1=1) X'+ 7', &) u(y'+x0) dy' a2,
where x'=x—x,, ¥y’ =y —y,, &' =& — &,. Denote by U the unitary operator,

mapping u(x) into (Uu)(x) = e~*% *u(x+Xx,), then we see that 4, = U ™' AU,
from which

4,0l = 141l - (27.11)
An estimate of the trace class norm which is invariant relatively to the shifts
of the t-symbol is given by the following

Proposition 27.3. There exist constants C and N, such that for A Gy,
m < —2n, the following estimate holds

4, £C Y [1916,(2)] dz. (27.12)

I7ISN
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Proof. It suffices to show the estimate (27.12) in the case where
b.(z) e C¥ (IR*"). First let,

suppb, < {z: |z| £ R,}, (27.13)

where R, is some fixed constant. Then it follows from Proposition 27.2 that
there are constants C; and M (depending on R,) such that

4l = C, 3 sup|dlb,(9)]. (27.14)

lsM 2

But since for b (z) e CF (IR*") we have

)= | *"b « oy ;
(Z)_ 4Sz azl"'azzn 15 x5 *2n 1 oo n
Jj=1,...,2n
and consequently
0°"b(z
sup 19601 5 |20 o
t 2n

it follows from (27.14) that we have (27.12) (with N=M + 2n), provided that
(27.13) is satisfied.

Now, using the invariance of the trace class norm (formula (27.11)) and the
invariance of the right-hand side of (27.12) with respect to shift in the argument
of b(z), we see that (27.12) always holds, with the same constants C and N,
provided

diam supp b, < R, (27.15)

Let us finally get rid of the condition (27.15). Take a partition of unity
= Z ¢;(2)

such that diam supp ¢; < R,, there is a number / such that any ball of unit radius
does not intersect more than / sets supp ¢;, and, in addition, |67 ¢;(2)| = C,,
J=1,2, ..., with constants C, not depending on j. Introducing the operators
A; with the t-symbols ¢;(z) b,(z), we obtain

4l = Z 4l = C Z 2. [102(e;b)(2)|dz

Jj=1 |y|EN

SC Y [101b.(2)]dz,
. lPISN
as required. [
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Problem 27.1. Let 4 be determined by the anti-Wick symbol a(z) eI}
Show that

4l; < f la(x, &) dxde.
Problem 27.2. Let c(z) be the Wick symbol of 4 € G;'. Show that
fle@e,&)ldxds < |4, -

Hint: Use the polar decomposition of 4 and the result of Problem 24.5.

Problem 27.3. Let 4 have the anti-Wick symbol a(z)e'}', m < —2n. Show
that

SpA = [a(x,¢&) dxdt.

Problem 27.4. Let A€ G}, m < —2n, and let ¢(z) be the Wick symbol of 4.
Show that

SpA = [c(x,¢) dxdé.

Problem 27.5. Let M be a closed n-manifold and let AelLf ;(M),
1—-9<6<yp. Show that if m< —n/2, then A€S,(L*(M)) and if m< —n,
then 4 €S, (L*(M)).

§28. The Approximate Spectral Projection

28.1 The Glazman lemma. In this paragraph we shall describe an abstract
scheme of yet another method to obtain the asymptotic behaviour of eigenvalues
which is based on the construction of an approximate spectral projection. At
the basis on this method lies the following well-known variational lemma of
Glazman.

Lemma 28.1. Let A be a self-adjoint, semi-bounded from below operator
with discrete spectrum in a Hilbert space H, i.e. A has an orthonormal basis of
eigenvectors e,,e,, ... with eigenvalues A, A,, ..., such that A,— + o0 as
k— + .

Let N (L) be the number of eigenvalues of A not exceeding A (multiplicities
counted). Then

NA) = sup dimL (28.1)
LeDy
(Au,u) S Ay, u),uel

(L is a linear subspace of D,).
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Proof. Let E, be the spectral projection of A. Since
dim(E,H)=SpE,= N(4), (28.2)

then, putting L = E, H, we see that the right-hand side of (28.1) cannot be smaller
than the left-hand side.

Next we show that the right-hand side of (28.1) cannot exceed the left-hand
side.

Let the linear subspace L = D, be such that

(Au,u) < A(u,u), wuel. (28.3)
Since

(Au,u) > A(u,u),  ue(I—E)H\{0}, (28.4)

it follows from (28.3) that
Ln(I-E)H=0.

But then E| is injective as a mapping of L into E, H, from which it follows that
dimL < N(J),

as required. [J

28.2 Properties of the spectral projections. The spectral projections opera-
tors enjoy the following properties:

1) Ef = E;;

2) EAZ =E;

3) E(4-ADE, £0;

4) (I—E) (A—AI) (I—E) > 0
(meaning that the corresponding quadratic form is strictly greater than 0 on the
non-zero vectors in D ,);

5) SpE,=N(A).

Basic in what follows is

Proposition 28.1. Let E; be a family of operators, for which E{H = D, and
which satisfies conditions 1)-4). Then 5) is also fulfils, i.e.

SpE, = N(J) = SpE,. (28.5)

Proof. 1t follows from 1) and 2) that E} is an orthogonal projection. Putting
L,=E;H,M,=(I-E;)H, we have, in view of 3), that (du, u) £ A (u,u), ueL,,
from which, by Lemma 28.1, it follows that Sp E; = dim L, £ N (A). Further,
from 4), we have (E, H) n M, = 0, which implies dim (E;H) = N(A) £ dim L,
= SpE;, proving (28.5). [
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Remark 28.1. Note that under the conditions of Proposition 28.1 we do not
necessarily have E; = E, (cf. Problem 28.1).

28.3 Approximate spectral projection operator

Theorem 28.1. Let A be an operator as in Lemma 28.1 and { £}, .g a family
of operators such that &;H = D, and that for some ¢ >0, ¢ >0, we have:

1°. & = 6&,;

2°. &, is a trace class operator and
62— &, =0V (A)-A7% as A-+o, (28.6)

where V (A) is some positive, non-decreasing function, defined for A = Ay;
3. E,(A-AD &, S CA F
4. (I-E)A-A) (I-&)= —CA 7
5°. Sp &, =V(A) (1+0(A17%) as A— + co.

Let us also assume that the function V (1) appearing in 2° and 5°, is such that
VA+CA ) —VDV(A)=0(A"% as A=+ (28.7)

for some C>0. Then we have
NAH=V@A) A+0(4L7%) as Ai-+w. (28.8)

Proof. Theideaistoapply Lemma 28.1 to the linear subspace L, spanned by
the eigenvectors of &, , having eigenvalues close to 1 (they are all close to either 1
or 0, as we shall see later).

Let o; be eigenvalues of &. They are real by 1° and by 2° and 5° satisfy the
conditions

Y 1o} —a;] = 047V (),

Yo =V(@A) 1+0A7%). (28.9)
J
Lemma 28.2.
Y o4=V@R)(1+017). (28.10)
Jo—11S1/2
Proof. For |o;— 1| >3 we have |o<j2 —o;| = o] |a;— 1|2 3a;|. Therefore

Y olyls2 ¥ d-gls2 Yld-gl= 007V,

la;—11>1/2 la;—11>1/2

which together with (28.9) implies (28.10). (U]
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Lemma 28.3. Let N(J) be the number of eigenvalues of &, in the interval
[3,3/2]. Then

NA=VQR) 1+0(17%). (28.11)
Proof. Put ¢;=1—«a;. Then 2° can be rewritten as

Yl —gl=01A"°VA), (28.12)

j
and the statement of Lemma 28.2 gives that

Y (=g)=V(@H) A+017?%),
Il <172
or

NOH=V®)A+0A N+ ¥ &

lel£1/2

But, as in Lemma 28.2, it follows from (28.12) that

Y lgls2 ¥l -gl=0a"0 V@),

le 1172 lel <172
giving also (28.11). UJ

Let us continue the proof of Theorem 28.1.
a) Let L, be the linear manifold spanned by the eigenvectors of &, with
eigenvalues «; such that |a;— 1| < 3, so that

N@A)=dimL,=V() 1+0(A7%) (28.13)
by Lemma 28.3. Condition 3° implies that
(E:(A—AD) & u,u) < CA S (u,u), ueH. (28.14)

But since
(u,u) <4(6,u,8,u), uel,, (28.15)

it follows from (28.14) that
([A—(A+4CA 91 &u, 6,u) <0,  uel,.

Because &, is an isomorphism of L, onto itself, it follows that
([A—A+4CA " 91v,0) <0, vel,.
But by Lemma 28.1

NA)=V@A) A+0A %) S NA+4CA 7).
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Putting X + 4CA'-t =t, we obtain t =A(1 + O(A™)), which implies
A=t(1+0¢™),ie.

Ved+0@ %) (1+0@ %) S N(@).
Using condition (28.7) we see that

Vea+0@ )=V 1+0¢7?%),
hence
V() A+0(@7 %)) S N(). (28.16)

b) Let M,=(L,)*. Obviously we have
wuw) 24((I-8) u,(I-E)u), ueM,. (28.17)
It therefore follows from 4° that
([A—(A—4CA' ™ ®Iv,v) 20, veD,NM,. (28.18)
From (28.18) we see that
(Ei_gcp-ee HYnM, =0,

for any ¢ >0 which implies by analogy with the reasoning in the proof of
Lemma 28.1, that

NA)=2NA-4CI —¢).
Now, arguing as in step a) of this proof, we obtain
N@O SV A+0(7%). (28.19)

The estimates (28.16) and (28.19) together give the required asymptotic formula
(28.8). I

28.4 Sufficient conditions on ¥ (4). Condition (28.7) looks difficult to verify.
We therefore give here a simpler sufficient condition.

Proposition 28.2. Let V (A) be a positive, non-decreasing function defined and
differentiable for A = A,. Assume that

VAV @)= 0. (28.20)

Then V (A) satisfies (28.7).

Example 28.1. The function V(1) = A%, where a> 0 satisfies (28.20) for
£=0.
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Proof of Proposition 28.2. Set

A=V DVA).
Then

V(A) = V(o) exp (} ¢ (1) dr).
This gives K

VA+CA ™5 —V(A) = V(4) {exp (Hijmqo (1) d‘c) — exp <f o (1) d‘c)}

Ay Ao

A+CA e
=V(A) {exp( ) (p(r)dr)——l}. (28.21)

Since | (A)| £ CA*~°~ !, then for ¢ + 6 we obtain

A+CA' e A+CA'e

[ e(dr=C, | 7% tdv=C,[(A+ CAl 80— 3279
P P
=C A [+ CA™) 1] S G570 178 = C3A7°.
For ¢ =8, we obtain the same estimate
A+CA' e A+CA' e

[ o(@ar<C, | t7'di=CiIn(1+CA %= CA7 = CA7°%
P P

It now follows from (28.21) that
VA+CA' ™5 = V@A) S CV(A) - A7°

(we used here that e*— 1~ x as x—0), but this is the required inequality

(28.7). O

28.5 The idea for applying Theorem 28.1 (an heuristic outline). Let an
operator 4 have the Weyl symbol b(z), zeIR*". Put

V) =Qmn)™ | dz. (28.22)

b(z)<i

The spectral projection E, of the operator A can be defined as the operator
x,(A), when x,(-) is the characteristic function of the ray (—oo, A]. Let us
consider the operator &, with the Weyl symbol x, (b(-)). It is natural to expect
that &, for large A should imitate the spectral projection operator E,. It then
remains to note that

Spé&=Qmn) "[ 1, (b(2)dz=V(A).
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The technical implementation of this idea consists in applying Theorem 28.1.
However, in view of the necessity to consider the composition of operators, we
have to smooth the characteristic function y; . In general, we arrive at a situation,
which show the necessity of dealing with pseudodifferential operators with
parameter, giving us the possibility of verifying 1°-5°.

28.6 The exact construction. Let us introduce a function x(z,4,x),¢, 4,
xelR,A =1, » > 0, such that

(1,4, %) 1 fort <A, 2823
n) = .
KA 0 fort= A+ 2x. ( )

and such that the following estimate for the derivatives holds
[(0/00) x (1, A, %) | £ Cene™ . (28.24)

The existence of x (¢, A, x) is easily verified, for instance, in the following
manner. Let ¥ (¢, A, »¥) be the characteristic function of the set {(z, A, %) :
t £ A + x}. Then we may put

XA = (640 10 (=) de,

where y, (V) € C (RY), xo(v) = 0 for [v|>1 and [y, (v)dv=1.
Let now A4 have a real Weyl symbol

b(z)eHI ;™ (R*"), my>0, (28.25)
such that for some C >0 and R, >0
b(z)z Clz|™, |z|Z R, (28.26)

(it follows from (28.25), that (28.26) holds either for b (z) or for — b(z); we fix the
sign in such a way that 4 becomes semi-bounded from below, this fact should be
obvious from what follows. Put

e(z,4,%) = x(b(2),4, %) (28.27)

and now, choosing x = A' 7", where v> 0, define &, as the operator with the
Weyl symbol

e(z,) = x(b(2),4,4' ™), (28.28)
where v > 0 will be chosen later. Let us note immediately that

1 forb(z) =4,

e@M:{Ofmb@gz+u“h (28.29)
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Now we try to estimate the derivatives in z of e(z, 4).
Note that estimates for the class HI'}" ™, with m, >0 can be written in the
form

107b(2)| S C,b(2)' ¢, 0'>0, |z]Z Ry, (28.30)

where as ¢’ one can take, for instance, o’ = g/m or possibly larger values.
Now, differentiate (28.28):
l=b(2)>’

(28.31)

k
o= L 6, @ b@)... @b (FE A

Vit RSy
1y;1>0

where the sum runs over all possible decompositionsof yintoa sumy, + ... + 7
with an arbitrary number of terms £ < |y{.

Denote by T,(z, 1) the sum of all terms corresponding to a fixed k in
(28.31). It follows from (28.31), (28.30) and (28.24) that

T (z, A)| < C,b(z)F-oW . A==, (28.32)
Due to (28.29) we can replace A by b(z) and rewrite (28.32) in the form
187 Tz, M| < C,b(z)*= W pfmwir, (28.33)

where u is an arbitary real number.
Since k < |y, this implies that

|87e(z, 2)| € C,b(z)w-o) - Jo=nD, (28.34)

These estimates are true for A=1 and for |z| = R,. In addition, we have the
obvious relations

le(z, )= C, |zl <Ry, (28.35)
D) =0, |z|SRe, A2, (28.36)

if |y| > 0 and A is sufficiently large.

It is obvious from (28.34) that it is advantageous to take u such that
v < pu< g, implying the necessity of selecting v such that v < @', which we will
assume in the sequel. Under some complementary conditions this will guarantee
the applicability of Theorem 28.1.

28.7 Equipotential surfaces of the symbol and the properties of ¥ (4). In this
section, we assume that the equipotential set {z: b (z) = A} for large 4, is a smooth
hypersurface and moreover that :

Ph(z)+0 for |z|Z Ry, (28.37)
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where Vb(z) = ( gé, e, é(zb—) is the gradient of b(z2).
Z, Zom
Let V (A) be defined by the formula (28.22). Since the 2n-form
dz=dzi N... ANd2y,

is the differential of the (2n — 1)-form
1 2n
w = E Z(—l)j+1Zde| A A de A...ANdz,
j=1

(the cap on dz; denotes that dz; is omitted), we can transform the integral in
(28.22) into an integral over the surface b(z) = A:

[ di= [ o (28.38)

bh(z)<A b(2)=A
Let n, be the unit outward normal vector to the surface b(z) = 4 at z, i.e.

_vb(2)
" b))

Denoting by dS, the area element of the surface b(z) = A, we derive from (28.38)
that

@n™" @n)~" ds,
V()= z-n,)dS,=—— z-Vb(2)). (28.39
( ) 2n b(z;[=l( Z) z 2" b(z‘!-:A ||7b(2)| ( ( )) ( )
Now, we will calculate ¥'(4). Note that the distance at z from the surface
. . ) 4A(1+0(1))
b(z) = A to the near equipotential surface b (z) = A + 44 isequal to b
Therefore IVb(2)]
ds
V'(A)=2n)™" —_—r (28.40
W=e07 L mel )
Comparing (28.39) and (28.40), we see that
V'(4) ) -1
< .
v = |:br(rz1)1i1/1 (z Vb(z))] . (28.41)

The formula (28.41) implies

Proposition 28.3. Let
|z-Vb(z)| 2 Cb(2)' ™, |z|=ZR,, C>0. (28.42)
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Then
VAV (A)=0@* 1. (28.43)

Remark 28.2. 1t follows from (28.42) that Vb(z) + 0 for |z| Z R,, so it is not
necessary to require this in advance. Also, the geometric condition (28.42)
guarantees that the surface b(z) = A is star-shaped with respect to the origin,
i.e. any ray, starting from 0, intersects this surface in exactly one point and at
a non-zero angle.

Exercise 28.1. Prove that (28.42) is satisfied if b (z) is an elliptic polynomial.
Hint: Use the Euler identity for homogeneous functions.

Problem 28.1. For dim H = 2 construct an operator A4, such that for some 4
there is an operator E; for which the conditions 1) — 4) are satisfied, but E; + E .

Problem 28.2. On the torus T"=1R"/2n Z" consider the operator 4 = —4
+ Q, where 4 is the Laplace operator and Q any bounded self-adjoint operator
on L*(T"), with || Q|| < M. Let N (4) be the number of eigenvalues of 4, smaller
than 4.

Using the approximate spectral projection operator &, which equals the
exact spectral projection operator for — 4, show that

No(A—M) = N(4) = No(A1+M),

where N, (1) is the number of points of the lattice Z", belonging to the ball
x| £ ﬂ Derive from this the asymptotic formula

N@)=c, A" (1+0(A71"2).

§29. Operators with Parameter

29.1. The class of symbols and operators. The estimates (28.34) obtained for
e(z, 4) in §28 motivate the following

Definition 29.1. Denote by I';"} the class of functions a(z, 4) defined for
zeR?", 1= 1,, infinitely differentiable in z and satisfying

|07a(z,4)| £ C,(zym=el gp=ein, (29.1)

Here m, u, 9, 6 €R, 0>0,620.
It is clear that if q; elrgrf, j= 1, 2, then a,a, eF;'j;,*'"z”"*“Z, where
¢=min(g,, 0,), 6 =min(0y,0,). Further,ifael'"/* then dJae 'y el"+=7l"l,
Note that if ae'}"# then for any fixed A2 4y, a(z,))el] (IR?"), which
allows us to define a class of operators A4 (1), depending on a parameter and with
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Weyl symbols a(z, 1) e I';» 2. This class of operator-valued functions 4 (1) acts,
for instance, on S (IR") and we will denote this class by Gj).

29.2 The composition formula

Theorem 29.1. Let a;el'jr}, j=1,2; and let A;(2) be the corresponding
operator-functions. Then A, (,1) A, () eGp ™ “'+“2 where ¢ = min(p,, g,),
¢ =min(o,,0,) and where the Weyl symbol b(z A) of the composition
B(A) = A,(A) o A,(A) is given by

b= Z = '1)' 2 lethl (82Dﬂa1) (6”D°‘a2) +ry, (29.2)
wiepizn-t 4!

where

GFZ‘}J‘mz“N(G|+Qz)‘lll‘*'llz—N(‘h‘H’z)_ (293)

Proof. The proof could be carried out according to the scheme used for
proving Theorem 23.6, introducing first the corresponding class of amplitudes
and repeating the arguments from §23. However, for brevity, we will give a direct
proof.

To begin with, we obtain a formula for the composition B = 4, o 4, of the
operators A, and A, with Weyl symbols a, (z), a,(z) e CF (IR*"). Clearly

xX+x, . X +Yy
Bu(x) = fa, (Tle) a, <IT'1>
X @ilx—x1) {+(x,—y)n] u(y) dy dxl dr’ dac.
If K;(x, y) is the kernel of B, we obtain that then

xX+x; . Xty
Ks(x,y)zj‘h( ) 1,Q>az( 12 "1)

x eilc=x) L+ xi-nnl dx dn di. (29.4)

Now using formula (23.39) (with t=1), that yields an expression for the
symbol in terms of the kernel

b(x,¢&) = je‘ixz‘5K8<x+f23, x— sz> dx, . (29.5)

Putting x,/2 = x5, we can also write

b(x,&) = 2" [e=2m ¢ Ky (x+X;, X—x3)dx; . (29.6)
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From this and (29.4) we find that

X+Xx;+Xx X+Xx;,—Xx
b= 2o (M ()

x el m=x) T +x =0 1-2x°8 dx dx, dndi.

Instead of x, and x; we introduce new integration variables

X+Xx,+ X5 X+x,—X3
Xa=—p > =T
. 0(x,,x
so that x; = x, + x5 — X, X3= x4 — x5. Observing that 0%y, %) =2" we
btai 0 (x4, Xs)
obtain
b(x,8)=22"[a,(xs,() as(xs,n)
X @2il(x—x5) {4+ (xa=x) n+(xs—x4) ] dx4 dxs dC dy’
or
b(x,8)=2""[a,(y,n) ay(z,0)
x e2ilx-2n+=x-t+e-»-¢ dydzdn d( . (29.7)

Note that the exponent in (29.7) may also be written as

111 111
2ilxyz|=2i) |x; ¥ z
S i1 éjrljgj

From the form of this exponent, the possibility of integrating by parts
follows, resulting in the appearance of decreasing factors of the type (x —z>~V,
y=xy7N (=& N, (=& ~N. Therefore, the points y, 1, z, {, where y = z = x,
n={={_, play the most important role in the integral (29.7). This leads to the
idea of expanding a, (y,7) and a, (z, {) in a Taylor series at y = x and z = x. First,
make the change of variables y'=y—x, z/=z—x, n'=n—¢, {'=({-C.
Omitting the dashes, we obtain

b(x,8)=2""fa,(x+y,&+n) ay(x+2,¢+0)
x e2it-i-zn) dnd{ dydz. (29.8)

We shall view this integral as an iterated integral with the order of the
differentials dn d{ dy dz. Write out the expansions

aGetrétn= ¥ Laawin+iicnin, (299

lalsN -1
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ay(x+z,E4+0) =Y

:  Mayn D AP (280, (29.40)
IBlsN-1 ‘B

where

Wy Em= Y ¢ [(A-0" tdr-y*(8iay) (x+y,{+m), (29.11)

la]=N O

W xzED =3 ¢ _1[ A-0)" "V dt 2#(0%a,) (x+712,E4+0).  (29.12)

IBl=N 0

Inserting these expressions into (29.8), we obtain

b(x,Q)=2"" 3}, jW [02a; (x,&+m)] [0%a, (x,E+0)]
lat BISN -1
x e2ivi-zn dndldydz +r{ (x,¢), (29.13)

where r (x, €) has the form of a linear combination of terms of four types:
rih (x, &), being the same type of integral as the summands in (29.13), but
with e+ | = N;

ran (6,8 = [y [0z a, (x,E+m] [ (x,2,¢,0)]
x e20i=zn) gy d dy dz; (29.14)

r(6) (x C) jzﬂ [r(l)(xsys Cs ’7)] [6502 (X, €+C)]
b eZiU'C—Z"i) dnd{dydz; (29.15)

(6,8 = [ri) (x,y,&m) i (x,2,¢,0) e t==n dydldydz. (29.16)

Let us calculate one of the integrals in (29.13). For this, note first that
Tty i = 1D FALR 29.17
y e i=(3D;) 9, (2947)
B ,—2iz-n 1 / —2iz-n
2fe = _ED" (e ), (29.18)

and carry out the integration by parts, using these identities. We obtain
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2"5—,‘6—, (0%, (x, £ +m)] [08ay (x, E+0)] 27 ¢727) dnd{ dy dz

_ 22n—|a+[1| . (_ 1){(1[
B a'p!

) 27 1Bl(—=2)" Ml n
2i(y-{—z-n) — anb -
x g2iti=zn d‘ndCdde~~—Wj 0:Dlay (x.&+5

J[0zDka; (x,E+m)] [65Dia, (x, £ +0)]

¢ o lezem _2-Iﬂl(_2)—lal
x[@ﬁD@az (x,é+§):| e'v m dnd‘{dydz—————aTBc!———

X j[@;Dgal<x,é+%>} e" = "dndz - | [8£D§a2 <x,é+%)]

2-11(—2)" el
al B!

which gives terms with compact support in the formula (29.2).

Now, note that formula (29.8) and all the following computations remain
valid for arbitrary symbols a; in the classes I'}'. This fact can be established
by substituting the oscﬂlatory mtegral (29.8) for a convergent one, but it can
also be verified by a standard passing to the limit from compactly supported
symbols, as in §1.

Assume now that the symbols a; and a, are as in the formulation of the
theorem. It sufficies to prove the inclusion (29.3) for each of the remainders r*}
rO, 1, ry’. Asfar as rl*) is concerned, this inclusion is trivial, since it has the
same form as the terms of the sum in (29.13).

To estimate r , ri¢’; and r{ it is convenient as before to integrate (29.14)-
(29.16) by parts (using (29.17) and (29.18)). As a result y* is replaced by D and z*
by Df and we arrive at the situation of having to estimate, uniformly in ,,
7, €[0,1], symbols of the type

x e S dl dy = [02D4a, (x,&)] [02D%a, (x,0)],

floiDfa; (x+1,y,&+n,A)] [08Dsa, (x+1,2,E+(, A)]
x e =z gn gt dydz, |a+B|ZN. (29.19)

Differentiating (29.19) with respect to x and &, we find that the derivative 0202 of
this expression is a linear combination of terms of the form

JL027 708 % ay (x+1yy, E4+n, A] (0877 05+ ay (x4 152,64+, A)]
x e T dndtdydz, Y 4+y'=y, 6+6"=96. (29.20)
Using the identities
X0 = (L |y + )M (L = A, )M eHoten,
it t—zm — 1+ 1212 + |{|2)-M(1 _ 4lAM)Me2i(_v<z—2‘n)
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and introducing the notation
0 =0+1zP+IL1HY2, = A+ P+ InH)'2,
we see that (29.20) reduces to a linear combination of expressions of the form
05 ay(x+1, 3, E+m D] [0 ay (x+71,2, 8+, 2))
x(y, m)~M(z, £)2MeH Ot =N Ay d¢ dy dz, (29.21)
where »', ", v/, v" are 2n-dimensional multi-indices, such that
|2 N, |x"|ZN, [+ ]P]2y]+]0]. (29.22)
The integral (29.21) can be estimated in absolute value by
Cl{x+t y, E+nym-altvi. ju-ald+v|
X X+ Ty2, E4{Ym-alx 1 Jm=orlx+v|
x () M <2, O M dnd(dy dz,
which, due to (29.22), does not exceed the expression
C Jmtua—No+a;)=|y+élo . j<x+11y’ E4pdym-alN-alv]
X (12, E+ OymmaN=al oy =M, (M dnddydz. (29.23)

Here the power of A correspondsexactly to the statement of the theorem, so that
it suffices to estimate the integral in (29.23) by the desired powers of {x, &).
Note, that the integral in (29.23) coincides with the product of the integrals

[ty Ehmym-at-ali {y, gy =M dy dy, (29.24)
[ T2, &4 Dymmeh=ell (2, 0y M AL d. (29.25)

Let us estimate the integral (29.24). Decompose the domain of integration
into two parts

Q= yl+In =3 (Uxl1+E)},
Q= [yI+1In1>3 x|+ 1€},

and denote the integral over Q; by I;, j=1,2. Since the Lebesgue volume of Q,
does not exceed C,<{x, £>" and since the integrand can be estimated over Q; by
C,{x,Eym-aN-alVl we have for I, the estimate

1| £ C3{x, EYym-aN-alVi+n, (29.26)
3

Consider now I,. We may assume that | x|+ || =1 (for |x|+ |£| <1 the
desired estimates are trivial). Then, using the obvious estimate

A+ Ix+t, |+ 1E+nDP S A+ x|+ 1EDP A+ |y[+ g )P
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and taking M sufficiently large, we obtain
|| £ Calx, EHm-aN-alvl, (29.27)
From (29.26) and (29.27) it follows that (29.24) can be estimated by
C{x, Eym—eN-alvi+n,

Taking into account that similar estimate holds for (29.25) we see that (29.23)
does not exceed

C<x, é>m1+m1—(a1+az)N—e,Iv’I—azlv"I+2n < JHitp—N(o+a) = aly+9|

é C<x, §>”‘1+’"1_N(Q|+Qz)“0|"+5|+2” . iﬂ|+l‘z_N(‘71+az)_”|V+6|’

which guarantees the inclusion

rN € Fa’t‘b*’mz_N(Qn+Qz)+2"v#|+#z_N(‘71+az)' (2928)

Now, increasing N and considering the additional terms which appear in
the sum (29.2), we see that (29.3) follows from (29.28), thus proving the
theorem. O

29.3 Positivity of operators with parameter

Theorem 29.2. Let a(z,A)el'}t, 6>0, a(z,A)2¢>0, ¢ a constant, and
assume that the estimates

187a(z,A)| < C,a(z, ) - A=ol,  A=1,, zeR?", (29.29)
Y

hold, where oy > 0 and o( does not depend on y. If A(L) is the operator with
the Weyl symbol a(z, 1), then for sufficiently large A we have A(A) 2 0 (i.e.
(A(AM)u, u) 2 0 foru € S(RY)).

For the proof, we need the following lemma which allows us to use the anti-
Wick symbol.

Lemma 29.1. Consider an operator B(A) with anti-Wick symbol a(z,A) eI’ ;"
and let b(z,A) be its Weyl symbol. Then

a-b= Y ¢ /(da)+ry, (29.30)

0<|y|<N
where ¢, =0 for odd |y| and ry €[] ;e¥# =N,
Proof. Similar to the proof of Theorem 24.1.

Exercise 29.1. Prove Lemma 29.1.
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Proof of Theorem 29.2. Let B,(A) be an operator with the anti-Wick symbol
a(z, A) and let b, (z, A) be the Weyl symbol of B, (4). Consider now the operator
B, (4) with the anti-Wick symbol a(z, 1) — by(z, 1) and denote by b, (z, 1) its Weyl
symbol. By induction we may construct a sequence of operators By, B;, B,, ...,
such that B;is the operator with the anti-Wick symbola — by — b, — ... — b;_,,
where by, by, ..., b;_ are the Weyl symbols of the operators By, B,,..., B;_,.

It follows from Lemma 29.1 that if

A=A—By—B,—...—B,_,,

then 4, eI’y 2ekr=20k Pyt
Q.=Bo+B,+...+ B,_,.

Thus, 4 = 4,+ Q,.
An induction in k shows that b;(z, A) for j> 0 is of the form

bi= Y ¢,@a)+ry;, (29.31)

J
2jShvI<N

where c, ; are constants and ry ;e Iy, ¢"-#7°" Therefore the operator Q, has
an anti-Wick symbol of the form

%z =aiz)+ )Y c[0la(z, D]+ ry(z,4), (29.32)

22yI<N
where ry (z,A) eI’y ;¢V-#~7N. Taking (29.29) into account, we obtain
4 (z,4) = a(z, 1) 1+47?% s(z,4)),
where s(z, A) is such that

sup |s(z, )| C, 124,

zeR™"

and C is independent of A. In particular, it is clear that ¢,(z,4) 2 ¢/2 >0 for
sufficiently large A implying

0,2 % I (29.33)
in view of Proposition 24.1.
Now note that for large k
l4,A)]|-0 as A->+o0. (29.34)

Indeed, it suffices to verify that this holds for the Hilbert-Schmidt norm
A4, But

N4MI5=Q2r) " [1b(2,4)|*dz—>0 as A—+o0,
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if we choose k& so large that

m—20k<-—n, u-—20k<0.

It follows directly from (29.33) and (29.34) that Ag;l, proving
Theorem 29.2. [

§30. Asymptotic Behaviour of the Eigenvalues

Consider an operator A with a real Weyl symbol b(z) e HI' ;" ™, m, > 0. By
Theorem 26.2, A is essentially self-adjoint and by Theorem 26.3 it has discrete
spectrum. Since b(z) has no zeros for large |z|, then, changing sign if necessary,
we may assume that

Cilz|"=b(2) = Clz|",  [z|Z2 Ry, mp>0, (30.1)

holds, where C,, C, are positive constants. It is easy to show that in this case the
operator is semi-bounded from below. Indeed, repeating the argument of the
proof of Theorem 24.2 and using Theorem 24.1, we see that there exists an
operator A’ with the anti-Wick symbol

b(z)+ Y. ¢,8b(2), (30.2)
O<|y|<N

such that 4 — 4’ is bounded. But then it suffices to verify the semi-boundedness
from below for A’, which follows from the semi-boundedness from below of any
function of the form (30.2), which in turn is a consequence of the fact that

b+ T b =b() <‘+ > o000 b(Z)),

i4
O<lyl<N O<|y|<N b(Z)

where all the terms in the parenthesis, except the first one, tend to 0 as |z] —
+00. Let o’ be a positive number such that the following estimates hold

10762 £ C,b(2)! "¢ P, |z] 2 Ry (30.3)

(as we have already remarked in 28.6, one may take, for instance, ¢’ = g/m,
although this might not be the best value for ¢’). Finally assume that

|z Vb(2)| Zcb(2)' ™", |z| Z Ry, (30.4)
where 0 < x <1, ¢>0. Set

viy=Qm ™ | dz, (30.5)

b(z)<A

and let N(4) be the number of eigenvalues of A4, not exceeding A.
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Theorem 30.1. Let the operator A have the Weyl symbol b(z) e C*(R?"),
satisfying conditions (30.1), (30.3) and (30.4) with x < ¢'. Then for any ¢ > 0, one
has the asymptotic formula

N@A) =V 1+0* 2+, (30.6)

Proof. We will make use of Theorem 28.1 with the approximate spectral
projection operators &, constructed in section 28.6. Recall that &, has a real-
valued Weyl symbol e(z, ), equal to 1 for b(z) £ Aand 0 for b(z2) = A +2A' ™
and if v < ¢’ the estimates (28.34)—(28.36) guarantee that

e(z,A)elyy, ¢>0, &>0. (30.7)
We have to verify that all the conditions of Theorem 28.1 are fulfilled. The
condition &} = &, is obvious since e (z, A) is real-valued. The fact that &, belongs

to the trace class follows from Proposition 27.2.
Denote the Weyl symbol of an arbitrary operator A by o (A). Obviously

o(6i—6)= Y c,ylofdie(z, )] [0%08e(z, )]+ (e*—e)+ry, (30.8)

0<|a+p|{<N
where ry el ;2¥¢-2M5, Note that all terms in the sum, except for ry, are
supported where A< a(z) £ A(1+247"), and if we apply Proposition 27.3 to
each term, we obtain the estimate
67— &illy =0 @A+22'") = V(A).
But it follows from Proposition 28.3 that
VQIVR) =04,
which, by Proposition 28.2, gives the estimate
VA+2A' ™) = V(A) = 0A* "V ().
Therefore
|62 = &,ll, =0 V(A). (30.9)
In addition, it follows from Proposition 27.2 that
Sp&,=(@2n) "fe(z,A)dz
=VA)+O0VA+2A1 ) =VA)=V(@A) 1+0A ™). (30.10)



§30. Asymptotic Behaviour of the Eigenvalue 225

Note that we must take v < ¢’. Choosing v= g’ — ¢, where ¢ > 0, we may
rewrite (30.9) and (30.10) in the form

65— &0l = 0 "¢ * ¥ (A) (30.11)
Sp &, = V(A) (1+0(A* 2 *e). (30.12)

2. Let us now verify requirement 3° of Theorem 28.1:
E(A—A) &, £ CA' 7.
We write this inequality in the form
EA-A)E,+CA ™ 20. (30.13)
Next we compute the Weyl symbol of &, (41— 4) &,. We have

o(E;AI—A) = 3 c,(030Le) (320 (A—a(2) +r,

la+BI<N

m—N(o+3), |-Né
where ry € I 02"

Applying once again the composition formula, we obtain
0 (6;(M-A)6) =Y c,,, (O1e) (Bpe) @p(A—a(@) +ry, (30.14)

where 7y e I'pi- 2@+ d1~% the sum is finite and cqeo =1.

It is clear that the remainder 7y cannot affect (30.13), and therefore we will
estimate the compactly supported terms.

We will show that for |y, |+ |y, | # 0 and for some ¢ > 0 and ¢ > 0, we have
the estimates

1(07:€)(072€) (0" (A~ a)) |

< C{zy-anl+Inl+lisd A1=v=a(nl+Inl+Is), (30.15)

To begin with let y;=0. Then (30.15) holds in view of the fact that
|A—a(z)| £ 2A' " on the support of (07€)(d”:¢). Let y, + 0, then

|(67|e) (awze) (avsa)l =< C<Z>'§(|7||+|Yz|) A= nl+1n) f1-¢'lrsl

= C{z)y-enl+lnh J1-v J=Inl@-vinD,
Note that ¢’ — v/|y;| = ¢’ — v > 0. Therefore

|(avle) (ahe) (aha)l < C,{l”V<Z>—é(Ivll+Iv;I) A Unl+1r20) /l—tnlhl’
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where 6, = ¢’ — v. Taking into account, that the inequalities A< a <A+ 24"
and (z)™ < CA hold on the support of (3"¢)(9"2¢), we obtain the estimate
(30.15) (although perhaps with smaller ¢ and ¢ than in (30.7)).

Therefore we obtain

(@) (@ne) @ (A—a) €T, Iyyl+ 132 0. (30.16)

Now, repeating the reasoning, used at the beginning of this section to prove
the semi-boundedness of 4, we obtain that the L? (IR")-norm of the operator with
Weyl symbol (7€) (072¢) (67:(4 — a)) does not exceed CA! 7Y, so this term also
does not affect (30.13).

By similar arguments, one verifies that

e2on(A—a)ely) ™, 9:%0, (30.17)

hence this term also cannot affect (30.13).
Finally let us investigate the function e? (4 —a) = ¢. The function g (z, 1) has
the following properties:

q(z )2 -CA'™,  d'qely™, |y|>0.

If P is the operator with the anti-Wick symbol ¢ (z, 1) and p(z, 1) is its Weyl
symbol, then it follows from Lemma 29.1 that ¢ —p eI, ~". But it is clear
that P> —CA'™" and ||Q — P|| £ CA' ™. (30.13) follows from this. Putting
v= g’ — ¢ in this relation, we obtain

E(A-AD & S CA e, (30.18)
3. Let us now verify that
(I-&)(A—-AD(I-E)+CA'7"20 (30.19)

for sufficiently large C > 0. Applying Theorem 29.1, we see that the symbol of
the left-hand side of (30.19) has the form

CAl™7V+Ye, dn(l—e) - 0n(1—e) - In(a—A)+ry, (30.20)

Y1¥273

where ry e [ Y&t 1-M and ¢go0 = 1.
The operator Ry with the Weyl symbol ry can be estimated in norm by
IRy |l £ CA'~" and so cannot affect (30.19).

Let us estimate the principal part of (30.20), the symbol

g4(z,A) = (1—e(z,A)?* (a(z)—A)+ CA1 7. (30.21)
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First note that
gz, A) = A (30.22)

for sufficiently large C. Now we show that
[079(z, )| < C,q(z,4) (zp= M A=oD! (30.23)

for some ¢ > 0 and 6 > 0.
We have

dlg=Yc, 0l (1—€)?0) (a—7).

If '+ 0 then the corresponding term may be estimated as in step 2. of this
proof. If y'=0, then for y + 0 we have the estimate

I(1=€)?0"(a—A)| £ Ca(2)' "¢ M < (q(z,)+24) (a(2) P!, (30.24)
on the support of 1 — e, since a(z) < q(z,4) + 24. Furthermore

(@D +2)@@) M < q(z,4) (@) M +24"7 Pa(z)”e V!
< q(z, ) 47022702 4 g (2, 2) (a(2) 0 M (30.25)

on supp (1 —e)?, since ! "< q(z,A) and 2* < a(z)’. Finally

q(z, ) (a(z))’ ¢ P < q(z,4) (a(z)) @D
< q(z,A) (a(z)) M@ =2 (g5~ -vizm, (30.26)

Now, (30.23) follows from (30.24)—(30.26). Note also that in view of the obvious
estimate |g(z,4)| < C{z)™A! ™" (30.23) implies that q(z,A) el g'él .
Estimating the remaining terms in the sum (30.20) in a similar fashion, we see
that if we denote this whole sum by g (z, ), then the estimates (30.22) and (30.23)
still hold and so g (z,4) e I'}';' *. As we have seen in the preceeding sections, we
may take v= o' —¢, with ¢> 0. Applying Theorem 29.2, we see that (30.19)

holds, or
(I=&) (A=A (I—&)+ CA' "¢ ¢ >0. (30.27)

4. To complete the proof of Theorem 30.1, it remains to note that the
requirements 1°-5° of Theorem 28.1 for the construction of the ‘“‘almost-
projection operator” &, have already been verified ((30.11), (30.12), (30.18) and
(30.27)) and property (28.7) for V() follows from (30.4) and Proposition 28.3.
An Application of Theorem 28.1 then completes the proof of the asymptotic
formula (30.6). [J]
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Problem 30.1. Compute the eigenvalues of the operator 4 = — 4 + | x|? and
verify directly the asymptotic formula (30.6).

Hint: The operator A= —A+ |x|* is the quantum mechanical energy
operator for the harmonic oscillator, and its eigenvalues may be found in any
text-book on quantum mechanics.

Problem 30.2. Show that if the Weyl symbol b(z) of 4 is an elliptic
polynomial whose principal homogeneous part does not take values in the ray
arg = ¢,, then the complex powers A? and the {-function { (z) = Sp 4% can be
defined and the {-function admits a meromorphic continuation to the whole
complex plane C.

Find its poles, its residues and the values of {(z) at the points 0, 1, 2, ....
Obtain here the asymptotic formula for N (1) (without estimating the remainder
term) using the Tauberian theorem of Ikehara.



Appendix 1
Wave Fronts and Propagation of Singularities

In this appendix we present the definition and the simplest properties of the
wave front of a distribution as introduced by Hérmander [6]. The concept of
wave front is important in that it allows a microlocal (localized at a point of the
cotangent bundle) formulation of the theorems on regularity of solutions of
differential equations and also clarifies questions connected with the propaga-
tion of singularities. The wave fronts also play an important role on spectral
theory, and are naturally connected with pseudodifferential operators. While
leaving out many important questions of the theory of wave fronts, I never-
theless thought it useful to add this short appendix.

A.1.1 Wave front of a distribution

Definition A.1.1. Let X be an open set in IR”, let (x,, &,) € X x (IR™\ {0}) and
ue 2'(X). We shall write (x,, £,) & WF(u) if there exists v € &' (X) such that u = v
in a neighborhood of x, and

5@ G i |- Lo«

R A-1.1)

for sufficiently small ¢ > 0 and arbitrary N > 0, i.e. 7 (£) is rapidly decreasingin a
conic neighbourhood of &, .

Thus WF (u) is a closed conic set in X x (IR"\ {0}) which we call the wave front
of the distribution u.

Lemma A.1.1. If o (x)e CP(X) and (x,,&,) & WF (1) then (x,, &) & WF (u).

Proof. We have to show that if i is rapidly decreasing in an open cone I', then
so is gv. Now

eV (&) = [5(E—n) ¢(m)dy

= [ 6¢-n) omdn+ [ 5E—n) ¢(m)dn

InlsR Inlz R
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and

9o < Csup [§E-m)|+C, | A+IE—nDP(A+In])"tdn

InlSR InlZR

S Csup [5(E—n)|+ C,A+IEN? | (A+]In|)P Ldn

InlSR InlZR

< Csup [5(E—n)|+ C(1+]E)P R P7L.

In|SR

Putting R = |¢|'/2, we see that if & belongs to a cone slightly smaller than I,
then ¢ —ner for large |¢| and || £ R. In addition, [E—n|~ |é| and R**P~L
~ || P~ L2 Picking a large L we see that ¢ (&) is rapidly decreasing in ¢ as
[E] =00, Eel. [

Corollary A.1.1. In Definition A.1.1 we may put v= @u, for ¢ € C5°(X).

Proof. We may choose first v as in the definition and then ¢ such ¢ =1ina
neighborhood of x, and ¢u = @v. It remains only to apply Lemma A.1.1. [

Lemma A.1.2. Let n: Xx(R"\0)—X be the natural projection and
ue?'(X). Then

nWF(u) = singsuppu.

Proof. a) If x,ésingsuppu pick ¢ € C°(X) such that ¢ =1 in a neigh-
bourhood of x,, ¢ =0 in a neighbourhood of sing supp u. Then we see that
pue C(X), from which pueS(R" i.e. x, &1 WF(u).

b) Let x,énWF(u). Then for any &,eIR"\ {0} there exists a function
@, (%) € C5°(X) and a conical neighbourhood I', of £, such that ¢, (x) =1 near
Xo and (@; u) (&) decreases rapidly in I', . Let I';, ..., I';, be a covering of

N

R"\ {0}. Putting ¢ = [] ¢, we see that ¢u(&) decreases rapidly everywhere so
=1
that pue CF(X) i.e. ue C* in a neighbourhood of x, so x, ¢singsupp u.

Proposition A.1.1. Let ue 2'(X) and (x,,&,) € WF(u). Then there exists a
classical properly supported ¥DO A € CL°(X) such that 6,=1 (mod S~ %) in a
conic neighbourhood of (x,,&,) and Aue Cg (X).

Proof. Let ¢ € C°(X), ¢ = 1 in a neighbourhood of x¢ and suppose gu (&)
decreases rapidly in a conic neighbourhood of &). Let x (£) be supported in this
neighbourhood with y (1&) = y (&) for t =2 1, }£| = 1 and y (&) € C*(X) with x (&)
=1 in some smaller conic neighbourhood of &,. Then x (&) ¢u (&) decreases
rapidly so that y (D) (¢ (x)u(x)) e C®. But then y (x) x (D) (¢ (x) u(x)) e CF(X)
ify e C{£(X). Wemay pick y so that y (x) = 1 in a neighbourhood of x, and then
the YDO A = ¢ (x) x (D)p(x) satisfies all the required conditions. [

Proposition A.1.2. Suppose we are given ue 2'(X), (xo,&,) € X x (IR"\ {0})
and an operator A € CL™(X) with principal symbol a,,(x, ). So that Au makes
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sense let either ue &'(X) or A be properly supported. Finally assume that
a,,(xy,&0) ¥ 0 and Aue C*(X). Then (xy,&y) & WF (u).

Proof. a) By the standard construction of a parametrix in a conic
neighbourhood of (xo, &) (cf. §5), we obtain a properly supported ¥DO
Be CL™™(X) such that g5, =1 (modS~®) in this neighbourhood. Obviously
BAu e C*(X) so that replacing 4 by BA we could obtain 4 = I (mod S~ ®) in the
same conic neighbourhood of the point (x,, &,).

b) Now let y(¢)=1 in a neighbourhood of &,, (&) e C*(IR"), and x (&)
homogeneous of order 0 in ¢ for |£|=1. Let ¢(x)eCy(IR"), ¢ =1 in a
neighbourhood of x, and the supports of ¢ and y be chosen so that

e(x) 1) 0,(x,8) = (x) x(§) (modS™~).
From this we obtain
1D) p(x)A—x (D) p(x)eL™™, (A1.2)
and by (D) ¢ (x) due C*(X), it follows from (A.1.2) that
1(D) ¢ (x)ue C=(R"). (A.1.3)

¢) Now we show that
x(D) o (x) ueS(R"), (A1.4)
from which it follows that y (&) g% (&) e S(IR") and in particular, that ¢u(¢)

decreases rapidly in a conic neighbourhood of &, as required. (A.1.4) follows
from the following lemma and (A.1.3)

Lemma A.1.3. Letve &' (R"), x(£) €Sy . Then for g (x, suppv) 2 1 we have
|D* (D) v(x)| £ C, n1x|7N (A.1.5)

Proof. Since & (&) €Sy §1*! it all reduces to the case a = 0. Further since

v= ) D%y, with continuous v,, we may reduce to the situation where v is
con{ailrflious.
We have
1(D) v(x) = [ =7 ¥ (&) v(y)dydE. (A.1.6)
Integrating by parts and using the formula
|x__y|—2N(_A§)N eI & = i) ¢
from (A.1.6) we obtain

1) v(x) =[S (= 4" x @) Ix—=y|7*N v(y) dyde, (ALT)
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which makes sense for ¢(x, suppv) 1. Picking N so large that (—4,)"
x(©)eS, 57", we see that the integral (A.1.7) converges absolutely and is
estimated by C{x) 2" for g (x,suppv)=1. [

Remark A.1.1. The condition a,, (x4, ¢,) # 0 is sometimes called ellipticity
of A at (x4, &,). It is easy to formulate and prove the hypoelliptic analogue of
Proposition A.1.2. We leave this for the reader as an excercise.

Corollary A.1.2. For Ae CL"(X) denote
char (4) = {(x, &) e X x (R"\ 0): a,,(x, &) =0}.

Then if Au = fe C*(X) we have WF(u) < char (A). In particular, if char (4) =0
we have ue C®(X).

Corollary A.1.3. If ue é'(X), then

WFu)= () char(4). (A.1.8)
AeCL°(X)
AueC*(X)

This holds for ue @' (X) if we take the intersection only over properly supported A.

The importance of Corollary A.1.3 is that (A.1.8) shows how to define
W F (1) invariantly as a closed conic subset of 7*X when X is a manifold. We
now generalize Proposition A.1.2 even more, by weakening the requirement
AueC*(X).

Proposition A.1.3. Againlet Ae CL"(X), ue 2'(X) and either A be properly
supported or u € &'(X). Then, assuming a,,(xq, o) + 0 and (xq, &o) § WF(Au), we
have (xq,&,) € WF (u). In other words,

WF (u) < char (4) U WF(Au) . (A.1.9)

Proof. By proposition A.1.1 there exists a properly supported P e CL°(X),
with ¢,=1 (modS~®) in a conic neighbourhood of (x,,&,) and
(PA) (1) e C*(X). But then, from Proposition A.1.2 it obviously follows that
(%0, &) WF(w). U

Proposition A.1.4 (Pseudolocality of WDO). Let ue 2'(X), AeLy ;(X)
0<8 <0 <1 and assume either A is properly supported or u € &'(X). Then
if (xo, &) & WF (u), we have (xo, &) ¢ W F(Au). In other words,

WF(Au) c WF (u). (A.1.10)
Proof. The condition (x,, &,) ¢ WF(u) amounts to the existence of a properly

supported ¥DO P e CL°(X) such that Pue C*(X) and 6, =1 (mod S~ ~) in a
conic neighbourhood of (x,,&,). Now let Q be a properly supported ¥DO
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Q e CL°(X) such that g, (x,, &) *0, (g, be principal symbol of Q) 6,€S™%
outside of some sufficiently small conic neighbourhood of (x,, &,) and

PQ=Q(modL *) if QP=Q(modL ).

Let us demonstrate that QAu € C*(X). We have 04— QAP € L™ * so it suffices
to show QAPue C®(X). This however, is obvious since Pue C*(X). Now
(x0, &) € WF (Au) follows from Proposition A.1.2. [

Corollary A.14. If Ae CL"(X), then
WF(Au) c WF (u) « WF(Au) uchar (4). (A.1.11)
Corollary A.1.5. If the operator A € CL"(X) is elliptic, then
WF (Au) = WF(u) (A1.12)

Exercise A.1.1. Compute the wave fronts of the following distributions:

a) 0(x);

b) 6(x)D1(x"), x' eR¥, x" eR*™¥,

c) &, where S is a smooth submanifold in R"({(Js, ¢) is defined as the
integral of the function ¢ restricted to the surface S with respect to the induced
measure);

d) (x+i0)"! on R';

e) the indicator function of an angle in IR? (the function which is equal to 1
in the angle and 0 outside it).

A.1.2 Applications: Product of two distributions,
trace of a distribution on a submanifold

1) Letu;€e2'(X),j=1,2. What does u, - u, mean? It should be the ordinary
product u, - u, if, for example, 4, and u, are continuous or if one of them is
smooth, and it should be a natural extension (e. g. by continuity in some sense). It
will turn out that we can define u, - u, under the condition

WF (u;) + WF(uy) < X x (IR"™\0), (A.1.13)

i.e. if there are no (x, ) e WF(u,) such that (x, — &) e WF (u,).

Since the product is a bilinear operation, then using a partition of unity we
may assume that u, , u, are in & (IR") and have sufficiently small supports so that
i, (&) is rapidly decreasing outside a cone I'; and i, (¢) is rapidly decreasing
outside a cone I',, whereby I'; + I', cIR"\ {0} (i.e. I'; and I', do not contain
opposite points). In the usual situation one has #;%, (£) = (4, * 4,) (£), where

iy * iy (&) = [, (E—n) @y (n)dn. (A1.14)
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In our case this integral converges absolutely also, since either |4, (£ —7)| or
|#,(n)| rapidly tends to zero as |n|— + co. Put

uyu, = F~1 [, (E—n) iy (n)dy. (A.1.15)

Why is this an extension by continuity? We can for instance show that
if xeCy (R, )[X(X)dx=1, 1) =¢e""x("'x) and u®=uxy (eCy(R"),
then lim u{®u = u, u, in the topology of 2'(IR") where u, u, is understood in

£-20+

the sense of (A.1.15).
Example A.1.1. Let u, € 2'(IR?),

Quy, @) = ij(xl) ¢ (xy,kx)dx,, () eCP(RY),
so that suppu, = {(x, x,): x, = kx,}. Consider the product u, - u,. We have

B (8) = [ 1 (xy) e'@xribdx, = 1 (§ +kEy).

From this we see that WF (u,) is the set of all normals to the line x, = kx,,
lying over =, '(suppx,), where m,: (x,,kx,)— x,. Consider now the con-
volution &, *d,:

(o * ) (&) = [ 7o (1 —111) Ty +kny) dny i,
= [Tl dn - %lkns) dm = - %00) x(0);
from which
Uo Uy = %XO(O) < x(0) - 8(x).

The limit as k — 0 does not exist, which is natural, since for k = 0 condi-
tion (A.1.13) fails.

2) Letue 2'(X), Y a submanifold of X, NY the family of all normals to Y in
T*X (the normal bundle to Y.) If WF (u) n NY = @, then the trace u|y is defined
naturally in the same sense as for products. Indeed, localizing we may assume
that Y= {x, =...=x,=0}. For ue C{’(X) we have

uly = [a,...,E)dE ... d&. (A.1.16)

But by hypothesis vectors of the form (&1, .. ., &, 0, . . ., 0) are not contained
in WF(u), so 4 decrease rapidly in their direction and the integral (A.1.16) is
defined. In particular, if u € 2’ (IR"*!) satisfies a differential equation of order m
of the form

a t,x,g,i u=feC*R"*"), reR! xeR",
Jt’ 0x
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where the hyperplane ¢ =0 is non-characteristic, i.e. a,,(0, x,1,0) # 0 then all
k

- 0 u .. . . .
the restrictions e are defined and lie in 2’ (IR"). This means in particular
t=0

that the Cauchy data make sense. Thereby u/,_, is a smooth function of ¢, with
values in 2'(IR").

A.1.3 The theorem on propagation of singularities

First, we state the simplest version of the theorem on propagation of
singularities.

Theorem A.1.1. Let Pe CL™(X) have a real principal symbol p,(x,&),
u€ ' (X) and either P is properly supported or u € &' (X) so that Pu makes sense.
Then if I is any connected interval of a bicharacteristic of the function p,,(x, &)
not intersecting W F (Pu) then either | C WF(u) or IN WF(u) = 0.

In other words, in the complement of WF(Pu), the set WF(u) is invariant
under the shifts along the trajectories of the Hamiltonian system

: op,,
==
(A.1.17)
= Pm
-7

2

Example A.1.2. Let us prove that the wave equation b—l;"A“=O in
X0

IR"*! cannot have solutions with isolated or compactly supported singularities.
We have m=2, p,(x,&) = — &2+ |&|*. The system (A.1.17) has a solution
E=const, xo=—2¢,t, x=2¢t. Let 0 esingsuppu. Then there exists a point
0,0,¢,,&) e WF(u), so by Proposition A.1.2 it is obvious that |£|2=¢2. By
Theorem A.1.1. (—2¢&,¢, 2¢&t, &y,8)eWF(u) for any ¢ and, in particular,
(—2¢&4t,2¢Et) esingsuppu for any ¢ which also yields the required result.

We now give a proof of Theorem A.1.1. due to V.N. Tulovsky. It is based on
the following proposition describing wave fronts in terms of the action of
distributions on rapidly oscillating exponentials.

Proposition A.1.5. Let ue 2'(X). Then the condition (x,,&,) ¢ WF(u) is
equivalent to the following condition;

A. There exists ¢ >0 such that if ®(x,0) is a smooth real valued function
defined for |x — x, | < ¢ and 0 € IR\ 0), is a homogeneous function in 0 of degree 1
such that @ (x,,0,)=¢, for some 6,0, then for an arbitrary symbol
@ e CS°({|x—xo| < &} x RY) vanishing for |x—x,| 2 ¢/2 there exists a conical
neighbourhood T of the point 0, in R¥\ 0 such that

[<u(x), @ (x,0)e @0 < Cy1017Y, Oel, [0]=1. (A.1.18)
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Proof- 1) Let condition A. be satisfied. Take ¢ € C§°(IR"), suchthatg = 1in
a neighbourhood of x,, ¢ =0 for |x—x,|=¢/2 and @ (x,0) =<{x,6> so that
N=n, 0,=¢&, We then see that (u(x), ¢ (x) e~ ®) = @u(0) decreases rapidly
in a conic neighbourhood of &, . But from this it follows that (x,, ¢,) € WF (u).

2) Let (x4, &,) &€ WF(u). We will verify that condition 4 is satisfied. Let @
and ¢ be as described in the condition. Without loss of generality, we can assume
ue &'(R"). Express the left-hand side of (A.1.18) in terms of & (£):

u(x), p(x, 0)e ) = [[(E)eli-2xMp(x, 6)dxdE,  (A.1.19)

where the integral is understood as an oscillatory integral. Picking a small conic
neighbourhood I'y around &, in IR" such that & (£) decreases rapidly in I'; we can
decompose this integral into the sum I, + I,, where in I, the integral with respect
to ¢ is taken over I';, and in I, over R"\ I'; . Let us estimate I, and I, separately.

a) In I, we integrate by parts with respect to x with the help of the exponent
e~ 1?0 We put

. 0

lL___I(pxl—Z i¢x.-,

,-;1 1 0x;
to obtain the identity ‘Le '®= e '®. The coefficients of ‘L and L are
homogeneous in 6 of degree —1. Since P.(x,,0,) =&¢,+0 we have
|®,(x,0)|+0 if |[x—x,]<e and 8€l', where I' is a sufficiently small conic

neighbourhood of 6,. We have
L= | LY(E™ % o(x,0)) d(§) e ®>dxdé.
(el

Since
ILY [ @ (x,0)]| £ Cy<ONO™N, 0el, 0121,
then in view of the decrease of #(&) in I', we obtain
[I,| S Cy<0>~ N, 0er, 1|0]21. (A.1.20)

b) To estimate I, it is necessary to integrate by parts with respect to x again
with the help of the exponent eilx¢-¢&01, Choosing a sufficiently small conic
neighbourhood I' of 6, wehave ¢ — @ _(x,0) £ 0,0, EeR"\ I, |x—x,]| <E¢,
from which

grad, (x & — & (x,0) + 0,

for the same x, &, 6 which allows us to carry out a standard integration by parts.
In fact it is obvious that for some C >0

[E—@.(x,0)| 2 C(IE]+10]), 0el, EeRNI, |x—x|<e.
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Putting
‘L= —i|E—b,(x,0)|2 z (&5~ 0, (x,0)) %
we obtain, ‘Le'ls ¢-?x0l = ¢ilx¢-2x01 and hence
L= [ &2 [Np(x,0)]a() dxdt. (A.1.21)

¢eR™\ T,

Since @ (¢) satisfies [4(&)| £ C(1+|¢&)V: for sufficiently large C, N,, then for
sufficiently large N the integral (A.1.21) becomes absolutely convergent and for
0€erl, |x—xy| <ecan be estimated by C,{6) ~? for an arbitrary p. This together
with (A.1.20) yields the required statement. []

Remark A.1.2. If the point (x,, &,) and the functions ¢ and @ depend on a
parameter and all the conditions are satisfied uniformly, then the constant Cy in
(A.1.18) can be selected so as to not depend on the parameter.

Proof of theorem A.1.1. 1) For simplicity consider first the operator
10

F= i Ox,
&, of P, which passes through (x,, £,), is of the form (xg, (x¢), + t, &) where (x,),
is the n-th coordinate of x,, x, is the collection of its (n — 1) first coordinates and
t is the parameter along the bicharacteristic. Let / be an interval on this
bicharacteristic containing (x,, £,) and not intersecting WF(f). We will show
that either /< WF(u) or In WF(u)=9.

Let ¢ (x,0) and & (x,0) be determined as in Proposition A.1.5. Put

. Let Pu=f, (x,,¢&,) § WF(f). The bicharacteristic of the symbol

o, x,H=0x"x,—1t,0), & (x,0)=P(x",x,—1t0).
Then supp ¢, is close to (xg, (x,),+¢) and near this point the function @, is
defined. It is clear that by the choice of ¢, @ one can make ¢, and &, to be any

functions for which the conditions of Proposition A.1.5 are fulfilled at (x{, (x,),
+1,¢&,). We have

d ! . o .
£ wns= o Lo m= (- o)

6 i .
= <é‘—x~ u, (pte_'¢,> = <lf; (pte_lq)‘> = R(ts 0)1 (A122)

from which, by the condition InWF(f)=0 and by Proposition A.1.5, it
follows that for the values of ¢ of interest to us, the estimate

|R(1,0)| = Cy<O>™Y,  Oel, 0121, (A.1.23)
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holds uniformly in ¢. Here I' is a sufficiently small conic neighbourhood of 8.
But from this

[<u, @,e7 %) — Cu, @, 7 ) |
4o . _
=] 5 et < 11— 1,] CuiO ™. (A.1.24)

4

Therefore, if for some ¢ the function {u, ¢,e'®) decreases rapidly for 0 in I,
then this holds for all ¢, yielding the required result.

2) Now let P be any classical first order ¥DO (i.e. P € CL!(X)) with real
principal symbol p, (x, £). Again we will carry out the computation (A.1.22). For
this we only have to find the dependence on the parameter t for the functions ¢
and @, so that

% [pe™i®]— Ppe®] (A.1.25)

>

rapidly decreases for 0 in the cone I' and uniformly in 7, where for 1 =0 the
conditions of Proposition A.1.5 are satisfied for the point (x,, &;).
The condition of decreasing for (A.1.25) leads to the equation for @,

%—f—m(x, ?,)=0, (A.1.26)

which we can solve (for small 1) for arbitrary @|__,. In doing so, it is important
to note that along the bicharacteristic (x(t), £(t)) of the function p,(x, §) we
will have

D, (x(1), 0y,7) =&(1) (A.1.27)

(cf. §17), provided this is so for =0, which we will assume. For the
homogeneous components of ¢, we obtain transport equations which are again
solved for arbitrary ¢|,_, by analogy with the transport equations for g_; from
§20. The solution procedure (cf.§17) shows, that the support of any
homogeneous component of ¢ propagates along the bicharacteristics of the
function p, (x, £). Thanks to this the proofin this case for small t may be ended in

1
0x,

Let us now remark, that the necessity of restricting ourselves to small 7 is of
no importance, since it is enough to prove theorem A.1.1 for arbitrarily small
parts of the bicharacteristics, since as an obvious consequence it will then be true
also for large connected pieces.

3) Finally consider the case of an operator P of arbitrary degree m. Let Q be
a classical elliptic properly supported ¥DO of degree (1—m) with real principal

a similar way to the case of the operator i~
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symbol g (x, £). Put P, = PQ. Then P, € CL' (X) and the principal symbol of P, is
of the form

Py (X, 6) zpm(x) é) q(x’ 6)

Note thatin Theorem A.1.1, in view of Corollary A.1.4, it suffices to consider
only null bicharacteristics. But from the relations

(P1)¢ = (Pm)gq +DPm 4= (Pm)gq for p, =0
(pl)xz(pm)xq—}'pm.qx:(pm)xq for pmzo

the null bicharacteristics of p, and p,, differ only by a change of parameter.
Corollary A.1.5, being taken into account the result of theorem A.1.1 for P
follows from the same result about P, already proved in 2). [J

Problem A.1.1. Let 4 be a distribution determined by an oscillatory integral
4,0y = [ a(x,0) ¢ (x) dxdb,

where @ is a non-degenerate phase function, a (x, &) e S™(X x RY) (cf. §1). Show
that

WF(4) c {(x,§) e X x (R"™\0): 30 eIR"\ 0, &4 (x,0)=0, D (x,0) = ¢} .

Problem A.1.2. Let two distributions u,, u,€2'(X) satisfy (A.1.13)
allowing them to be multiplied. Show that

WE (uyu) = [WF(uy) + WF(uy)l UWF (u;) UWF (u;) .
Problem A.1.3. Prove that for the operator D¥, for any positive integer k,

the same theorem on propagation of singularities is true as for D,. What form
does Theorem A.1.1 take?



Appendix 2
Quasiclassical Asymptotic Behaviour of Eigenvalues

Observables in quantum mechanics can be represented by operators of the
form

(Agy) () = [l b<%—y~,h€> udde, (A2

where the parameter 4> 0 is the Planck constant; the operator A4, is well
defined on S(IR") for example, if the function b(z) belongs to I'J (IR*").
Classical mechanics is the limiting case of quantum mechanics, when the
Planck constant can be considered to be negligible. This motivates an interest in
the asymptotic properties of operators of the form (A.2.1) as h—0; the
corresponding asymptotic analysis is called quasi-classical or semi-classical.

A.2.1 Basic results

The change of variables ¢ - h ™! ¢ transforms (A.2.1) into
(A () = 5 et b(’-‘;"—y é) u()dyde; (A2

where the symbol no longer contains the parameter 4, which now is included in
the exponent instead.

We will say that b(z) is the Weyl h-symbol of A , or, briefly, the h-symbol
(in this appendix, we will not use the t-symbols of chap. IV, which avoids any
confusion). Clearly, the 1-symbol is then the ordinary Weyl symbol.

Between the A- and 1-symbols the following relation exists. Making the

change of variables x— ﬂx, y— ﬂ y, E— ﬂé in (A.2.2), this expression
becomes

(Agw) (x Vi) = [ el b(l//? x;—y Vﬁé) u(Vhy)dydé. (A23)

In the space of functions on IR" introduce the dilatation operator

T, f(x) > " f(Vhx). (A.2.4)
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It is easily seen that T} is unitary on L2(IR"). Using this operator, (A.2.3) can

: h
be written as T, A yu = AEI;T,,u or

Ap =T, A0 T,, (A.2.5)

where A{) is the operator with the 1-symbol 6*(z) = b(]//;z). Therefore the
operator with A-symbol b(z) is unitarily equivalent to the operator with the
1-symbol 6 (z).

We will be interested in the quasicalssical asymptotic behaviour of the
eigenvalues.

Definition A.2.1. Let A, be a self-adjoint operator semi-bounded from
below. N, (4) denotes the number of eigenvalues of the operator not exceeding A
(counting multiplicities). If there are points from the continuous spectrum of 4,
in the interval (— oo, ], then by definition N, (1) = + o0.

Remark A.2.1. The Glazman variational principle (28.1) remains valid also
for N, (4); the proof (cf. §28) can be taken over with minor changes to the case
N, ().

To formulate the basic result, we need the following

Proposition A.2.1. Let A, be an operator with the real h-symbol
b(z) € HI"™, mg 2 0. Then for any fixed h > 0 the operator A, is essen-
tially self-adjoint.

Proof. For my > 0 the proposition follows from Theorem 26.2. An analysis
of the proof of Theorem 26.2 shows that the strict inequality m, >0 is only
needed in order to ensure A £ il € HG?™. Under the assumptions of the
proposition, for my = 0 and & = 1 the inclusions A +il € H G;"'O follow
from the estimates

|b(z) i|>b(2),
10"(b(2)£ )| = C,1b(2)| |z el
=G, 1b@)xi| |z]7M |b(2) |/1b(2)+i| £ C,|b(2) %] |z]7 oM.

For i+ 1 one has to use (A.2.5) and the fact that b e HI' "™ (as for b (z) but
with other constants in the estimates of the derivatives).

Let A, have a real A-symbol b(z) e HI')»°. As in §30 changing the sign if
necessary we may assume that b(z) = C> 0 for |z| = R, . Put

V)= Q)" | dz. (A.2.6)

b(z)<4i

The main goal of this appendix is the proof of the following theorem.
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Theorem A.2.1. Ler A, have a real h-symbol b(z) e HI'7-°, b(z) 2 C >0 for
|z| Z Ry. Let Aq be such that V(4y) < +o0. Then, for almost all 1< i, and
arbitrary ¢ >0 we have the asymptotic formula

N,(A) = h™"(V(A)+ O(h*?7%)). (A.2.7)

Remark A.2.2. Between the asymptotic formulae in 4 as #— 0 and the ones
in 4 as A— + oo there is an intimate relation which can be explicitly exhibited
when b(z) is homogeneous: b(tz) = *b(z), t>0, s>0. In accordance with
(A.2.5) the operator with the A-symbol b(z) is conjugate to the operator with
symbol b* (z) = h¥?b(z), so that N, (1) = N(h~**4).

Remark A.2.3. Theorem A.2.1 is analogous to Theorem 30.1. In the latter
we assumed the essential inequality b(z) = C|z|™, ¢ > 0, my > 0. Theorem A.2.1
states the weaker dependence of the asymptotic behaviour in 4 on the behaviour
of the symbol at infinity.

A.2.2 The idea of proof of Theorem A.2.1.

The proof of the theorem is based on the same considerations as the proof of
Theorem 30.1. We will construct an approximate spectral projection &, in the
following way. Let y, be the indicator function of the interval (— oo, 1]; we
construct a family of functions y, ,, converging to x, as #—0. The operator &%,
has the h-symbol y, ; (b(z)), where b(z) is the h-symbol of A4, .

We will show that the family %, has the following properties:

1°. F¥=%,;

2°. %, is a trace class operator and

I %= Flly=0h""") as  h—0;

3. Fy(Ag—Al) F, < Ch*;
&, (I- %) (Ap—AD) (I- F) = — Ch*;
5°. Sp &, =h""V (i) (1+0h);

here 0 <% <1/2 and the function V(1) in 5°, is a positive, non-vanishing
function, defined on the interval {4, 1+ ¢] and differentiable from the right at 4.
Note also that Im #,cD, , where D, is the domain of 4.

In the presence of a family of operators, with properties 1°-5°, theorem 28.1,
reformulated in the new terminology is fundamental in obtaining the asymptotic
formula (A.2.7). For convenience we formulate the following result.

Proposition A.2.2. Let A, be a family of essentially self-adjoint bounded
Sfrom below operators; %, a family of operators such that Im #, < D, and having
the properties 1°-5°. Then

N,A)=h""(V(A)+Oh") as h—0
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Proof. Similar to the proof of Theorem 28.1.
Exercise A.2.1. Prove Proposition A.2.2.

A.2.3 Symbols and operators with parameters

To study the approximate spectral projection, it is convenient to introduce
class of symbols, depending on a parameter (cf. 29.1).

Definition A.2.2. Denote by X™# the class of functions a(z, k), defined for
z € R, 0 < h < hy, infinitely differentiable in z and satisfying the estimate

187a(z, h)| £ C, (z)" " p#=om, (A.2.8)
Here m, u, 0, 6 €eR, 0>0, 0 <1/2.

Obviously, if a;eXp#, j=1, 2, then a,a,eXy ™ **#  where
¢=min(g;, ¢,), 0 =max(cy,c,).

Note that for any fixed 2, 0 < h < ho, from a € X" it follows that
a(z,h) € I (IR*") and (A. 2 2) properly defines a class of operators A(h)
depending on a parameter and acting on S(IR") (the parameter dependence
appears either in the symbol or in the exponent). The corresponding class of
operators will be denoted by S7'*.

From definition A.2.2 it follows, that for ¢ > 0 the derivatives of the symbol
can be estimated by powers of 4 which are increasing as #—0. However the
influence of the increasing powers of h disappears under the action of the
corresponding A-symbol of the operator. In particular, one has

Proposition A.2.3. Let A(h) eSO , u>0,0<1/2. Then A(h) is bounded in
L*(R™) uniformly in h for 0 <h < h

Proof. Let a(z,h) be the h-symbol of the operator 4(h) and A, (h) the

operator with 1-symbol a™ (z,h) = a(ﬂz, h). By (A.2.5) the operators A4 (h)
and A{})(h) are unitarily equivalent, i.e.

IAm = 11ADE 1. (A.29)

Let us now show the boundedness of the operator A (h). Selecting 0 < ¢’
<min(g,1—20) we have

|07a™ (z,h)| = WV* |82 a(y,h) |y i . |
S CAM2 (G hzym el pr=o il < C MR =% Ry /p 5=l (A.2.10)

(1/2-0—-0'/2)+ -0
§Cy'h”| /2=0—-¢'[2) ﬂ<Z> ey

In (A.2.10) we used the obvious inequality
A+ Vhz) *S C(Vh+ Vh|z) "= Ch™2(z5>™* for x>0.



244 Appendix 2

Thus, a®(z,h) eI'? (IR*") uniformly in 4 and by Theorem 24.3 the operator
A (h) is bounded in L?(IR") uniformly in A. [J

Let us now introduce expressions for the trace of an operator in terms of its
h-symbol. It follows from (A.2.5) that

Sp A = Sp(T, ' AR T,) = SpA{)). (A.2.11)
Using (27.2) we obtain

SpAgy = [B®(x, &) dxdé = h™" [b(x, &) dx dE. (A.2.12)

With the help of similar arguments the estimates of the trace class norm (27.12)
can be transferred to the case of A-symbols:

Proposition A.2.4. There exist constants C and N such that for the operator
A (h) with the h-symbol b (z, h) the following estimate of the trace class norm holds

IAE) |, S Ch " Y BV [187b(z,h) | dz. (A.2.13)

YISN

A.2.4 The h-anti-Wick symbols

For the operators (A.2.2), where the action depends on the parameter A, we
have the following analogue of the anti-Wick symbols introduced in §24.

The whole construction in section 24.1 can be carried out if, instead of @, (x)
we take the function

¥o(x) = (mh)™"* ™10 = (T,7" &) (%)

as the starting point. An operator A®’ with an h-anti-Wick symbol a(x, §) is
defined by analogy with (24.9):

Ap =Ja(x,§) Q, (dxde, (A.2.14)

where Q, , = T, ' P, T, are the projection operators, playing the role of P, ;in
definition (24.9).

All the results from §24 can with no effort be extended to the case of
h-anti-Wick symbols. In particular, it follows from (A.2.14) that an operator is
non-negative whenever its s-anti-Wick symbol is non-negative.

It is easy to compute that the kernel of the projection operator Q, on the
vector ¥, is equal to (mh) "2 e~ **+y)I2h whereas the h-Weyl symbol 6, (x, £)
of Q, is equal to

Go(x, &) = 2e-t+ e (A.2.15)



Quasiclassical Asymptotic Behaviour of Eigenvalues 245

Using (A.2.14) and (A.2.15) we obtain a formula connecting the ~-Weyl symbol
b(z) and the h-anti-Wick symbol a(z):

lz=2?

b(z)=(nh) "fa(z)e * dz. (A.2.16)
From (A.2.16), by the same reasoning as in the proof of Theorem 24.1 we can
obtain the following analogue of Lemma 29.1.

Lemma A.2.1. Let B(h) be an operator with the h-anti-Wick symbol
a(z,h) € X7% and b(z, h) its symbol. Then

a—-b= Y h"W2c (0)a)+ry,

0<|y|<N

( —oN,u+(1/2-0)N
where ¢, =0 for odd |y| and ry € 27" A/2-0)N

A.2.5 The composition formula

For operators of the classes S;* the composition formula holds in the
following form.

Theorem A.2.2. Let a; € Eg’:;’;’, j = 1,2, let A;(h) be the corresponding
operators. Then

Aj(h) o Ay(h) € Syt

where 0 = min(gy, 02), 0 = max(oy, 03), where for the h-symbol of the
composition b(z, h) we have

(__1)|13|

|« +B|<N al B!

b=

h Ja+ 8|
(§> (03Dlay) (08D2ay)) + hry,  (A.2.17)

where

ry € Zé','la_‘*‘ my—N(ei+ @), s +u, = Nlo, +03) (A218)

Proof. We may obtain the proof just by copying the proof of Theorem 29.1.
So that we do not repeat the calculations of Section 29.1 here, we will, wherever
possible, refer to the proof of Theorem 29.1.

Using (A.2.5), we obtain:

Ay (hyo Ay (h) = T, (A, (M)E) Tho T (A2 (D T,
=T, ' [(A, (D)) o (4, (D] T, -

For the symbol ' (x, ¢, h) of the composition of the operators (4;(h)){}, with
symbols @\ (z, h) = aj(ﬂz, h) we have according to (29.4)—(29.18) (in which
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the nature of the dependence on the parameter is not used), the following
representation

—1)I8l
b=y D

271*81(3zDEa) (FED2aP) + 7y . (A.2.19)
la+B|<N alp!
Note that
(6DLaf") (92Dzal’) = h1**P1[(0zDfa,) (0 D2a,)]™.
Therefore, passing from the Weyl 1-symbol in the equality (A.2.19) to the
h-Weyl symbol according to (A.2.5), we obtain the terms in the sum (A.2.17).
The estimate of the remainder (we are talking about the Weyl 1-symbol)
is reduced, as in section 29.1, to the uniform estimate in 71, 7, € [0, 1] of
integrals of the form

I(x,8) = [e*'0 "t 7 " [3DLaP (x+ 1,3, E+1, b))
x [0¢Da}’ (x+1,2,E+(, h)] dnd( dy dz, (A.2.20)
la+fl2 N.

By analogy with the above, we obtain that the Weyl 1-symbol I (x, &) cor-
responds to the Weyl A-symbol

J(x,8) = hi** P fe2ivri==n [0¢Dia, (x+1, Vhy, &+ Vi, h)]
x [08D%ay (x+1, Vhz, E+ Vh, h)dndtdydz,  (A.2.21)
la+pl = N.

It is necessary to prove that

RN = h_NJ e25"(1{*""2‘”(@1+Qz)vﬂ|+ﬂz_N(‘71+"z)

uniformly in 7,, 7, €[0,1].
Differentiating (A.2.21) with respect to x and &, we see that the derivative
010! Ry is a linear combination of expressions of the form
RIEHAITN [ 2020200 (030 08+ ay (x+1y YV hy, &+ Vi, )]
x [08°7° 027 ay(x+1, Vhz, E+ VR ) dn dl dy dz, (A.2.22)
y(+‘))”=‘))’ é/+5/l=5.
In the same way as in Section 29.1, if we integrate by parts we obtain

decreasing factors of the type {y,n) ~**, (z,{> ~**. It is only necessary to take
into account that in differentiating a, (a,) in y and 5 (z and {) there appears a
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factor h'/2. Therefore (A.2.22) lead to a linear combination of integrals of the
type

PlatBI=N P+ 3l12 [ o200 Cmzom) () 2M (5 ~2M

x [0 1% a; (x+1, Vhy, E+ Vhn, b))

x 01" ay (x+ 03 Vhz, L+ Y/hT W) dn dL dy dz, (A.2.23)
where
_ , , > ’ .
vy=a+B+y +6, VilZN+]y+6']; (A.2.29)
v, =a+f+y"+5", vl Z N+ 1y"+0"|.

The absolute value of (A.2.23) can be estimated by

hs§<x+T1 l//;y, é-}- ﬂr” h>ml_91N"Q|"}"+5l|

X {xX+1, 1/;12, E+ ﬂ(,h>mz~azN~azly"+é“|
X (pomy M2, O "M dn dl dy dz, (A.2.25)

where
s=lat Bl =N+ g+, 2+ py— oy vy, |+ pa— 0, [va+3,].
If one takes into account the relations
0,,0,S0<1/2, Ja+B|ZN, y+y"=y, 6'+0"=6
and (A.2.24), then the exponent s can be estimated as follows:
s=u+py— 0y Y +06 =0,y +8"| — N(o,+02)

+(N=la+Bl) (6, +a, =)+ |3;| (1/2—0,) + |%,]| (1/2—03)
2y t+p,—oly+é|—N(o,+0,).

We see that the power of 4 in (A.2.25) corresponds to the statement of
the theorem. Next, estimate the integral in (A.2.25) in terms of the necessary
power of (x, &). Note first that it splits into the product of integrals

I= [<x41, YV hy, E4 YV hnym-aW+r+80  y ys =M gy dy (A.2.26)
I'= [{xt 1, Vhz, E4 Y hOm-a®+ i+ (7 [y =M d( dz (A.2.26)

We will estimate the integral (A.2.26). Assume that m, — ¢, N < 0; if this
is not the case, then in the expansion (A.2.17) we can take N’ terms so that
m; — 01N’ < 0 and examine the remainder ry., representing the remainder r,
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as ry plus the finite sum within the limits N < |a+8| £ N'. Using the obvious
inequality

At Vhy, e+ Vhny T S, &7y Vhy, Vhny', x>0, (A227)
a special case of the inequality
T+ x+yl+1E+nD" S A+ x| +IED™ L+ |yl + InD™,

and applying (A.2.27) with »x=|m,— o, N—g,|y' +0'||, we obtain for the
integral (A.2.26) the estimate

I (x &ymmeN=ali+21 [ (o /hy, Y hny*Cy,ny =M dy dy
S (x, ymmeNmalr s [y py M dn dy
= C{x, Em-aN-aly+dl, (A.2.28)
Combining (A.2.28) with the corresponding estimate for (A.2.26"), we obtain the
necessary power of {x, &> in the estimate of (A.2.25) so that the inclusion
(A.2.18) is proved. [
A.2.6 Proof of Theorem A.2.1

The plan of the proof'is as follows: first we construct an approximate spectral
projection and successively verify the properties needed to apply
Proposition A.2.2.

1. Let x (¢, 4, 0) be the function introduced in Section 28.6:

1 fort<i,
X(t,l,5)={0 for 12 A4 26, (A.2.29)
[ (@/0t)ex (1, 4,0)| £ C.67F. (A.2.30)
Set x =1/2—¢, £>0 and
e(z,hy=x(b(2),4,h"). (A.2.31)

(We omit the unimportant argument A of e(z, #)). The operator %, is defined as
the operator with A-symbol e (z, ).
The function e (z, h) is infinitely differentiable with respect to z and

o [1forb@=4,
e@h) = 0 forb(z)=A+2h".

Let us estimate the z-derivatives of e (z, h). Differentiating (A.2.31) with respect
to z gives:
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oy
dle(z,h)y= ), C,, Fr (LA b -

Vit .o+ n=y

,(071b(2)) ... (0"b(2))

(A.2.32)

The summation in (A.2.32) runs over all possible decompositions of y into a
sum ¥, +. . .+, where k < |y|. Taking (A.2.30)and b € HFQ’"'O into account,
we obtain for an individual term in (A.2.32) the estimate

o x(t, A h
@"b) ... (9"b) <—X(’k—~) > < Ch~*|p|¥
a[ t=b(z)
k
x [T 107b/b] < Ch=**|b|*(1+|z]) "2l (A.2.33)
i=1
Note also that on the support of e(z, )
|b| <A+ h". (A.2.34)

Therefore, from (A.2.32)-(A.2.34) we obtain the estimate |0)e(z,h)]|
S Ch™ ' (z)y~ell je.

e(z,h) ez, (A.2.35)

2. We need now to verify, that all the conditions of Proposition A.2.2 are
fulfilled for &,. &, is symmetric due to the real-valuedness of the symbol, and
bounded by (A.2.35) and proposition A.2.3, hence &;* = &, . The fact that &, is
of trace class follows from Proposition A.2.4.

We denote the h-symbol of an arbitrary operator 4 by o(A4). In order to
estimate the trace class norm || %> — %, ||, , we need to compute the h-symbol of
the operator %> — %,.

By the composition formula (A.2.17)

o(FE-F)=—e@,h)+e(zh)?+ Y  c, h*PI(D2ote)
la| +|B|<N

x (DE3%e) + ¥ ry, hNryeZ;2eN0-208 (A ) 36)

All terms on the right-hand side of (A.2.36) except ry are supported on
{z: 2 < b(z) < A+ 2h*}, so the trace class norms of the corresponding operators
by Proposition A.2.4, can be estimated by

CV(A+2h% — V(D] A" (A.2.37)

The trace class norm of the remainder can be estimated by o(h™""*) for
sufficiently large N.

Now, note that V(1) is a non-decreasing function; by the well-known
Lebesgue theorem it is almost everywhere differentiable. In what follows, we
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assume that the A under consideration belongs to the set of full measure where
V is differentiable. Then (A.2.37) is transformed into the desired estimate

| #2— FN S CWV' Q) +o()] h™"< Ch™"**.  (A.2.38)
In addition, by (A.2.12) we have
Sp Z,=Q2nh)""[e(z,h)ydz = h™"[V(A)+ OV (A)—V(A+2h%)]
=h""V()1+0(h). (A.2.39)

Consequently, we have satisfied 1°, 2° and 5° of Proposition A.2.2 (#* = %,,
(A.2.38) and (A.2.39)).

3. Now let us verify 3° of Proposition A.2.2. For this we need the A-symbol
of #,(4,, —Al) #,. So we begin by computing it. We have

0 (Fu(Apy—AD) = e(z,h) (b(2)—4)
+ Y hletBic,(D2ofe) (DEOZD) + 1y, (A.2.40)

1s|a+B|<N

m—2Np,N(1-x)
ry € ):g,x .

The operator Ry, corresponding to the symbol ry, is bounded for m — 2N
<0 and ||Ry||=0(A"" %) = o(h¥). Let us show that

Pap € Z; 21t Plex+(1=29latBl |4 150, (A.2.41)

for @, = hl**#1(020fe) (0L 02).
For this we construct in a standard way a function ¢ (z,h) € C*(IR2"), for
which 0 < @(z,h) L1,

(h) = 1, for zesuppad,e,
PEM=00, for b(2)zA+3h" b(z)<A—h*

and which, like e (z, /) in the first part of this proof, is determined with the help of
the smoothed characteristic function y (¢, A, A+2h*) of the interval (4, A+2h%)
by the formula ¢(z,h) = y (b(2), 4, A+2h%).
By analogy with (A.2.33) and (A.2.34) we verify that
pexyd. (A.2.42)
Now note that for |a+f| >0

Qup = h**P1(0208e) [0802 (¢ - (b—A))]. (A.2.43)
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Letusshowthatg - (b—4A)€e 23;;‘ . Obviously | ¢ - (b—4) | £ Ch*and computing
the derivative with respect to z we obtain

Nl b=N]=(@"9) =D+ ) ¢, (0" ") (2*(b-1). (A.2.44)

|a|>0
Owing to (A.2.42) for the first term we have
107 ¢ (2,h) (b(z2)—A) | £ Ch=*I" ()~ el p; (A.2.45)
and for the other summands of (A.2.44) we get

10" @) (0" (b—A) | = 10" |- |b] - [(0*)/b]
< Ch=*I=al(zyelr=al=elal < Cp*—*l(zy e, (A.2.46)

The estimates (A.2.45) and (A.2.46) show that ¢ (b—2) € 27, from which,
taking (A.2.43) into account, (A.2.41) follows. Thus, the finite sum in (A.2.40)
belongs to X, 22! ~* and the operator %, (A4, — Al) can be written in the form

Fo(Aw—Al) = Q, + R, (A.2.47)

where ||R||=0(h' ")=0(h*) and 6 (Q,)=e- (b—A).
Using (A.2.47) we have

Fn(Aw—A) F= 01 F+ Ry, IRyl = o(h¥). (A.2.48)
We will compute the symbol of Q, %,:

(@i F) =€ (b-D+ Y h"T@0l e (b—A))
O<|a+B|<N
x (080%e) + ry. (A.2.49)
Introducing as before the function ¢ and using e - ¢ (b— 1) e Z2' ¥, we see that
the norm of the operator corresponding to the finite sum and the remainder in
(A.2.49), can also be estimated via O (h' *).
Consider the principal part of the symbol - o (#,(4,—Al) #,), viz. the
function g (z, h) = —e(z,h)* (b(z) — A). For g and its derivatives with respect to z,
the following estimates hold

q(z,h) =2 —Ch*; (A.2.50)

1071 =| 3 ¢, (0°b)(@" *e*) +2(b—1) Y., (3" *e)(0"€)

la|>0

< Z Cah‘ulvva|<z>‘a|v| |/1|+Chxh—|y|x<z>ﬂ_,|y|

|a|>0

< Ch -1 gy el (A.2.51)
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We shall denote by P the operator having Weyl h-symbol g(z, k) and by Q
the one having h-anti-Wick symbol g (z, k). From (A.2.51) it follows that

2 —elyl. x+(1/2~-
h|7|/ 67(]62@'?"” x+(1/ x)lyl,

and therefore, by LemmaA.2.1, ¢(P—Q)eZ, ¢! * and thus |P—-Q|
=0 (h' ™). It is furthermore obvious from (A.2.50) that Q = — Ch* and since
P=Q+ (P—Q)it follows that P = — Ch*. Thus, we have for the principal part
and consequently for the whole operator #,(A4,, —AI) %, the estimate

Fn(Ayy— Al F, < Ch™. (A.2.52)
4. Now we will verify that
U= F)(Ayy—AD) (I-F,) =2 — Ch*. (A.2.53)

The symbol of the left hand side of (A.2.53) (after getting rid of paren-
theses) is

G(gh(A(h)_'ll) Fr) — O'(g;h(A(h)_'U))
—o((Aw— ADF)+(b(2)—4). (A.2.54)

In step 3 of this proof, it was shown that in the first two summands of (A.2.54)
the principal terms are distinguished e? (b— 1) and e (4 —b), and the operators
corresponding to the remainders are estimated in norm by O (h* ~*). The third
summand in (A.2.54) is analogous to the second. Thus we obtain

o ((U-F)(Ap—A) (I-F) =1 —e)>(b—A) +r, (A.2.55)
and the operator R with the A-symbol r admits the estimate
IRl =0k ™).
Now consider the operator P with A-symbol
q(z,h) = (1—e(z,h)* (b(2) - 4).

Arguments similar to the ones used in section 29.3 in proving the positivity of an
operator with positive symbol show that

P=Q,+4,. (A.2.56)
Here the operator Q, has the A-anti-Wick symbol

w@h=q@hn+ 3 c,h"201q@z k) +ry(zh), (A.2.57)

22hyi<N
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where ry € Xm-2eN(1/2=08; and therefore the operator with the h-symbol ry
can be estimated in norm by O (h!~*).

For the operator Ay in (A.2.56) we have A, € S7;2e¢(1-29% and therefore
|4, ] = O (h' ~*) with an apropriate choice of k.

We keep the notation g, for the right-hand side of (A.2.57) but without the
remainder ry and Q, denotes the corresponding operator with the A-anti-Wick
symbol ¢,.

Let ¢ (z,h) be the function introduced in the preceeding part of this proof.
Decompose g, into two parts

%=¢q.+1-9)q,. (A.2.58)

In step 3 it was shown that ¢ (b—A)eZ Y from which it is obvious that

¢ (1—e)*(b—4)€Z2 . With calculations, analogous to (A.2.44)-(A.2.46) in
step 3 it can be shown that

o hle/Z a;’ q(z, h) € Za_ﬁm' x+(1/2 = x)|y| .
Consequently, the operator having the A-anti-Wick symbol ¢ g, can be estimated
in norm by O (h*).
Finally we will show that for small 4

1-9)q.20 (A.2.59)

and that therefore Q, = — Ch*. For this note that

25lyI<N

: . Lep,. (A.2.60)

(1-9)q, =

{(1—¢)<b—l+ Y cyhm/zavb), zeD,,

where D, = {z: b(z,h) =2 A+ 2h*}. Relation (A.2.60) is obvious, since (1 — e(z, h))
x(1—¢@(z,h)=0 for z¢D, and 1 —e(z,h)=1 for zeD,. Therefore in D,

(1-9)g=~10-9) (b—4) <1 + 3 ¢, iV (37b)/(b— i)). (A.2.61)

Now note, that in D,
b(2)/(b(z) —A) = (1 —A/b@)™ S (1 = A/(A +2k)"" S Ch7Y;
from which it follows that

| A2 @7B)/(b— A)| < ChI2*(zy el
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Consequently, the sum on the right hand side of (A.2.61) is estimated by
Ch'™*=o0(1), i.e.

(I=@)a=(0-9) (b—4) (1+0(1))20.

Thus we have verified the requirements 1°-5° of Proposition A.2.2 (the
relations (A.2.38), (A.2.39), (A.2.52) and (A.2.53)) and we may apply the
proposition. Hence Theorem A.2.1 is proved. [

A.2.7 The behaviour of N, (A1) for V(1) = + o

Theorem A.2.1 discusses the quasi-classical asymptotic behaviour for the
eigenvalues A <4y, where ¥ (4¢) < + co. The membership b(z) e HI™° does
not rule out the existence of 4 such that V(1) = 4 oo (for symbols of HI'J"™,
mq > 0, this situation cannot occur). In this case, the following theorem serves
as a supplement to Theorem A.2.1;

Theorem A.2.3. Let b(z) satisfy the conditions of Theorem A.2.1 and
V(A) =+ 0. Then, for any ¢, >0

lim A" N, (A +¢o) = + 0 .
h-0

Proof. For each N we will construct a space Hy such that the inequality
((Aw—AD ¢, 8) = Ch*(¢,¢8), <eHy, (A.2.62)
holds and, for sufficiently small A
dimHgz=z h™"N. (A.2.63)

By the Glazman lemma, we obtain then from (A.2.62) and (A.2.63) the in-
equality N, (A + ch*) 2 h~"N which implies the result of the theorem.

Introduce the set Q* = {z: b(z) < A}. Itis obvious from the definition of V' (1),
that V' (4) = (2n) ""mes Q*, so that under the conditions of the theorem we have
mes Q* = + o0.

Now let Q, be a family of open sets with smooth boundaries, satisfying the
following conditions

(1) @, are bounded, Q, < Q*;

2) W,=(2n) "mesQ,— + o as e— +0;

(3) xeQ,, implies inf |x—y|>e¢i.e. the distance between Q, and 0Q*
is not less than e. yeRIna!

Now construct a smoothed characteristic function of Q, (this is possible
along the lines of the construction in 28.6).
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Let 2h* < ¢ (as always 0 < » < 1/2) and v,(z, h) the characteristic
function of the (A*)-thickening of the set £2,. Put

X2 h) = h=2" [y, (0, h) xo(y—2)h™ ) dy,

where x,(v) € C(R?"), %920, xo(v)=0 for |[v|=1 and [yo(v)dv=1. It is
obvious that

supp y. < Q*. (A.2.64)

In addition, it is easily verified that | 8} x, (z, )| < Ch~*/"l_and from this estimate
and the compactness of the support of y, we have

X(zh)eZ, 0. (A.2.65)

Let &, be an approximate spectral projection as constructed in A.2.6.
Denote by F, the operator with the 4-anti-Wick symbol e(z, k), by &, , the
operator with the A-symbol y, (z, 1) and by E, , the operator with the A-anti-Wick
symbol y, (z, h). The following relations hold between the operators #,, F,, &, ,
and E,

F,— F,= ReS; 2012 ||R|| < Ch'~2*; (A.2.66)
F,2E,,; (A.2.67)
& n—E, = ReS; 2" |R| < Ch™2~. (A.2.68)

Here (A.2.66) and (A.2.68) follow from Lemma A.2.1, whereas (A.2.67) is
obvious since y, < e due to (A.2.64).

Now consider the operator &, ,. In the same way as in part 2 of the proof of
Theorem A.2.1 looking at the h-symbol of the operator 2, — &, , we obtain the

€

16— Enll S CW, . — W) h™", (A.2.69)

where W, , is the volume of the (24”)-thickening of the set Q,. But W, , — W,
= O (h”™) since the open set Q, is bounded and has smooth boundary. Therefore

162, — & ully S Ch 7"t (A.2.70)

Similarly we obtain
Spé&.n=h""W,(1+0(K). (A.2.71)

From (A.2.70) and (A.2.71), as in Lemmas 28.2 and 28.3, we may obtain an
asymptotic expression for the number N of eigenvalues of &, , belonging to
(1/2,3/2]:

N=h""W,(1+0(h"). (A.2.72)
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The space spanned by the corresponding eigenvectors is denoted by # 5. Now
we will prove that Hy = £,5¢ 5 satisfies (A.2.62) and (A.2.63).
Let nest'y, then for &, we have the estimate
(Fwnsm) 2 (1240 (R ™)) (n,7). (A.2.73)
Indeed, using (A.2.66)—(A.2.68), we get

(Fun,n) = (Bn,m) + (Rn,n) 2 (E, 41,1) + (R, 1)
=(&,.um,M) + (R+R)n,m) 2 (1240 ") (n,n).

By the Cauchy-Schwarz inequality we have

(Funn) £ V(Fum, Fan) (1)

from which, by (A.2.73), it follows that

W(En, Fun) 2 (Fn,n) Vin,n) 2 V) 1240 7)),

or
(Fun, Fyn) 2 [1/4+0 (™)) (n, ). (A.2.74)

Now let £eHy; then ¢ = #,n, where ne# 5. We recall the inequality,
obtained in proving Theorem A.2.1,

Fo(Ayy—Al) F < Ch* (A.2.75)

(which is independent of the behaviour of V' (41)). From (A.2.74) and (A.2.75) it
follows that

((A(h)_'u) £,¢8) = ((A(h)_'u) Fun, Fyn) < Ch*(n,n)
S @+ 0 7)) (Fn, Fun) Ch*= O (W) (£,8).

Thus, on Hj, we have

Ap— A+O0OHNILO0.
In addition, from (A.2.74), it follows that %, is injective on 3¢5, hence
dmHy=dimH# z=h "W, 1+ 0H)).

The proof of the theorem is now completed since the volume W, may be
chosen as large as we like. [
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Hilbert-Schmidt and Trace Class Operators

A.3.1 Hilbert-Schmidt operators and the Hilbert-Schmidt norm

Definition A.3.1. Let H, and H, be two Hilbert spaces. A bounded linear
operator K: H,—H, is called a Hilbert-Schmidt operator if for some
orthonormal basis {e,} in H, we have

Y | Ke, |12 < 4+ 0. (A.3.1)

The set of all Hilbert-Schmidt operators K: H,— H, is denoted by
S,(H,,H,),orS,(H)incase H, = H,= H. The following proposition describes
the basic features of these operators.

Proposition A.3.1. 1) Theleft hand side of (A.3.1) is independent of the choice
of orthonormal basis {e,} (the square root of the left-hand side is called the
Hilbert-Schmidt norm of the operator K and denoted by || K||,).

2) IK*)l2= K]l

3) KN ZIK||,, where ||K|| is the usual operator norm.

4) every operator KeS,(H,,H,) is compact.

5) if K is a compact self-adjoint operator in the Hilbert space H, then

NKIS =D 47, (A3.2)
j=1
where Ay, A,, ... are all the non-zero eigenvalues of K counting multiplicities.
6) If {e,} is an orthonormal basis in H,, then the scalar product
(K’ L)Z = Z(Kea7Lea) (A3‘3)

with K, LeS,(H,,H,) is independent of the choice of basis {e,} and defines on
S,(H,, H,) a Hilbert space structure with the corresponding norm |- {|,.

N If £ (H)), j = 1,2, is the algebra of all bounded operators in H;, then
S,(H,,H,) is a left ¥ (H,)-module and a right & (H,)-module, moreover

4K, = 141l |1Kll,, AeZ(H,), KeS,(H\,H,)), (A34)

IKBll, = | KN, I1Bll, BeL(H,), KeS,(H,H,). (A3.S5)
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S,(H) is in particular, a two-sided ideal in £ (H).

Proof. Let {f;} be an orthonormal basis in H,. Then
Y IKe,|I* = Zﬁ |(Ke,, f3)* = Z;} (€2, K* fp)| =% IK*f 1%, (A.3.6)

from which 1) and 2) follow. If now x = 2 x,e, € H,, then

zé (g x| IIKeaII)2
s (Z Ixalz> (Z IIKeaIIZ) = KI5 lIx)?,

from which 3) follows. To prove 4) we approximate K €S, (H,, H,) by finite-
dimensional operators (operators of finite rank). Namely, lete, , e,, ... beall the
vectors of an orthonormal basis {e,}, such that Ke, # 0 ( it follows from (A.3.1)
that this set is at most countable). Then clearly

I Kx||* =

Y x,Ke,

Kx = f (x, ;) Ke;, (A.3.7)

i=1

N
and putting Kyx= ) (x,e;)Ke; we obtain ||K—Ky|?<||K—Kyl3
i=1

= ) |IKe||*—>0 as N— co as required.

j=N+1

Statement 5) follows from 1) if we choose a basis of eigenvectors of K.
Now we will prove 6). Note first that

|(Ke,, Le,) | < l|Ke, |l | Le, |l < 5 (1 Ke,lI* + | Le, I1?),

from which the convergence of the series (A.3.3) follows for K, L € S,(H;, H;).
Itisclearthat (K, K), = | K ||§ and hence (K, L), is independent of the choice
of basis.

Note that the algebraic properties of the scalar product are clearly satisfied
by (A.3.3) and to proof 6) it only remains to demonstrate the completeness of
S, (H,, H,) with respect to || - ||,. For this it is most convenient to establish an
isomorphism between S,(H,,H,) and [*(M, xM,), where M; is a set of
cardinality dim H;. The space />(M) for an arbitrary set M cons1sts of the
functions on M d1fferent from zero in at most countably many points and such
that ) |f(«)|? < + co. We may view this space as L? (M) if M has the s-algebra

aeM
generated by one-point sets with measure 1 for each one-point set.
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The required isomorphism between S,(H,,H,) and [*(M,xM,) is
established by associating with each KeS, (H,, H,) its matrix K., = (Ke,, f3),
where {e,}, { j;,} are orthonormal bases in the spaces H, and H,. The fact that
this association is an isometric isomorphism is clear from the calculation (A.3.6).

Now we will prove 7). Since || 4Ke, || < || 4|| || Ke, ||, the estimate (A.3.4) and
therefore the fact that S,(H,, H,) is a left & (H,)-module, are clear from the
definitions. To prove (A.3.5), guaranteeing the possibility of introducing on
S, (H,, H,) a right ¥ (H,)-module structure pass to the adjoint operator:

KBl = I(KB)* [, = || B*K*|l; = | B*|| IK*[l, = | BIl I K]l2,

as required. [J

Now let X and Y be two spaces with positive measures and H, = L*(Y),
H, = L*(X). In this situation, the operators KeS,(H,,H,) are described as
follows

Proposition A.3.2. The operators KeS,(H,, H,) are exactly those which can
be represented as

(Kf)(x) = | K(x,y) f(y)dy (A.3.8)

with a kernel K(x,y)e [*(X x Y). We then also have

IKI3 =[] 1 K(x,»)|*dxdy (A.3.9)

XxY

(in these formulas dx and dy denote the measures on X and Y respectively).

Proof. Let {e,(y)} and {f;(x)} be orthonormal bases in L?(Y) and L*(X),

and KeS,(H,, H,). Note that { f;(x) e,(») } constitutes a complete orthonormal
basis in I*(X x Y) and if we put

K(x,p) =Y (Keg, ;) f(x) e, (), (A:3.10)
a, B

then K (x,y) € L* (X x Y) and the operator of the form (A.3.8) coincides with K,
since these operators both have the same matrices in the bases {e,} in H; and { f;}
in H,. The Parseval identity guarantees (A.3.9).

Conversely, if K(x,y)e L*(X x Y), then decomposing K (x, ) in the basis

{f3(x) e,(»)}, we obtain

K(x,y) = Z Cap fy (%) €,(3), Zﬂlcaﬂlz <+o.

But from this it is obvious that in the base {e,} and {f;}, the matrix of K is
C.5 = (Ke,, f;) which implies that KeS, (H,,H,). [
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A.3.2 Trace class operators and the trace

Definition A.3.2. Let H be a Hilbert space and S, (H) the ideal of Hilbert-
Schmidt operators on H. Let S, (H) = (S, (H))? be the two-sided ideal in £ (H),
the square of S, (H), consisting of operators which can be written as finite sums

A= ZBjCj7 Bj: CjESZ(H) (A.3.11)
j

Theideal S, (H) is called the trace class and the elements of S, (H) are called trace
class operators on H.

Proposition A.3.3. 1) Let A€S,(H) and {e,} an orthonormal basis in H.
Then

Y (e, ,e)| <+ (A.3.12)

and
Sp A =Z(Aea,ea) (A.3.13)

is independent of the choice of orthonormal basis {e,}. This expression is called the
trace (Spur in German) of the operator A. The trace is a linear functional on
S, (H) withSp A =0 for A= 0. We may rewrite the scalar product (K, L), using
the trace, as

(K,L), =Sp(L*K), K, LeS,(H) (A.3.14)

2) If A is a compact self-adjoint operator with non-zero eigenvalues ., A,, . ..
(counting multiplicity), then A €S, (H) if and only if

y 14;] < + 0. (A.3.15)
and o
Spd = f 4. (A.3.16)
3) If AeS,(H), then !
SpA*=SpA (A.3.17)

4) If AeS,(H) and Be ¥ (H), then
Sp(4B) = Sp(BA) (A.3.18)
Proof. 1) if A is expressed in the form (A.3.11) then

(Ae"‘ > eﬂ) = Z (Bijea > ea) = Z (Cjeu Bj*ea) 5

j Jj
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which implies (A.3.12) and

Z(Aeanea) = Z(Cj)Bj*)Z’ (A.3.19)

from which it is obvious, in particular, that Sp 4 is independent of the choice of

basis.
(A.3.14) is obvious.

2) Now let A*= A. If 4eS,(H), condition (A.3.15) and (A.3.16) holds,
because we may take for {e,} a basis of eigenvectors. Conversely, if (A.3.15)
holds and if {e,} is a basis of eigenvectors, 4e, = 4,e,, then defining B and C by
the formulas

Bea: l l’{alea’ Ce(l: la/l Ila ea’

we see that B, CeS,(H) and 4 = BC so that 4 €S, (H).
3) Let us verify (A.3.17). Writing 4 in the form (A.3.11), we have
A4*=Y C¥B¥ and from (A.3.19)

J

SpA*=Y (BF,C),=Y (C;,Bf), =Sp4,
J J

which proves (A.3.17).

4) Finally we will verify (A.3.18). First let B be unitary. Then 4B and B4 are
unitarily equivalent since 4B= B~ !(BA)B. Hence (A.3.18) for B unitary is a
consequence of the independence of the trace on the choice of basis. To prove
(A.3.18) in general, note that both parts of (A.3.18) are linear in B and the
following statement holds

Lemma A.3.1. An arbitrary operator Be ¥ (H) can be expressed as a linear
combination of four unitary operators.

Proof. Since we may write
_B+B* B— B*

B=B\+iB,, Bf=Bi=-——, Bfi=B=

it suffices to verify that a self-adjoint operator may be expressed as a linear
combination of two unitary ones. We may assume that || B|| < 1. But then the
desired expression takes the form

B=1[B+iyI-B2]+1 [B—iyI-B?].

Therefore Lemma A.3.1 and hence Proposition A.3.3 are proved. []
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A.3.3 The polar decomposition of an operator

Let H, and H, be Hilbert spaces. Recall that a bounded operator U: H, — H,
is called a partial isometry if it maps isometrically (Ker U)* onto Im U. It follows
that

UtU=E, UU*=F (A.3.20)

where E'is the orthogonal projection onto (Ker U)! in H, and Fis the orthogonal
projection onto Im U in H, (in this case Im U is a closed subspace of H,). If
KerU = 0 and InU = H,, then U is a unitary operator.

Definition A.3.3. The polar decomposition of a bounded operator A:
H,— H, is the representation of 4 in the form

A=US (A.3.21)

where S is bounded self-adjoint and non-negative on H, and U: H,—> H, is a
partial isometry such that

KerU = KerS = (ImS )}t (A.3.22)

Proposition A.3.4. The polar decomposition of a bounded operator A:
H,— H, exists and is unique.

Sketch of the Proof. From (A.3.21) we have A* =SU* from which 4*4
= SU*US = SES. But ES = S by (A.3.22) so that

A*4 = §? (A.3.23)

and hence
S= 1 A*4 (A.3.24)

(/ A*A is defined by means of the spectral decomposition theorem).

Infactlet C= 4*A4 and let B be any bounded selfadjoint operator in H, such
that B = C and B2 0. We will prove that B = S, where S is given by (A.3.24).
Being a function of C, S commutes with every operator commuting with C. In
particular, BS =SB because BC = CB= B3. Hence

(S—B) S(S—B) + (S—B) B(S—B) = (S2—B?) (S—B) = 0.

Both terms on the left-hand side are non-negative operators so both vanish.
Hence so does their difference (S—B)® and therefore (S—B)*=0. This
obviously implies .S — B=0 because S — B is selfadjoint.

For the details concerning spectral and polar decompositions the reader may
consult e.g. F. Riesz, B.Sz.-Nagy [1]. Further formula (A.3.21) defines U
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uniquely in view of (A.3.22) thus proving the uniqueness of the polar
decomposition.
To show the existence construct S by the formula (A.3.24) and define U by

Ux=0 for x1LImS (A.3.25)
U(Sx)=Ax for xeH, (A.3.26)

To verify the correctness of this definition, it suffices to show that if Sx = 0 then
Ax = 0. But this follows immediately from (A.3.23) together with

[1Sx1* = (Sx, Sx) = (S?x, x) = (4*Ax, x) = (Ax, Ax) = || Ax||*,

which shows that U is a partial isometry. []

Definition A.3.4. If 4 = US is the polar decomposition of 4, we will write
S=4|

Proposition A.3.5. Let J be an arbitrary left ideal in the algebra ¥ (H). Then
AeJifand only if |A|eJ.

Proof. This is clear since A=U|A|, U*4A=]A4|. [
Corollary A.3.1. We have
A€eS,(H) = |A|eS,(H),
AeS, (H) < |4A|eS,(H).

By using the polar decomposition, we may, as a complement to 4) of Proposition
A.3.3 prove

Proposition A.3.6. If A, BeS,(H), then
Sp(AB) = Sp(BA).
Proof. Using the identities
4AB* = (A+ B)(A+ B)* — (A— B)(A— B)*
+i(A+iB) (A+iB)* — i(A—iB)(A—iB)*,
4B*A = (A+ B)* (A+ B) — (A— B)*(4— B)
+i(A+iB)* (A+iB) — i(A—iB)* (A—iB),
we see that it suffices to verify that
Sp(A4A*) =Sp(4*4), AeS,(H) (A.3.27)
However, using the polar decomposition 4 = US, we see that Se S, (H) and
hence S? €S, (H) and since

A*A =S8%  AA*=US*U*,
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then in view of part 4) of Proposition A.3.3
Sp(AA*) = Sp(US*U*) = Sp(U*US?) = SpS? = Sp(A4*A),

as required. [J

A.3.4 The trace class norm

Definition A.3.5. The trace class norm of the operator 4 €S,(H) is the
expression

4l = Sp|4]. (A3.28)

Proposition A.3.7. 1) The following inequalities hold

412 = 1141y, A€eS | (H); (A.3.29)
BAll, = 1Bl II4lly,  AeS(H), BeZ(H); (A.3.30)
I4Bll; = 41l 1B, AeS\(H), BeZ(H); (A.3.30")
ISpA| = 141, AeS,(H), (A.3.31)

as well as the relations

N4*, = 1141, AeS,(H); (A.3.32)
41l = sup [Sp(B4)I, AeS,(H). (A.3.33)
e

2) The trace class norm defines a Banach space structure on S, (H).

Proof. 1) a) Let us prove (A.3.29). Suppose 4 = US is the polar decom-
position of A. Then

l41l; = IISll; = SpS, (A.3.34)
4117 = Sp(4*4) = SpS?, (A.3.35)

so that (A.3.29) is equivalent to the inequality
SpS? < (SpS)? (A.3.36)

which becames evident if we express SpS? and Sp S in terms of an eigenbasis
of S.

b) To prove (A.3.32) note that A* = SU*, 44* = US?U* and |4*| = USU*,
hence

Sp|A4*| = Sp(USU*) = Sp(U*US) = SpS = Sp|4].
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¢) Now we will prove (A.3.31). Suppose {e,} is an orthonormal basis of
eigenvectors of S with eigenvalues s, ,

Se, = s,¢e,. (A.3.37)
We have
SpA =) (USe,e,) =) s,(Ue,,e,), (A.3.38)
and since | (Ue,,e,)| <1, then clearly [SpA4| <) s, =SpS= 4], .
d) To prove (A.3.30) let BA = V'T be the polar decomposition of BA. Then
|BA|, =SpT = Sp(V*BA) = Sp (V*BUS).

Now note that ||V*BU|| < || B||. The remaining argument is as in c).

e) The estimate (A.3.30") follows from the estimate (A.3.30), since ||4B]||,
= [[(4B)* ||, = || B*A*|, .
f) The relation (A.3.33) now readily follows from the estimate

ISp(BA)| < || BAIl, = | BIl |41l

where we have equality for B= U*.

2) a) We will prove that the trace class norm || - ||, has the usual properties
of a norm:

4"+ 4"l = 14']l, + 1471, A4, A"eS,(H);
1240, =121 14]l;, AeS,(H), 1eC;
4], =0« A4=0.

Here only the first relation is non-trivial. To prove it we use (A.3.33)

A"+ A"|l; = sup [SpB(A4'+A4")| = sup |Sp(BA’)+Sp(B4")|

IBI<1 I1BI=1
< sup (|Sp(BA4)| + |Sp(B4")|)

I1Bls1
< sup (|Sp(B'A")|+|Sp(B"A")|) = sup |Sp(B'A")|

1Bt 18711

18" 11

+ sup [Sp(B"A")| = [|4"|l; + 14"l

18"1s1

b) We want to verify the completeness of S, (H) in the norm || -||,. Let
n=1,2,...,4,€S,(H)and ||4,— A4,,l, =0 as n, m— + 0. Then by (A.3.29)
and part 6) of Proposition A.3.1 there exists an operator 4 €S, (H) such that
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lim ||4,— A4]|,=0. To verify that 4 €S, (H), let A= US be the polar decom-

n- oo

position of 4 and put C, = U*A4,. Obviously

lim ||C,— S|, =0, (A.3.39)
lim |C,—C,|l,=0. (A.3.40)

Let {e,} be an orthonormal eigenbasis of S with eigenvalues s,. From
(A.3.39) it follows that

s, = (Se,,e,) = lim (C,e,,e,). (A.3.41)

n- oo

To prove that 4 €S, (H) it suffices to verify that Zs < 4 o0. This, in turn,
follows from (A.3.41) and the estimate

sup ). [(Cre,, )| < + 0, (A.3.42)

which holds in view of the inequality

Y 1(Ceue) | ZNCHy, CeS (H), (A.3.43)

which is easily derived from (A.3.33).
It remains to prove that

lim || 4,~ 4|, = 0.
Let ¢ > 0 and select N so large that
|4,—A4,ll, e mnzN. (A.3.44)
Let us prove that
|4,—A4|l;<¢ n=N. (A.3.45)
From (A.3.43) it follows that

lim Sp(BA,) = Sp(BA) for any Be % (H).

n- o

But by (A.3.44), this gives
|Sp(BA,) —Sp(BA)|£¢ for n= N,

if || B|| < 1. It only remains to use (A.3.33) to arrive at the desired (A.3.45). ]
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A.3.5 Expressing the trace in terms of the operator kernel

To express the trace in terms of the operator kernel is very simple from the
formal point of view although difficult technically (it is difficult to justify an
easily discovered formal formula). In this section, we introduce a formal scheme
which should be justified in detail in each concrete case.

Let X be a space with measure dx and K a trace class operator on L?(X) with
kernel K (x, y). We would like to write K in the form

K=L,L,, L,,L,eS,(I*(X)) (A.3.46)

(this can for instance be done as follows: let K = US be the polar decomposition,

and take L, = U]/E, L,= 1/§). Denote by L, (x, y) and L, (x, y) the kernels of
L, and L,. Formally, we have

K(x,») = [L,(x,2) L,(z,y)dz. (A.3.47)

Since we may also write K=(L¥)*L,, where L} has kernel L¥(x,y)
= L,(y,x), then by Propositions A.3.3 (formula (A.3.14)) and A.3.2 justifying

(K, K3), = [ K (x,9) Ky (x,) dxdy (A.3.48)
(where K €S, (L*(X)), K;(x, y) is the kernel of K;) we have
SpK=(Ly,L}); = [Li(y,x) Ly(x,p)dxdy =[L,(x,2) Ly(z,x)dzdx, (A.3.49)

or

SpK = [K(x,x)dx, (A.3.50)

Actually, a justification of the formal calculations (A.3.47)—(A.3.50) is
possible, for instance, when X is a compact manifold with boundary, dx is a
measure on X determined by a positive smooth density and the kernel K(x, y) is
continuous. An example of these kind of arguments based on the Mercer’s
theorem is carried out in §13 in proving Theorem 13.2.

Note the basic difficulty in the justification: the kernel K (x, y) is only defined
up to a set of measure zero in X x X, but in (A.3.50) there enters the restriction of
K(x,y) on the diagonal in X x X — which is a set of measure 0.

Another version of this kind of argument is to try and obtain the integral
(A.3.50) as a limit of integrals on a small neighbourhood of the diagonal
appropriately normalized (cf. Gohberg and Krein [1], chapter I11, §10). We omit
the details, since this is not used in the main text of this book.

Exercise A.3.1. Show that
lAB|l, = |41l | Bll,, A, BeS,(H).
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Exercise A.3.2. Show that
Bl = sup |Sp(4B)].

AeS, (H)
4, st

Exercise A.3.3. Let J be a two-sided ideal in %' (H) and assume 0 A< B
with B € J. Show that A € J.

Hint: Show that 4 = CB'?, where Ce ¥ (H) and ||C|| 1.



A Short Guide to the Literature

Here we only mention the works most closely connected with the material
covered in the book. We make no claims whatsoever on bibliographical
completeness. I have tried as far as possible to avoid referring to short
communications, so that mostly monographs and detailed papers or survey
articles are referred to.

Chapter 1

The concept of a pseudodifferential operator (¥'DO) originated in the the-
ory of multidimensional singular integral operators (cf. Michlin [1] and the
references therein). Subsequently, singular integro-differential operators em-
erged (cf. Agranovich [1] and references therein). The term ‘‘pseudodifferential
operator” was coined by Friedrichs and Lax [1]. In the present form ¥YDO
appeared basically in the work by Kohn and Nirenberg [1] (where the ¥DO
which we call “classical” were considered). The symbol classes S7'; and the
corresponding operator classes were introduced by Hormander [2]. The
theorem on the invariance of the class of ¥ DO under changes of variables is also
due to him (cf. Hormander [1], [2]). The proof of this theorem given here is based
on ideas of Kuranishi.

The Fourier integral operators (FIO) were introduced and systematically
studied in Hérmander [6]. The closely related concept of a canonical operator
had been studied earlier by Maslov in connection with various asymptotic
problems (cf. Maslov [1], [2], Maslov and Fedoryuk [1], and Duistermaat [3]).
Hormander’s work was also preceeded by the works of Eskin [1], [2], Egorov [1],
[2], containing the ideas developed by Hormander. In the works by Niren-
berg and Treves [1] and Egorov [1-4] ¥DO and the simplest FIO were used
to study local solvability and regularity of solutions for general operators of
principal type.

In the exposition of the theory of oscillatory integrals, FIO, and in the
construction of algebras of WDO, I basically follow Hormander [6].
Hypoellipticity in §95, is presented in the spirit of Hormander [2]. In the same
work there is given described here in detail a sketch of the theory of Sobolev
spaces. More complete information on Sobolev spaces can be found in
Hormander [7], Nikolskii [1], Sobolev [1], Besov, II'in and Nikolskii [1], Lions
and Magenes [1]. An elementary presentation of the basic facts in the theory of
¥DO can be found in the book by Wells [1].
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Note that what we call FIO are usually called local FIO. To avoid an
excessive increase of the volume of the book, I deliberately left out the
considerably more subtle and complex theory of global FIO. Global FIO or
their equivalent, the canonical Maslov operator, are however necessary in a
series of applications (for instance in the theory of hyperbolic equations or in
spectral theory). Therefore, after the reader has acquired familiarity with local
FIO and their applications, he has to learn about global FIO (this might be done
for instance from the papers by Hoérmander [6] and Duistermaat and
Hoérmander [1] or from the lectures of Duistermaat [1]) and Maslov canonical
operator theory (for instance, from the book by Maslov and Fedoryuk [1]).

Concerning other questions of the theory of W¥DO and FIO, we refer the
reader to the monographs by Friedrichs [1], Eskin [3], Taylor [1], Duistermaat
[1], Tréves [1], Grushin [2] and the papers by Agranovich [1], Kumano-go [1],
[2], Beals and Fefferman [1], Beals [1], [2], [3], and Calderon [1].

Let us mention the important results found by Calder6n and Vaillancourt [1]
making more precise the boundedness theorem (for example they considered
operators of the class L) ; with 0<o=06<1) (cf. also Watanabe [1] and
Kumano-go [3]). As for the action of WDO on L”-spaces, see Muramatu [1]
and Illner [1], for the action on Holder classes, see Durand [1], and for the
action on Gevrey classes and classes of analytic functions see Volevié [1],
Du-Chateau and Tréves [1], and Baouendi and Goulaouic [1].

Operators with complex phase-function were considered by Kucerenko [1],
Miscenko, Sternin and Shatalov [1], and by Melin and Sjostrand [1].

Research on the index problem, for which WDO provided an essential tool,
excerted a strong influence on the development of the theory W¥DO: cf. Atiyah
and Singer [1], Fedosov [1], Atiyah, Bott and Patodi [1], Hérmander [5], Atiyah
[1], [2]. The technique of ¥ DO was used in the work by Atiyah and Bott [1] on
the Lefschetz theorem.

Important concrete applications of WDO to classical problems in the theory
of partial differential equations can be found in Oleinik and Radkievi¢ [1], and
Maz’ya and Paneyah [1].

Chapter 11

The description of the structure of complex powers of elliptic operators in
terms of WDO and the theorem on meromorphic continuation of the kernel of
complex powers and of the {-function are due to Seeley [1], [2], [3]. Variations
and generalizations of this theory can be found in Nagase and Shinkai [1],
Hayakawa and Kumano-go [1], Kumano-go and Tsutsumi [1], Smagin [1], [2].
The Tauberian technique was first exploited in the classical work of Carleman
[1]. A survey of several variants of the Tauberian technique is given in
Hoérmander [4]. The proof of the Ikehara Tauberian theorem given here, is close
to the one given in the book by Lang [1].

Let us mention an important application of the results of Seeley, namely, the
already mentioned work of Atiyah, Bott and Patodi [1], where a new
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presentation of index theory is given. For a self-adjoint, non-semibounded
operator A, Atiyah, Patodi and Singer [1] studied the function

14(2) =¥ (sign ) 14,1

We mention also the papers by Ray and Singer [1], [2] on analytic torsion
close to this circle of ideas.

The papers by Seeley [2], [3] also contain a study of the {-function for an
operator corresponding to an elliptic boundary problem. We did not touch upon
the spectral theory of boundary problems, for this the reader is referred to the
monograph of Berezanskij [1].

The meromorphic continuation of the {-function is intimately related with
the asymptotic behaviour of the trace of the resolvent (as A —» o) and with the
asymptotic behaviour of the 6-function

0(t)=) e % ast— +0
j

(cf. for instance Duistermaat and Guillemin [1]). These questions are considered
in the papers by Fujiwara [1] and Greiner [1].

Pseudodifferential systems, elliptic in the sense of Douglis and Nirenberg are
studied from this view point by KozZevnikov [1]. The asymptotic behaviour of
N(A) as A— + o0 (without an estimate of the remainder) for hypoelliptic
operators on a compact manifold with boundary was obtained by Moscatelli
and Thomson [1].

A discussion of the theory of pseudodifferential boundary problems with
parameters can be found in Agranovich [2].

As we have noted in the main text, the theorem on the continuation of the
{-function does not allow us to obtain any substantial information concerning
the eigenvalues of non-self-adjoint operators. A survey of different questions of
the spectral theory of non-selfadjoint differential and pseudodifferential can be
found in Agranovich [3].

Chapter 111

Theorem 16.1., which is due to Hérmander, is proved in [4]. Chapter Il isan
extensive presentation of this work, supplemented with an exposition of all the
indispensable auxiliary facts. The work by Hormander [4] also contains some
results bearing on the case of a non-compact manifold and some results on Riesz’
means (concerning this, see also Hérmander [3]).

The description of the structure of the operator exp(—itA) as an FIO, is
essentially based on ideas from geometric optics (concerning this, see the book
by Babi¢ and Buldyrev [1]). These ideas were exploited by Lax [1] to construct
asymptotic solutions and a parametrix of hyperbolic systems. Héormander [4]
developed the method of Lax and arrived at the indicated description of the
structure of the operator exp(—irA), which is essentially equivalent to a
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description of the singularities of the fundamental solution of a pseudodifferen-
tial hyperbolic equation. Note also that for large ¢, the operator exp(—itA)
already is a global FIO (cf. the literature guide to Chapter I.). The possibility of
representing the exponential operator exp(—tA) and its kernel in terms of
Feynman type integrals is studied in a series of works (cf. e.g. Maslov and
Shishmarev [1]).

Notice, that the method of obtaining the asymptotics behaviour of spectral
function by considering a hyperbolic equation, was first employed by Levitan
[1]. Let us also mention Levitan [2], which contains important supplements to
the work of Hormander [4].

Further results on the asymptotic behaviour of eigenvalues, which connect
this question with the geometry of the bicharacteristics, can be found in the
papers of Colin de Verdiére [1], Chazarain [1], Duistermaat [2], Weinstein [1],
Shnirelman [1]. Note in particular the work by Duistermaat and Guillemin
[1], where under certain assumptions, the second in the asymptotics of N (1)
as A — oo is obtained for an selfadjoint elliptic operator on a closed manifold.
Using FIO Rozenblyum [1] got very sharp results on asymptotic behaviour of
eigenvalues for operators on a circle.

Concerning the geometry of the spectrum cf. also the book by Berger,
Gauduchon and Mazet [1], an article by Molcanov [1] and interesting papers
by Gilkey [1], [2], [3].

We did not touch on questions connected with the spectral asymptotics of
non-smooth or degenerate operators and boundary problems. Regarding this,
we refer the reader to the lectures of Birman and Solomyak [1] and their survey
[2], where an extensive bibliography on spectral asymptotics can also be found.
A survey of a number of important results concerning eigenfunction expansions
can be found in the article by Alimov, II’ in and Nikisin [1].

Chapter IV

Essentially the theory of ¥DO in IR" emerged long ago in connection with
mathematical questions of quantum mechanics. (cf. e.g. Berezin [1], Berezin and
Shubin [1], [2]). Several versions of this theory can be found in the works of
Rabinovi¢ [1], Kumano-go [1], [2], Grusin [1], Shubin [1], [5], Beals [2], Feigin
[2].

In Beals [3] and Shubin [5], there is discussed the structure of operators, which
are functions of ¥DO in IR" with uniform (in x) estimates of the symbols
(such as in Kumano-go [1]). '

Various questions, related to the Fredholm properties of ¥'DO on non-
compact manifolds, are considered by Cordes and McOwen [1]. Recently a
number of papers have appeared devoted to ¥DO on nilpotent Lie groups (in
particular on the Heisenberg group). Cf. e.g. Rothschild and Stein [1].

The construction given here of the algebraof ¥YDQOin IR"is close to the one in
Shubin [1]. The concept of the anti-Wick symbol was introduced by Berezin [2]
and is a variation of Friedrich’s construction [1] (see also Kumano-go [1], [2]).
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Concerning applications of the Wick and anti-Wick symbol and also more
general symbols, see the papers by Berezin [2], [3], Berezin and Shubin [1], and
Shubin [2], [3]. With the help of inequalities for Sp exp(—it A), the asymptotic
behaviour of the eigenvalues is obtained in the work Berezin [2] (without
remainder estimate). The results of §25 and §26 are essentially contained in the
work of Shubin [1] (see also [4]) — The method of approximate spectral
projection and all the results in §28-30 are contained in Tulovskij and Shubin
[1]. A significant modification of this method was offered by Feigin [1], [2].

We mention that the method of approximate spectral projection is essentially
a variational method. Variational methods began with the classical work of H.
Weyl [1], [2]. To find the asymptotic behaviour of eigenvalues for operators in
IR", one can also apply the Tauberian method, cf. the work by Kostyucenko [1].
A survey of all results on the spectral asymptotics for operators in IR" can be
found in the already cited work by Birman and Solomyak [2].

Appendix 1

On the basis of the earlier concept of singular support of a hyperfunction,
due to Sato [1], Hormander [6] introduced the concept of a wave-front for a
distribution. The theorem on propagation of singularities in the form given here
is due to Duistermaat and Hormander [1] (see also Hormander [8]). The proof
given here is due to Tulovski. Another presentation can be found in the lectures
by Nirenberg [1]. In a number of later works more subtle questions connected to
the propagation of wave fronts have been considered (see e.g. the work by Ivrii
[1] and references therein).

Appendix 2

In this appendix the results of Roitburd [1] are presented. A closely related
result but without an estimate of the remainder term was obtained by Berezin
[2]. Other information on quasi-classical asymptotic formulae and references to
the literature, can be found in the monograph by Maslov and Fedoryuk [1].



Bibliography

Agranovich, M. S.

[1] Elliptic singular integro-differential operators, Uspehi Mat. Nauk 20, No. 5, 3-120
(1965) (Russian), also in Russian Math. Surveys 20, 1-122 (1965)

[2] Boundary value problems for systems with a parameter, Mat. Sb. 84(126), 27-65
(1971) (Russian), also in Math. USSR Sb. 13, 25-64 (1971)

[3] Spectral properties of diffraction problems. In: Voitovich, N. N., Katsenelenbaum,
B. Z., Sivov, A. N.: Generalized method of eigenvibrations in diffraction theory,
Moscow, Nauka, 1977, p. 289-416 (Russian). See also: Agranovich, M. S., Katsene-
lenbaum, B. Z., Sivov, A. N., Voitovich, N. N. Generalized method of eigenoscil-
lations in diffraction theory. Translated from the Russian manuscript by Vladimir
Nazaikinskii.

WILEY-VCH Verlag Berlin GmbH, Berlin, 1999. 377 pp.

Alimov, S. A., II’in, V. A, NikiSin, E. M.

[1]1 Questions on the convergence of multiple trigonometric series and spectral expan-
sions. 1, II. Uspehi Mat. Nauk 31, No. 6 (192), 28-83 (1976), 32, No. 1 (193), 107-
130, 271 (1977) (Russian), also in Russian Math. Surveys 31(1976), No. 6, 32 (1977),
No. 1

Armold, V.L
[11 Mathematical methods of classical mechanics. Graduate Texts in Math., vol. 60,
Springer-Verlag, Berlin, New York 1978, second edition 1989

Atiyah, M.
[1] Elliptic operators and compact groups. Lect. Notes Math. 401, 1-93 (1974)

[2] Elliptic operators, discrete groups and von Neumann algebras. Astérisque 32-33, 43—
72 (1976)

Atiyah, M., Bott, R.
[1] A Lefschetz fixed point formula for elliptic complexes. I. Ann. of Math., Ser. 2, 374—
407 (1967); 11. Applications, Ann. of Math., Ser. 2, 88, 451491 (1968)

Atiyah, M., Bott, R., Patodi, V. K.
[1] On the heat equation and the index theorem. Invent. Math. 19, 279-330 (1973); Errata.
Invent. Math. 28, 277-288 (1975)

Atiyah, M., Patodi, V. K., Singer, I. M.

[1] Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Phil. Soc.
77, 43-69 (1975); 11, 78, 405-432 (1975); 111, 79, 71-99 (1976)

Atiyah, M., Singer, [. M.

[1] The index of elliptic operator. I, Ann. of Math. 87, 484-530 (1968)

Babic, V. M,, Buldyrev, V. S.

[1] Asymptotic methods in short wave diffraction problems. Vol. 1. The method of canon-

ical problems. Nauka, Moscow 1972, 456 pp. (Russian). See also: Babi¢, V. M,,
Buldyrev, V. S. Short-wavelength diffraction theory. Asymptotic methods. Translated



276 Bibliography

from the 1972 Russian original by E. F. Kuester. Springer Series on Wave Phenom-
ena, 4. Springer-Verlag, Berlin, 1991, xi+445 pp.

Baouendi, M. S., Goulaouic, C.

[1] Problemes de Cauchy pseudo-différentiels analytiques non linéaires. (French) Sémi-
naire Goulaouic-Schwartz 1975/1976: Equations aux dérivees partielles et analyse
fonctionnelle, Exp. No. 13, 11 pp. Centre Math., Ecole Polytech., Palaiseau, 1976

Beals, R.

[1] Spatially inhomogeneous pseudodifferential operators. II. Comm. Pure Appl. Math.
27, 161-205 (1974)

[2] A general calculus of pseudodifferential operators. Duke Math. J. 42, 142 (1975)

[3] Characterization of pseudodifferential operators and applications. Duke Math. J. 44,
45-58 (1977)

Beals, R., Fefferman, C.
[1] Spatially inhomogeneous pseudodifferential operators. I. Comm. Pure Appl. Math. 27,
1-24 (1974)

Berezanskii, Yu. M.

[1] Expansions in eigenfunctions of selfadjoint operators, Akad. Nauk Ukrain. SSR. In-
stitut Matematiki. Naukova Dumka, Kiev 1965, 798 pp.; also American Mathematical
Society. Providence, R.1., 1968, 809 pp.

Berezin, F. A.

[1] Representation of operators by means of functionals. Trudy Moscow. Mat. Obs¢. 17,
117-196 (1967) (Russian), also in Trans. Moscow Math. Soc. 129-217 (1967)

[2] Wick and anti-Wick Operator symbols. Mat. Sbornik, 86, No. 4, 578-610 (1971) (Rus-
sian), also in Math. USSR Sbornik 15, No. 4, 577-606 (1971)

[3] Covariant and contravariant symbols of operators. Izv. Akad. Nauk SSSR Ser. Mat.
36, No. 5, 1134-1167 (1972) (Russian), also in Math. USSR Izvestija 6, No. 5, (1972)
1117-1151

Berezin, F. A., Shubin, M. A.

[11 Symbols of operators and quantization. Colloquia mathematica Societatis Janos Bolyai
5, Hilbert space operators, Tihany (Hungary), 21-52 (1970)

[2] Lectures on quantum mechanics. Moscow State University, 1972 (Russian). See also:
The Schrodinger equation. Kluwer Acad. Publishers, Dordrecht, 1991, 555 pp. See
also: The Schrodinger equation. Translated from the 1983 Russian edition by Yu. Ra-
jabov, D. A. Leites and N. A. Sakharova and revised by Shubin. With contributions
by G. L. Litvinov and D. A. Leites. Mathematics and its Applications (Soviet Series),
66. Kluwer Academic Publishers Group, Dordrecht, 1991. xviii+555 pp.

Berger, M., Gauduchon. P., Mazet. E.
[1] Le spectre d’une varieté Riemannienne. Lect. Notes Math. 194 (1971), 251 pp.

Besov, O. V., Ilin, V. P., Nikolskii, S. M.

[1] Integral representations of functions and imbedding theorems. Vol. I. Translated from
the Russian. Scripta Series in Mathematics. Edited by Mitchell H. Taibleson. V. H.
Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-
Toronto, Ont.-London, 1978. viii+345 pp.

Birman, M. S., Solomjak, M. Z.

[1] Quantitative analysis in Sobolev’s imbedding theorems and applications to spectral
theory (Russian). Tenth Mathematical School (Summer School, Kaciveli/Nalchik,
1972), pp. 5-189. Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev 1974. See also: Quan-
titative analysis in Sobolev imbedding theorems and applications to spectral theory.
Translated from the Russian by F. A. Cezus. American Mathematical Society Transla-



Bibliography 277

tions, Series 2, 114. American Mathematical Society, Providence, R.I., 1980. viii+132
pp-

[2] Asymptotic properties of the spectrum of differential equations (Russian), Mathemat-
ical analysis, vol. 14, pp. 5-58, Akad. Nauk SSSR, Vsesojuz. Inst. Naucn. i Tehn. In-
formacii, Moscow 1977

Calderon, A. P.

[1] Lecture notes on pseudo-differential operators and elliptic boundary value problems.
I. Cursos de Matematica, No. 1. [Courses in Mathematics, No. 1] Consejo Nacional
de Investigaciones Cientificas y Tecnicas, Instituto Argentino de Matematica, Buenos
Aires, 1976. 89 pp.

Calderon, A. P., Vaillancourt, R.
[1] A class of bounded pseudodifferential operators. Proc. Nat. Acad. Sci. USA 69, 1185—
1187 (1972)

Carleman, T.
[1] Propriétés asymptotiques des functions fondamentales des membranes vibrantes. C. R.
8-éme Congr. des Math. Scand. Stockholm (1934), Lund, 34-44 (1935)

Chazarain, J.
[1] Formule de Poisson pour les variétés riemanniennes, Invent. Math. 24, 65-82 (1974)

Chem, S. S.

[1] Complex manifolds. Lectures in Univ. of Chicago, Autumn 1955 — Winter, 1956.
See also: Complex manifolds. Textos de Matematica, No. 5, Instituto de Fisica e
Matematica, Universidade do Recife, 1959, v+181 pp.

Colin de Verdier, Y.
[1] Spectre du laplacien et longueurs des géodésique périodiques. II. Comp. Math. 27,
159-184 (1973)

Cordes, H. O., McOwen, R. C.
[1] The C*-algebra of a singular elliptic problem on a noncompact Riemannian manifold.
Math. Z. 153, No. 2, 101-116 (1977)

Du-Chateau, P., Tréves, F.
[1] An abstract Cauchy-Kovalevski theorem in scale of Gevrey classes. Symp. Mathemat-
ica 7, 135-163 (1971)

Duistermaat, J. J.

[1] Fourier integral operators. Translated from Dutch notes of a course given at Nijmegen
University, February 1970 to December 1971. Courant Institute of Mathematical Sci-
ences, New York University, New York, 1973. iii+190 pp. See also: Fourier integral
operators. Progress in Mathematics, 130. Birkhiuser Boston, Inc., Boston, MA, 1996.
x+142 pp.

[2] The spectrum and periodic geodesics. Lecture on the AMS Summer Institute on dif-
ferential geometry, Stanford, August 1973

[3] Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure
Appl. Math. 27, No. 2, 207-231 (1974)

Duistermaat, J. J., Guillemin, V. W.

[1] The spectrum of positive elliptic operators and periodic bicharacteristics. Invent.
Math. 29, 39-79 (1975)

Duistermaat, J. J., Hormander, L.
[11 Fourier integral operators II, Acta Math. 128, 183-269 (1972)

Durand, M.

[1] Paramétrix d’opérateurs elliptiques de classe C#. Bull. Soc. Math. France 103, 21-63
(1975)



278 Bibliography

Egorov, Ju. V.

[1] Canonical transformations and pseudodifferential operators. Trudy Moscow. Mat.
Obsc¢. 24 (1971), 3-28 (Russian), also in Trans. Moscow Math. Soc. 24 (1971), 1-28
(1974)

[2] Necessary conditions for the solvability of pseudodifferential equations of principal
type. Trudy Moscow. Mat. Obs¢ 24, 29-41 (1971) (Russian), also in Trans. Moscow
Math. Soc. 24 (1971), 29-42 (1974)

[3] Subelliptic operators. Uspehi Math. Nauk 30:2, 57-114 (1975), 57-114 (Russian),
also in Russian Math. Surveys 30:2, 59-118 (1975)

[4] On subelliptic operators. Uspehi Mat. Nauk 30: 3, 57-104 (1975) (Russian), also in
Russian Math. Surveys 30:3, 55-105 (1975)

[5] Linear differential equations of principal type. Translated from the Russian by Dang
Prem Kumar. Contemporary Soviet Mathematics. Consultants Bureau, New York,
1986. viii+301 pp.

Eskin, G. 1.

[1] The Cauchy problem for hyperbolic systems in convolutions. Mat. Sbornik (N. S.) 74
(116), No. 2, 262-297 (1967) (Russian), also in Math. USSR Sbornik, v. 3 (1967),
303-332 (1969)

[2] Systems of pseudodifferential equations with simple real characteristics. Mat. Sbornik
(N. S.) 77 (119), No. 2, 174-200 (1968) (Russian), also in Math. USSR, Sbornik v. 6
(1968), 159-183 (1970)

[3] Boundary value problems for elliptic pseudodifferential equations. Translated from the
Russian by S. Smith. Translations of Mathematical Monographs, 52. American Math-
ematical Society, Providence, R.I., 1981. xi+375 pp.

Fedosov, B. V.
[1] Analytic formulas for the index of elliptic operators. Trudy Moscov. Mat. Obs¢. 30.
159-242 (1974) (Russian), also in Trans. Moscow Math. Soc. 30, 159-240 (1974)

Feigin, V. .

[1] Asymptotic distribution of eigenvalues for hypoelliptic systems in IR". Mat. Sb. (N.
S.) 99 (141) (1976), No. 4, 594-614 (Russian), also in Math. USSR Sb. 28 (1976),
No. 4, 533-552 (1978)

[2] Some classes of pseudodifferential operators in IR" and some applications. Trudy
Moscow. Mat. ObscC 36, 155-194 (1978) (Russian), also in Trans. Moscow Math. Soc.
36 (1978)

Friedrichs, K. O.

[1] Pseudo-differential operators. An introduction. Notes prepared with the assistance of
R. Vaillancourt. Revised edition. Courant Institute of Mathematical Sciences, New
York University, New York 1970, vi+279 pp.

Friedrichs, K. O., Lax, P. D.
[1] Boundary value problems for first order operators. Comm. Pure Appl. Math. 18, No.
1-2, 355-388 (1965)

Fujiwara, D.
[1] On the asymptotic formula for the Green operators for elliptic operators on compact
manifolds. J. Fac. Sci. Univ. Tokyo. Sec. 1, 14, No. 2, 251-283 (1967)

Gelfand, 1. M,, Silov, G. E.

[1] Generalized functions. Volume 1: Properties and operations. Volume 2: Spaces of fun-
damental and generalized functions. Volume 3: Some questions in the theory of dif-
ferential equations. Moscow, Fizmatgiz, 1958—1959 (Russian), also Academic Press,
New York, London 1964, 1968



Bibliography 279

Gilkey P. B.

[1] Curvature and the eigenvalues of the Laplacian for elliptic complexes. Adv. Math. 10,
344-382 (1973)

[2] Curvature and the eigenvalues of the Dolbeault complex for Kaehler manifolds. Adv.
Math. 11, 311-325 (1973)

[3] Spectral geometry and the Kaehler condition for complex manifolds. Invent. Math. 26,
231-258 (1974)

Gohberg, I. C., Krein, M. G.

[1] Introduction to the theory of linear nonselfadjoint operators. Nauka, Moscow 1965
(Russian). See also: Introduction to the theory of linear nonselfadjoint operators.
Translated from the Russian by A. Feinstein. Translations of Mathematical Mono-
graphs, Vol. 18. American Mathematical Society, Providence, R.I. 1969, xv+378 pp.

Greiner, P.
[1] An asymptotic expansion for the heat equation. Arch. Ration. Mech. and Anal. 41, No.
1, 163-218 (1971)

Grusin, V. V.

[1] Pseudodifferential operators in IR with bounded symbols. Funktional. Anal. i PriloZen.
4, No. 3, 37-50 (1970) (Russian), also in Functional Analysis Appl. 4 (1970), 202-
212 (1971)

[2] Pseudodifferential operators. Moscow Institute of Electronic Engineering, Moscow
1975 (Russian)

Hayakawa, K., Kumano-go, H.
[1] Complex powers of a system of pseudo-differential operators. Proc. Jap. Acad. 47,
359-364 (1971)

Hormander, L.

[1] Pseudo-differential operators. Comm. Pure Appl. Math. 18, 501-517 (1965)

[2] Pseudo-differential operators and hypoelliptic equations. Singular integrals (Proc.
Sympos. Pure Math., Vol. X, Chicago, Ill., 1966), pp. 138-183. Amer. Math. Soc.,
Providence, R.I., 1967

[3] On the Riesz means of spectral functions and eigenfunction expansions for elliptic dif-
ferential operators. (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ.,
New York, 1965-1966). Some Recent Advances in the Basic Sciences, Vol. 2, Belfer
Graduate School of Science, Yeshiva Univ., New York, pp. 155-202, 1969

[4] The spectral function of an elliptic operator. Acta Math. 121, 193-218 (1968)

[5] On the index of pseudodifferential operators, Schriftenr. Inst. Math. Dtsch. Akad.
Wiss. Berlin, A, No. 8§, 127-146 (1971)

[6] Fourier integral operators, I, Acta Math. 127, 79-183 (1971)

[7] Linear partial differential operators. Springer-Verlag, Berlin New York, 1976, vii+285

[8] Oﬁ the existence and the regularity of solutions of linear pseudo-differential equations,
L’Enseignement mathematique 17: 2, 99-163 (1971)

[llner, R.
[1] On algebra of pseudo-differential operators in L”(IR"). Comm. Part. Diff. Eq. 2, No.
4, 359-394 (1977)

Tvrii, V. Ja.
[1] Wave fronts of the solutions of certain pseudo-differential equations. Functional.

Anal. i PriloZen. 10: 2, 71-72 (1976) (Russian), also in Functional Analysis Appl. 10,
141-142 (1976)

Kohn, J. J., Nirenberg, L.

[1] An algebra of pseudo-differential operators Comm. Pure Appl. Math. 18, 269-305
(1965)



280 Bibliography

Kostjucenko, A. G.

[1]1 Asymptotic behavior of the spectral function of selfadjoint elliptic operators. Fourth
Math. Summer School (Kaciveli, 1966), pp. 42-117. Naukova Dumka, Kiev 1968
(Russian)

KozZevnikov, A. N.

[1] Spectral problems for pseudodifferential systems elliptic in the Douglis-Nirenberg
sense and their applications. Mat. Sb. 92, No. 1, 60—88 (1973) (Russian), also in Math.
USSR Sb. 21, 63-90 (1973)

Kucerenko, V. V.

[1] Asymptotic solution of the Cauchy problem for equations with complex characteris-
tics, Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki 8, 41-136, (1976)
Moscow (Russian), also in J. Soviet Math. 13, 24-80 (1980)

Kumano-go, H.

[11 Remarks on pseudo-differential operators. J. Math. Soc. Japan 21, 413-439 (1969)

[2] Algebras of pseudo-differential operators. J. Fac. Sci. Univ. Tokyo, Sec. 1A, 17, 31—
50 (1970)

[3] Pseudo-differential operators of multiple symbol and the Calderon-Vaillancourt theo-
rem. J. Math. Soc. Japan 27, No. 1, 113-119 (1975)

Kumano-go, H., Tsutsumi, C.
[1] Complex powers of hypoelliptic pseudo-differential operators with applications. Os-
aka J. Math. 10, 147-174 (1973)

Lang, S.
[1] Algebraic numbers. Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto-
London 1964, ix+163 pp.

Lax, P. D.
[1]1 Asymptotic solutions of oscillatory initial value problems. Duke Math. J. 24, 627-646
(1957)

Levitan, B. M.

[1]1 On the asymptotic behavior of the spectral function of a self-adjoint second order dif-
ferential equation. Izvestiya Akad. Nauk SSSR, Ser. Mat. 16, 325-352 (1952) (Rus-
sian), also in Amer. Math. Soc. Trans. (2), 101, 192-221 (1973)

[2] Asymptotic behavior of the spectral function of an elliptic equation. Uspehi Mat.
Nauk 26:6, 151-212 (1971) (Russian), also in Russian Math. Surveys 26(1971), No.
6, 165-232 (1972)

Lions, J.-L., Magenes, E.
[1] Problemes aux limites non homogénes et applications, v. 1, Dunod, Paris 1968,
372 pp.

Maslov, V. P.
[1] Perturbation theory and asymptotic methods. Moscow, 1965 (Russian)
[2] Operational methods. Mir Publishers, Moscow 1976

Maslov, V. P., Fedorjuk, M. V.

[1] Quasiclassical approximation for the equations of quantum mechanics. Nauka,
Moscow 1976, 296 pp. (Russian), English translation Mathematical Physics and Ap-
plied Mathematics, 7. D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1981

Maslov, V. P., Shishmarev, 1. A. '
[1]1 T-product of hypoelliptic operators. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 8,
137-197 (1977) (Russian), also in J. Sov. Math. 13, 81-118 (1980)



Bibliography 281

Mazja, V. G., Panejah, B. P.

[1] Degenerate elliptic pseudodifferential operators and the oblique derivative problem.
Trudy Moskov. Mat. ObsC. 31, 237-295 (1974) (Russian), English translation in:
Trans. Moscow Mathematical Society for the year 1974 (vol. 31), Amer. Math. Soc.
Providence, R.I., 1976, 247-305

Melin, A., Sjostrand, J.
[1]1 Fourier integral operators with complex-valued phase functions. Lect. Notes Math.
459, 121-223 (1975)

Mikhlin, S. G.

[1] Multidimensional singular integrals and integral equations (Russian), Fizmatgiz,
Moscow 1962. English translation, Pergamon Press, Oxford-New York-Paris, 1965,
XI+255 pp.

Mishchenko, A. S., Sternin, B. Yu., Shatalov, V. E.

[1] Geometry of Lagrangian manifolds and the canonical Maslov operator in complex
phase space. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 8, 5-39 (1977) (Russian),
also in J. Sov. Math. 13, 1-23 (1980)

Molcanov, S. A.
[1] Diffusion processes and Riemannian geometry. Uspehi Mat. Nauk 30:1, 3-59 (1975)
(Russian), also in Russian Math. Surveys 30, No. 1, 1-63 (1975)

Moscatelli, V. B., Thompson, M.
[1] Distribution asymptotique des valeurs propres d’opérateurs pseudo-differentiels sur
des variétés compacts. C. R. Acad. Sci. 284, No. 6, A373-A375 (1977)

Muramatu, T.
[1] On the boundedness of a class of operator-valued pseudo-differential operators in L?-
space. Proc. Japan Acad. 49, 94-99 (1973)

Nagase, M., Shikai, K.
[1] Complex powers of non-elliptic operators. Proc. Jap. Acad. 46, 779-783 (1970)

Nikol’skii, S. M.

[1] Approximation of functions of several variables and imbedding theorems. Nauka,
Moscow 1969, 480 pp. (Russian), English translation, Die Grundlehren der mathe-
matischen Wissenschaften 205, Berlin-Heidelberg-New York: Springer-Verlag, VIII,
420 pp.

Nirenberg, L.
[1] Lectures on linear partial differential equations. Conference board of the mathematical
sciences. Regional Conference series in mathematics. Amer. Math Soc. No. 1 (1973)

Nirenberg, L., Treves, F.

[1] On local solvability of linear partial differential equations. Part I: Necessary condi-
tions. Comm. Pure Appl. Math. 23, 1-38 (1970). Part II: Sufficient conditions. Comm.
Pure Appl. Math. 23, 459-509 (1970)

Olejnik, O. A., Radkevic, E. V.

[1] Second order equations with non-negative characteristic form. In Matem. Anal. 1969,
ed. R. V. Gamkrelidze, Moscow 1971 (Russian). See also: Second order equations
with nonnegative characteristic form. Translated from the Russian by Paul C. Fife.
Plenum Press, New York-London, 1973. vii+259 pp.

Rabinovic, V. S.
[1] Pseudodifferential equations in unbounded domains with conical structure at infinity.

Mat. Sb. (N. S.) 80 (122), 77-97 (1969) (Russian), also in Math. USSR Sb. 9, 73-92
(1969)



282 Bibliography

Ray, D., Singer, I. M.
[1] R-Torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145-210 (1971)
[2] Analytic torsion for complex manifolds. Ann. of Math. 98, 154-177 (1973)

Riesz, F., Sz.-Nagy, B.

[1] Functional analysis. Translated from the second French edition by Leo F. Boron.
Reprint of the 1955 original. Dover Books on Advanced Mathematics. Dover Publi-
cations, Inc., New York, 1990. xii+504 pp.

Roitburd, V. L.
[1] The quasiclassical asymptotic behavior of the spectrum of a pseudodifferential opera-
tor. Uspehi Mat. Nauk 31:4, 275-276 (1976) (Russian)

Rotschild, L. P., Stein, E. M.
[1] Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, No. 34,
247-320 (1976)

Rozenbljum, G. V.

[1] Near-similarity of pseudod1fferent1al systems on the circle. Dokl. Akad. Nauk SSSR
223:3, 569-571 (1975) (Russian), also in Soviet Math. Dokl. 16 (1975), No. 4, 959-
962 (1976)

Rudin, W.
[1] Functional analysis. Second edition. International Series in Pure and Applied Mathe-
matics. McGraw-Hill, Inc., New York, 1991. xviii+424 pp.

Sato, M.
[1]1 Regularity of hyperfunction solutions of partial differential equations. Actes Congr.
int. mathématiciens, 1970, v. 2, Paris, 785-794 (1971)

Seeley, R. T.

[1] Complex powers of an elliptic operator. Proc. Symp. in are Math. 10, 288-307 (1967)

[2] The resolvent of an elliptic boundary problem. Amer. J. Math. 91, 889-920 (1969)

[3] Analytic extension of the trace associated with elliptic boundary problems. Amer. J.
Math. 91, 963-983 (1969)

Shnirel’man, A. 1.
[1] The asymptotic multiplicity of the spectrum of the Laplace operator. Uspehi Mat.
Nauk 30, No. 4 (184), 265-266 (1975) (Russian)

Shubin, M. A.

[1] Pseudodifferential operators in IR". Dokl. Akad. Nauk SSSR 196, No. 2, 316-319
(1971) (Russian), also in Soviet Math. Dokl. 12, No. 1, 147-151 (1971)

[2] Certain properties of pseudo-differential operators with nonsmooth symbols. Dokl.
Akad. Nauk SSSR 207, No. 3, 551-553 (1972) (Russian), also in Soviet Math. Dokl.
13, 1586-1589 (1972)

[3] Spectral properties of operators with covariant and contravariant symbol and a varia-
tional principle. Vestnik Moskov. Univ., Ser. 1, Math. Mech. 28, No. 3, 51-57 (1973)
(Russian)

[4] The essential selfadjointness of uniformly hypoelliptic operators. Vestnik Moskov.
Univ. Ser. I Mat. Mech. 30, No. 2, 91-94 (1975) (Russian), also in Moskow Univ.
Math. Bull. 30, No. 1-2, 147-150 (1975)

[5] Pseudodifferential almost-periodic operators and von Neumann algebras. Trudy
Moscow. Mat. Obs¢. 35, 103164 (1976) (Russian), also in Trans. Moscow Math.
Soc., Issue 1. 103-166 (1979)

Smagin, S. A.
[1] Fractional powers of a hypoelliptic operator in IR", Dokl. Akad. Nauk SSSR 209,
1033-1035 (1973) (Russian), also in Soviet Math. Dokl. 14, 585-588 (1973)



Bibliography 283

[2] Complex powers of hypoelliptic systems in IR”. Mat. Sb. (N. S.), 99 (141), No. 3,
331-341, 479 (1976) (Russian), also in Math. USSR Sbornik 28, 291-300 (1976)

Sobolev, S. L.

[1] Introduction to the theory of cubature formulae. Nauka, Moscow 1974, 808 pp. (Rus-
sian). See also: Cubature formulas and modern analysis. An introduction. Translated
from the 1988 Russian edition. Gordon and Breach Science Publishers, Montreux,
1992. xvi+379 pp.

Taylor, M.
[1] Pseudo differential operators. Lect. Notes in Math. 416. Springer-Verlag, Berlin New
York, 1974, iv+155 pp.

Treves, F.

[1]1 An introduction to pseudo-differential operators and Fourier integral operators. Uni-
versidade Federal de Pernambuco, Institute de Matematika, Editora Universitaria, Re-
cife 1973

Tulovskii, V. N., Shubin, M. A.

[1] On asymptotic distribution of eigenvalues of pseudodifferential operators in IR". Mat.
Sbornik 92, No. 4, 571-588 (1973) (Russian), also in Math. USSR Sbornik 21, No. 4,
565-588 (1973)

Volevié, L. R.
[1] Pseudodifferential operators with holomorphic symbols and Gevrey classes, v. 24,
1971, p. 43-68 (Russian), also in Trans. Moscow Math. Soc. 24, 43-72 (1971)

Watanabe, K.
[1] On the boundedness of pseudodifferential operators of type 0, § with0 S g =8 < 1,
Tohoku Math. J. 25, No. 3, 339-345 (1973)

Weinstein, A.

[1] Fourier integral operators, quantization, and the spectra of Riemannian manifolds.
(English. French summary.) With questions by W. Klingenberg and K. Bleuler and
replies by the author. Géométrie symplectique et physique mathématique (Collog. In-
ternat. CNRS, No. 237, Aix-en-Provence, 1974), pp. 289-298. Editions Centre Nat.
Recherche Sci., Paris, 1975

Wells, R. O.
[1] Differential analysis on complex manifolds. Second edition. Graduate Texts in Math-
ematics, 65. Springer-Verlag, New York Berlin, 1980, x+260 pp.

Weyl, H.

[1]1 Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differential-
gleichungen. Math. Ann. 71, 441479 (1912)

[2] Uber die Abhingigkeit der Eigenschwingungen einer Membran von der Begrenzung.
J. reine angew. Math. 141, 1-11 (1912)



Index of Notation

a;(x, ;1) 95 7'X) 5

a®(x,&) 97 D'M) 37

A, 88 e(x,y,t) 128

Ar 90 e(z,h) 212

A, (x,y) 102 &My 37
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CL™(X,A) 79 H*(R") 55

CS"(X xR*) 29 Hrrm(RN), HI™m™ 193
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P, 187
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Si(H) 260
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A (Laplace operator) 39
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o 243

T-symbol 180

Po(x) 186
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Il - l1 (trace class norm of an
operator) 264

-1l (Hilbert-Schmidt norm of an
operator) 257
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“(e.g., 1) 1

() (e.g, {(x)) 2
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